1
|
Arfmann W, Achenbach J, Meyer-Bockenkamp F, Proskynitopoulos PJ, Groh A, Muschler MAN, Glahn A, Hagemeier L, Preuss V, Klintschar M, Frieling H, Rhein M. Comparing DRD2 Promoter Methylation Between Blood and Brain in Alcohol Dependence. Alcohol Alcohol 2023; 58:216-223. [PMID: 36747480 DOI: 10.1093/alcalc/agad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS The dopamine receptor D2 (DRD2) is substantially involved in several forms of addiction. In addition to genetic polymorphisms, epigenetic mechanisms have emerged as an important means of regulation. Previously, DRD2 hypo- and hyper-methylation have been observed in alcohol use disorder (AUD). Blood samples are commonly used as a surrogate marker of epigenetic alterations in epigenetic research, but few specific comparisons between blood and brain tissue samples in AUD exist. METHODS We used post-mortem brain tissue samples of 17 deceased patients with AUD and 31 deceased controls to investigate the relationship between blood and brain methylation of the DRD2 promoter. RESULTS When investigating individual cytosine methylation sites (CpG), several significant differences were found in the nucleus accumbens and hippocampus in the study population. Investigating binding sites with significant differences in methylation levels revealed hypomethylated CpGs targeting mainly activating transcription factors. CONCLUSION These findings support an altered transcription of the DRD2 gene in AUD specimens with a consecutively changed reward response in the brain. While methylation between specific brain regions and blood is comparable, our study further suggests that blood methylation cannot provide meaningful perspectives on DRD2 promoter methylation in the brain.
Collapse
Affiliation(s)
- Wiebke Arfmann
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johannes Achenbach
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Department of Anesthesiology and Intensive Care Medicine, Pain Clinic, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fiona Meyer-Bockenkamp
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Phileas J Proskynitopoulos
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Adrian Groh
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marc A N Muschler
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexander Glahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Lars Hagemeier
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Vanessa Preuss
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
2
|
Sinding C, Aveline C, Brindisi MC, Thomas-Danguin T. Flaveur et obésité. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Mothers' cafeteria diet induced sex-specific changes in fat content, metabolic profiles, and inflammation outcomes in rat offspring. Sci Rep 2021; 11:18573. [PMID: 34535697 PMCID: PMC8448886 DOI: 10.1038/s41598-021-97487-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
“Western diet” containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.
Collapse
|
4
|
Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Kuijf HJ, Witkamp TD, Hendrikse J, Biessels GJ, Geerlings MI. Vascular Risk Factors of Hippocampal Subfield Volumes in Persons without Dementia: The Medea 7T Study. J Alzheimers Dis 2021; 77:1223-1239. [PMID: 32925029 PMCID: PMC7683058 DOI: 10.3233/jad-200159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular risk factors have been associated with risk of Alzheimer's disease (AD) and volume loss of the hippocampus, but the associations with subfields of the hippocampus are understudied. Knowing if vascular risk factors contribute to hippocampal subfield atrophy may improve our understanding of vascular contributions to neurodegenerative diseases. OBJECTIVE To investigate the associations between age, sex, and vascular risk factors with hippocampal subfields volumes on 7T MRI in older persons without dementia. METHODS From the Medea 7T study, 283 participants (67±9 years, 68% men) without dementia had 7T brain MRI and hippocampal subfield segmentation. Subfields were automatically segmented on the 3D T2-weighted 7T images with ASHS software. Using linear mixed models, we estimated adjusted associations of age, sex, and vascular risk factors with z-scores of volumes of the entorhinal cortex (ERC), subiculum (SUB), Cornu Ammonis (CA)1, CA2, CA3, CA4, and dentate gyrus (DG), and tail as multivariate correlated outcomes. RESULTS Increasing age was associated with smaller volumes in all subfields, except CA4/DG. Current smoking was associated with smaller ERC and SUB volumes; moderate alcohol use with smaller CA1 and CA4/DG, obesity with smaller volumes of ERC, SUB, CA2, CA3, and tail; and diabetes mellitus with smaller SUB volume. Sex, former smoking, and hypertension were not associated with subfield volumes. When formally tested, no risk factor affected the subfield volumes differentially. CONCLUSION Several vascular risk factors were associated with smaller volumes of specific hippocampal subfields. However, no statistical evidence was found that subfields were differentially affected by these risk factors.
Collapse
Affiliation(s)
- Kim Blom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maarten H T Zwartbol
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Theo D Witkamp
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
5
|
Abrantes AM, Kunicki Z, Braun T, Miranda R, Blevins CE, Brick L, Thomas G, Marsh E, Feltus S, Stein MD. Daily associations between alcohol and sweets craving and consumption in early AUD recovery: Results from an ecological momentary assessment study. J Subst Abuse Treat 2021; 132:108614. [PMID: 34493429 DOI: 10.1016/j.jsat.2021.108614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Alcohol cravings can predict relapse in persons with alcohol use disorder (AUD). Consuming sweets is a commonly recommend strategy to quell alcohol cravings in early recovery from AUD, yet research is equivocal on whether consuming sweets mitigates alcohol cravings or relapse risk. The current study used ecological momentary assessment (EMA) data to examine real-time alcohol cravings, sweet cravings, and consumption of sweets among adults in early recovery from AUD. METHODS We used EMA methods to follow 25 adults (n = 14 women, 56%; M. age 40, S.D. 10.68) recently discharged from a partial hospitalization program for AUD for 21 days. Prompts were sent to the participants for completion four times per day via a mobile app. EMA data were disaggregated prior to analysis to examine between- and within-person effects. A series of three mixed linear models tested: 1) the contemporaneous effect of sweet and alcohol cravings, 2) alcohol cravings predicting sweet consumption later in the day, and 3) sweet consumption predicting alcohol craving later in the day. RESULTS The results of the first model revealed alcohol cravings were associated with sweet cravings early in recovery. In the second model, no effect occurred between alcohol cravings earlier in the day predicting sweet consumption later in the day. The third model suggested consuming sweets earlier in the day predicted higher alcohol cravings later in the day. DISCUSSION Sweet craving and consumption are associated with alcohol cravings among adults in early recovery from AUD. These findings suggest consuming sweets may increase alcohol cravings. If future studies can replicate this result, consuming sweets in early recovery may emerge as a potential risk for relapse in this population.
Collapse
Affiliation(s)
- Ana M Abrantes
- Behavioral Medicine and Addictions Research, Butler Hospital, Providence, RI, United States of America; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America.
| | - Zachary Kunicki
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America
| | - Tosca Braun
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America; Centers for Diabetes and Weight Control, The Miriam Hospital, Providence, RI, United States of America
| | - Robert Miranda
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America; Centers for Alcohol and Addiction Studies, Brown University, Providence, RI, United States of America
| | - Claire E Blevins
- Behavioral Medicine and Addictions Research, Butler Hospital, Providence, RI, United States of America; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America
| | - Leslie Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America
| | - Graham Thomas
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, United States of America; Centers for Diabetes and Weight Control, The Miriam Hospital, Providence, RI, United States of America
| | - Eliza Marsh
- Behavioral Medicine and Addictions Research, Butler Hospital, Providence, RI, United States of America
| | - Sage Feltus
- Behavioral Medicine and Addictions Research, Butler Hospital, Providence, RI, United States of America
| | - Michael D Stein
- Behavioral Medicine and Addictions Research, Butler Hospital, Providence, RI, United States of America; Department of Health Law, Policy, and Management, Boston University School of Public Health, United States of America
| |
Collapse
|
6
|
Scheffler F, Du Plessis S, Asmal L, Kilian S, Phahladira L, Luckhoff HK, Emsley R. Cannabis use and hippocampal subfield volumes in males with a first episode of a schizophrenia spectrum disorder and healthy controls. Schizophr Res 2021; 231:13-21. [PMID: 33740561 DOI: 10.1016/j.schres.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Both schizophrenia and cannabis use are associated with structural brain changes. The hippocampus is a region of particular interest due to its role in memory and select cognitive functions, impairment of which is a core feature of schizophrenia and has also been observed in substance abuse. This study aimed to explore the effects of recent/current cannabis use on hippocampal subfield volumes in male patients with first-episode schizophrenia spectrum disorders and matched controls. METHODS This cross-sectional, case-control study included 63 patients and 58 controls scanned on 3T MRI scanners, with hippocampal segmentation performed using recently validated Freesurfer v6.0 software. Cannabis use status was determined by self and carer report together with urine toxicology screening, and patients were categorised as recent/current users or non-users. We used multivariate analysis of covariance (MANCOVA) with age, scan sequence, scan quality, and total intracranial volume as covariates, with subsequent analysis of variance (ANOVA) to test the effects of diagnosis and cannabis use status on individual hippocampal subfields. RESULTS We found a group (patient/control) by cannabis use interaction effect in the subiculum, with decreased volumes observed in the cannabis non-using patients compared to the cannabis using patients, and decreased volumes in the cannabis using controls compared to the cannabis non-using controls. CONCLUSION The increased subiculum volume in cannabis using patients compared to cannabis non-using patients raises important questions regarding the pathophysiology of schizophrenia and the role of cannabis use therein.
Collapse
Affiliation(s)
- F Scheffler
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - S Du Plessis
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Asmal
- Department of Psychiatry, Stellenbosch University, South Africa
| | - S Kilian
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Phahladira
- Department of Psychiatry, Stellenbosch University, South Africa
| | - H K Luckhoff
- Department of Psychiatry, Stellenbosch University, South Africa
| | - R Emsley
- Department of Psychiatry, Stellenbosch University, South Africa
| |
Collapse
|
7
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
8
|
García-García I, Morys F, Dagher A. Nucleus accumbens volume is related to obesity measures in an age-dependent fashion. J Neuroendocrinol 2020; 32:e12812. [PMID: 31758711 DOI: 10.1111/jne.12812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
Motivation theories of obesity suggest that one of the brain mechanisms underlying pathological eating and weight gain is the dysregulation of dopaminergic circuits. Although these dysregulations likely occur at the microscopic level, studies on grey matter volume report macroscopic differences associated with obesity. One region suggested to play a key role in the pathophysiology of obesity is the nucleus accumbens (NAcc). We performed a meta-analysis of findings regarding NAcc volume and overweight/obesity. We additionally examined whether grey matter volume in the NAcc and other mesolimbic areas depends on the longitudinal trajectory of obesity, using the UK Biobank dataset. To this end, we analysed the data using a latent growth model, which identifies whether a certain variable of interest (eg, NAcc volume) is related to another variable's (body mass index [BMI]) initial values or longitudinal trajectories. Our meta-analysis showed that, overall, NAcc volume is positively related to BMI. However, further analyses revealed that the relationship between NAcc volume and BMI is dependent on age. For younger individuals, such a relationship is positive, whereas, for older adults, it is negative. This was corroborated by our analysis in the UK Biobank dataset, which includes older adults, where we found that a higher BMI was associated with a lower NAcc and thalamus volume. Overall, the present study suggests that increased NAcc volume at a young age might be a vulnerability factor for obesity, whereas, at an older age, decreased NAcc volume with increased BMI might be an effect of prolonged influences of neuroinflammation on the brain.
Collapse
Affiliation(s)
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Luckhoff HK, du Plessis S, Kilian S, Asmal L, Scheffler F, Phahladira L, Olivier RM, Emsley R. Hippocampal subfield volumes and change in body mass over 12 months of treatment in first-episode schizophrenia spectrum disorders. Psychiatry Res Neuroimaging 2020; 300:111084. [PMID: 32388386 DOI: 10.1016/j.pscychresns.2020.111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
In this study, we explored the relationship between baseline hippocampal subfield volumes and change in body mass over 12 months of treatment in 90 first-episode schizophrenia spectrum disorder patients (66 males, 24 females; mean age= 24.7 ± 6.8 years). Body mass index was assessed in patients at baseline, and at months 3, 6, 9 and 12. Hippocampal subfields of interest were assessed at baseline using a segmentation algorithm included in the FreeSurfer 6.0 software program. Linear regression revealed a significant interactive effect between sex and anterior hippocampus size as predictors of change in body mass over 12 months, adjusting for age, substance use, and treatment duration. In an exploratory post-hoc sub-analysis, partial correlations showed a significant association between weight gain and smaller CA1, CA3 and subiculum volumes in females, but not males, adjusting for age and substance use, with similar trends evident for the CA4 and presubiculum subfields. In conclusion, our findings suggest that smaller anterior hippocampal subfields at baseline are associated with the development of weight gain over the course of treatment in first-episode schizophrenia spectrum disorders in a sex-specific fashion. This may be related to the greater increase in body mass evident for female patients in our study.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa.
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - S Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - R M Olivier
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| |
Collapse
|
10
|
Striatal volume and functional connectivity correlate with weight gain in early-phase psychosis. Neuropsychopharmacology 2019; 44:1948-1954. [PMID: 31315130 PMCID: PMC6785100 DOI: 10.1038/s41386-019-0464-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/09/2022]
Abstract
Second-generation antipsychotic drugs (SGAs) are essential in the treatment of psychotic disorders, but are well-known for inducing substantial weight gain and obesity. Critically, weight gain may reduce life expectancy for up to 20-30 years in patients with psychotic disorders, and prognostic biomarkers are generally lacking. Even though other receptors are also implicated, the dorsal striatum, rich in dopamine D2 receptors, which are antagonized by antipsychotic medications, plays a key role in the human reward system and in appetite regulation, suggesting that altered dopamine activity in the striatal reward circuitry may be responsible for increased food craving and weight gain. Here, we measured striatal volume and striatal resting-state functional connectivity at baseline, and weight gain over the course of 12 weeks of antipsychotic treatment in 81 patients with early-phase psychosis. We also included a sample of 58 healthy controls. Weight measurements were completed at baseline, and then weekly for 4 weeks, and every 2 weeks until week 12. We used linear mixed models to compute individual weight gain trajectories. Striatal volume and whole-brain striatal connectivity were then calculated for each subject, and used to assess the relationship between striatal structure and function and individual weight gain in multiple regression models. Patients had similar baseline weights and body mass indices (BMI) compared with healthy controls. There was no evidence that prior drug exposure or duration of untreated psychosis correlated with baseline BMI. Higher left putamen volume and lower sensory motor connectivity correlated with the magnitude of weight gain in patients, and these effects multiplied when the structure-function interaction was considered in an additional exploratory analysis. In conclusion, these results provide evidence for a correlation of striatal structure and function with antipsychotic-induced weight gain. Lower striatal connectivity was associated with more weight gain, and this relationship was stronger for higher compared with lower left putamen volumes.
Collapse
|
11
|
Doñamayor N, Baek K, Voon V. Distal Functional Connectivity of Known and Emerging Cortical Targets for Therapeutic Noninvasive Stimulation. Cereb Cortex 2019; 28:791-804. [PMID: 29207006 DOI: 10.1093/cercor/bhx331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Noninvasive stimulation is an emerging modality for the treatment of psychiatric disorders, including addiction. A crucial element in effective cortical target selection is its distal influence. We approached this question by examining resting-state functional connectivity patterns in known and potential stimulation targets in 145 healthy adults. We compared connectivity patterns with distant regions of particular relevance in the development and maintenance of addiction. We used stringent Bonferroni-correction for multiple comparisons. We show how the anterior insula, dorsal anterior cingulate, and ventromedial prefrontal cortex had opposing functional connectivity with striatum compared to the dorsomedial prefrontal cortex. However, the dorsolateral prefrontal cortex, the currently preferred target, and the presupplementary motor area had strongest negative connections to amygdala and hippocampus. Our findings highlight differential and opposing influences as a function of cortical site, underscoring the relevance of careful cortical target selection dependent on the desired effect on subcortical structures. We show the relevance of dorsal anterior cingulate and ventromedial prefrontal cortex as emerging cortical targets, and further emphasize the anterior insula as a potential promising target in addiction treatment, given its strong connections to ventral striatum, putamen, and substantia nigra.
Collapse
Affiliation(s)
- Nuria Doñamayor
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK.,Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 3EB, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
12
|
Kakoschke N, Lorenzetti V, Caeyenberghs K, Verdejo-García A. Impulsivity and body fat accumulation are linked to cortical and subcortical brain volumes among adolescents and adults. Sci Rep 2019; 9:2580. [PMID: 30796265 PMCID: PMC6385240 DOI: 10.1038/s41598-019-38846-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity is associated not only with metabolic and physical health conditions, but with individual variations in cognition and brain health. This study examined the association between body fat (an index of excess weight severity), impulsivity (a vulnerability factor for obesity), and brain structure among adolescents and adults across the body mass index (BMI) spectrum. We used 3D T1 weighted anatomic magnetic resonance imaging scans to map the association between body fat and volumes in regions associated with obesity and impulsivity. Participants were 127 individuals (BMI: 18-40 kg/m2; M = 25.69 ± 5.15), aged 14 to 45 years (M = 24.79 ± 9.60; female = 64). Body fat was measured with bioelectric impendence technology, while impulsivity was measured with the UPPS-P Impulsive Behaviour Scale. Results showed that higher body fat was associated with larger cerebellar white matter, medial orbitofrontal cortex (OFC), and nucleus accumbens volume, although the latter finding was specific to adolescents. The relationship between body fat and medial OFC volume was moderated by impulsivity. Elevated impulsivity was also associated with smaller amygdala and larger frontal pole volumes. Our findings link vulnerability and severity markers of obesity with neuroanatomical measures of frontal, limbic and cerebellar structures, and unravel specific links between body fat and striatal volume in adolescence.
Collapse
Affiliation(s)
- Naomi Kakoschke
- School of Psychological Sciences & Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Valentina Lorenzetti
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Antonio Verdejo-García
- School of Psychological Sciences & Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Perlaki G, Molnar D, Smeets PAM, Ahrens W, Wolters M, Eiben G, Lissner L, Erhard P, van Meer F, Herrmann M, Janszky J, Orsi G, on behalf of the I.Family Consortium. Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS One 2018; 13:e0205331. [PMID: 30335775 PMCID: PMC6193643 DOI: 10.1371/journal.pone.0205331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Neuroimaging data suggest that pediatric overweight and obesity are associated with morphological alterations in gray matter (GM) brain structures, but previous studies using mainly voxel-based morphometry (VBM) showed inconsistent results. Here, we aimed to examine the relationship between youth obesity and the volume of predefined reward system structures using magnetic resonance (MR) volumetry. We also aimed to complement volumetry with VBM-style analysis. Methods Fifty-one Caucasian young subjects (32 females; mean age: 13.8±1.9, range: 10.2–16.5 years) were included. Subjects were selected from a subsample of the I.Family study examined in the Hungarian center. A T1-weighted 1 mm3 isotropic resolution image was acquired. Age- and sex-standardized body mass index (zBMI) was assessed at the day of MRI and ~1.89 years (mean±SD: 689±188 days) before the examination. Obesity related GM alterations were investigated using MR volumetry in five predefined brain structures presumed to play crucial roles in body weight regulation (hippocampus, amygdala, accumbens, caudate, putamen), as well as whole-brain and regional VBM. Results The volumes of accumbens and amygdala showed significant positive correlations with zBMI, while their GM densities were inversely related to zBMI. Voxel-based GM mass also showed significant negative correlation with zBMI when investigated in the predefined amygdala region, but this relationship was mediated by GM density. Conclusions Overweight/obesity related morphometric brain differences already seem to be present in children/adolescents. Our work highlights the disparity between volume and VBM-derived measures and that GM mass (combination of volume and density) is not informative in the context of obesity related volumetric changes. To better characterize the association between childhood obesity and GM morphometry, a combination of volumetric segmentation and VBM methods, as well as future longitudinal studies are necessary. Our results suggest that childhood obesity is associated with enlarged structural volumes, but decreased GM density in the reward system.
Collapse
Affiliation(s)
- Gabor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
- * E-mail:
| | - Denes Molnar
- Department of Pediatrics, University of Pecs, Medical School, Pecs, Hungary
| | - Paul A. M. Smeets
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Gabriele Eiben
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine and Public Health, School of Health and Education, University of Skövde, Skövde, Sweden
| | - Lauren Lissner
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Erhard
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manfred Herrmann
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Jozsef Janszky
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | | |
Collapse
|
14
|
Abstract
Obesity is a widespread heritable health condition. Evidence from psychology, cognitive neuroscience, and genetics has proposed links between obesity and the brain. The current study tested whether the heritable variance in body mass index (BMI) is explained by brain and behavioral factors in a large brain imaging cohort that included multiple related individuals. We found that the heritable variance in BMI had genetic correlations 0.25–0.45 with cognitive tests, cortical thickness, and regional brain volume. In particular, BMI was associated with frontal lobe asymmetry and differences in temporal-parietal perceptual systems. Further, we found genetic overlap between certain brain and behavioral factors. In summary, the genetic vulnerability to BMI is expressed in the brain. This may inform intervention strategies. Recent molecular genetic studies have shown that the majority of genes associated with obesity are expressed in the central nervous system. Obesity has also been associated with neurobehavioral factors such as brain morphology, cognitive performance, and personality. Here, we tested whether these neurobehavioral factors were associated with the heritable variance in obesity measured by body mass index (BMI) in the Human Connectome Project (n = 895 siblings). Phenotypically, cortical thickness findings supported the “right brain hypothesis” for obesity. Namely, increased BMI is associated with decreased cortical thickness in right frontal lobe and increased thickness in the left frontal lobe, notably in lateral prefrontal cortex. In addition, lower thickness and volume in entorhinal-parahippocampal structures and increased thickness in parietal-occipital structures in participants with higher BMI supported the role of visuospatial function in obesity. Brain morphometry results were supported by cognitive tests, which outlined a negative association between BMI and visuospatial function, verbal episodic memory, impulsivity, and cognitive flexibility. Personality–BMI correlations were inconsistent. We then aggregated the effects for each neurobehavioral factor for a behavioral genetics analysis and estimated each factor’s genetic overlap with BMI. Cognitive test scores and brain morphometry had 0.25–0.45 genetic correlations with BMI, and the phenotypic correlations with BMI were 77–89% explained by genetic factors. Neurobehavioral factors also had some genetic overlap with each other. In summary, obesity as measured by BMI has considerable genetic overlap with brain and cognitive measures. This supports the theory that obesity is inherited via brain function and may inform intervention strategies.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The present review organises the recent literature on the role of memory in eating behaviours and provides an overview of the current evidence relating to the associations between memory and weight gain. RECENT FINDINGS Research over the last few years has highlighted working memory as an important cognitive process that underpins many aspects of appetite control. Recent work on episodic memory and appetite has replicated work showing that manipulating memory for recent eating affects later consumption and extended this work to examine associations between individual differences in memory and eating behaviours. Poorer episodic memory ability is related to a reduced sensitivity to internal states of hunger and satiety and a tendency towards uncontrolled eating. There is also recent evidence to suggest that working memory and episodic memory impairments are related to weight gain and high BMI. Working memory and episodic memory are core cognitive processes that are critical for food-related decision-making, and disruption to these processes contributes to problems with appetite control and weight gain, which suggests that weight loss programmes might be improved by the addition of cognitive training.
Collapse
Affiliation(s)
- Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Maartje S Spetter
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
Bétry C, Thobois S, Laville M, Disse E. Deep brain stimulation as a therapeutic option for obesity: A critical review. Obes Res Clin Pract 2018; 12:260-269. [PMID: 29475604 DOI: 10.1016/j.orcp.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Despite a better understanding of obesity pathophysiology, treating this disease remains a challenge. New therapeutic options are needed. Targeting the brain is a promising way, considering both the brain abnormalities in obesity and the effects of bariatric surgery on the gut-brain axis. Deep brain stimulation could be an alternative treatment for obesity since this safe and reversible neurosurgical procedure modulates neural circuits for therapeutic purposes. We aimed to provide a critical review of published clinical and preclinical studies in this field. Owing to the physiology of eating and brain alterations in people with obesity, two brain areas, namely the hypothalamus and the nucleus accumbens are putative targets. Preclinical studies with animal models of obesity showed that deep brain stimulation of hypothalamus or nucleus accumbens induces weight loss. The mechanisms of action remain to be fully elucidated. Preclinical data suggest that stimulation of nucleus accumbens reduces food intake, while stimulation of hypothalamus could increase resting energy expenditure. Clinical experience with deep brain stimulation for obesity remains limited to six patients with mixed results, but some clinical trials are ongoing. Thus, drawing clear conclusions about the effectiveness of this treatment is not yet possible, even if the results of preclinical studies are encouraging. Future clinical studies should examine its efficacy and safety, while preclinical studies could help understand its mechanisms of action. We hope that our review will provide ways to design further studies.
Collapse
Affiliation(s)
- Cécile Bétry
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France; The Medical School, University of Nottingham, Nottingham, UK.
| | - Stéphane Thobois
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Service de neurologie C, Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, Faculté de médecine Lyon Sud Charles Merieux, Lyon, France; CNRS, Institut des Sciences Cognitives Marc Jeannerot, UMR 5229, Bron, France
| | - Martine Laville
- Service d'Endocrinologie-Diabétologie-Maladies de la nutrition, Centre Intégré de l'Obésité, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France; Unité INSERM 1060, Laboratoire CARMEN, CENS-Centre Européen pour la Nutrition et la Santé, Centre de Recherche en Nutrition Humaine Rhône-Alpes., Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Emmanuel Disse
- Service d'Endocrinologie-Diabétologie-Maladies de la nutrition, Centre Intégré de l'Obésité, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France; Unité INSERM 1060, Laboratoire CARMEN, CENS-Centre Européen pour la Nutrition et la Santé, Centre de Recherche en Nutrition Humaine Rhône-Alpes., Université Claude Bernard Lyon 1, Pierre Bénite, France
| |
Collapse
|
17
|
Kennedy JT, Collins PF, Luciana M. Higher Adolescent Body Mass Index Is Associated with Lower Regional Gray and White Matter Volumes and Lower Levels of Positive Emotionality. Front Neurosci 2016; 10:413. [PMID: 27660604 PMCID: PMC5015489 DOI: 10.3389/fnins.2016.00413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022] Open
Abstract
Adolescent obesity is associated with an increased chance of developing serious health risks later in life. Identifying the neurobiological and personality factors related to increases in adiposity is important to understanding what drives maladaptive consummatory and exercise behaviors that result in obesity. Previous research has largely focused on adults with few findings published on interactions among adiposity, brain structure, and personality. In this study, Voxel Based Morphometry (VBM) was used to identify associations between gray and white matter volumes and increasing adiposity, as measured by Body Mass Index percentile (BMI%), in 137 adolescents (age range: 9–20 years, BMI% range: 5.16–99.56). Variations in gray and white matter volume and BMI% were then linked to individual differences in personality measures from the Multidimensional Personality Questionnaire (MPQ). After controlling for age and other covariates, BMI% correlated negatively with gray matter volume in the bilateral caudate (right: partial r = −0.338, left: r = −0.404), medial prefrontal cortex (partial r = −0.339), anterior cingulate (partial r = −0.312), bilateral frontal pole (right: partial r = −0.368, left: r = −0.316), and uncus (partial r = −0.475) as well as white matter volume bilaterally in the anterior limb of the internal capsule (right: partial r = −0.34, left: r = −0.386), extending to the left middle frontal subgyral white matter. Agentic Positive Emotionality (PEM-AG) was correlated negatively with BMI% (partial r = −0.384). PEM-AG was correlated positively with gray matter volume in the right uncus (partial r = 0.329). These results suggest that higher levels of adiposity in adolescents are associated with lower trait levels in reward-related personality domains, as well as structural variations in brain regions associated with reward processing, control, and sensory integration.
Collapse
Affiliation(s)
- James T Kennedy
- Department of Psychology, University of Minnesota Minneapolis, MN, USA
| | - Paul F Collins
- Department of Psychology, University of MinnesotaMinneapolis, MN, USA; Center for Neurobehavioral Development, University of MinnesotaMinneapolis, MN, USA
| | - Monica Luciana
- Department of Psychology, University of MinnesotaMinneapolis, MN, USA; Center for Neurobehavioral Development, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|