1
|
Ruiz-Vitte A, Gutiérrez-Fernández M, Laso-García F, Piniella D, Gómez-de Frutos MC, Díez-Tejedor E, Gutiérrez Á, Alonso de Leciñana M. Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model. Comput Biol Med 2025; 186:109689. [PMID: 39862465 DOI: 10.1016/j.compbiomed.2025.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit. The results correlate with the measurements performed by a professional observer and have greater reproducibility, easing the analysis of motor deficits and providing a reliable and useful tool applicable to other diseases causing motor deficits.
Collapse
Affiliation(s)
- Ainhoa Ruiz-Vitte
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain; ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain; Universidad Autónoma de Madrid and IdiPAZ Health Research Institute, La Paz University Hospital, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain
| | - Álvaro Gutiérrez
- ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain.
| |
Collapse
|
2
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
3
|
Mah KM, Torres-Espín A, Hallworth BW, Bixby JL, Lemmon VP, Fouad K, Fenrich KK. Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Exp Neurol 2021; 340:113647. [PMID: 33600814 PMCID: PMC10443427 DOI: 10.1016/j.expneurol.2021.113647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Testing and training animals in motor and related tasks is a cornerstone of pre-clinical behavioural and rehabilitative neuroscience. Yet manually testing and training animals in these tasks is time consuming and analyses are often subjective. Consequently, there have been many recent advances in automating both the administration and analyses of animal behavioural training and testing. This review is an in-depth appraisal of the history of, and recent developments in, the automation of animal behavioural assays used in neuroscience. We describe the use of common locomotor and non-locomotor tasks used for motor training and testing before and after nervous system injury. This includes a discussion of how these tasks help us to understand the underlying mechanisms of neurological repair and the utility of some tasks for the delivery of rehabilitative training to enhance recovery. We propose two general approaches to automation: automating the physical administration of behavioural tasks (i.e., devices used to facilitate task training, rehabilitative training, and motor testing) and leveraging the use of machine learning in behaviour analysis to generate large volumes of unbiased and comprehensive data. The advantages and disadvantages of automating various motor tasks as well as the limitations of machine learning analyses are examined. In closing, we provide a critical appraisal of the current state of automation in animal behavioural neuroscience and a prospective on some of the advances in machine learning we believe will dramatically enhance the usefulness of these approaches for behavioural neuroscientists.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Abel Torres-Espín
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ben W Hallworth
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - John L Bixby
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Assessment of Somatosensory Reorganization by Functional Magnetic Resonance Imaging After Hand Replantation. Ann Plast Surg 2019; 83:468-474. [PMID: 31524745 DOI: 10.1097/sap.0000000000001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Amputation of the hand is a rare and extremely intense trauma. Replanting and allografting after this type of injury require a major reorganization of the brain. Brain plasticity, though better known in the context of disorders of the central nervous system, is just as indispensable when the extremities are damaged. MATERIALS AND METHODS A 17-year-old patient underwent replantation of the nondominant hand after transmetaphyseal amputation after traumatic injury. After 18 days in hospital and subsequent treatment in a physical rehabilitation center, the patient attended clinical and radiology follow-up sessions over the next 2 years. RESULTS The management of this patient led to an excellent functional outcome in conjunction with successful social and professional reintegration. Electromyography at 18 months confirmed nerve regrowth. Functional magnetic resonance imaging was done at 2 years to evaluate cerebral plasticity. Motor function, largely dependent on the primary motor area, is aided by the addition of secondary and accessory motor areas for both simple and complex movements. A change in sensory information is stimulation in its own right hemisphere and increases solicitation of the contralateral precentral and postcentral gyrus. CONCLUSIONS There seems to be a real reversible dynamic plasticity under the balance of inhibitory and excitatory influences exerted on the cortical neurons. Any disruption of this balance requires the brain to adapt to the new circumstances to reestablish the hand as a functioning part of the body.
Collapse
|
5
|
Hausser N, Johnson K, Parsley MA, Guptarak J, Spratt H, Sell SL. Detecting Behavioral Deficits in Rats After Traumatic Brain Injury. J Vis Exp 2018. [PMID: 29443022 PMCID: PMC5912256 DOI: 10.3791/56044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
With the increasing incidence of traumatic brain injury (TBI) in both civilian and military populations, TBI is now considered a chronic disease; however, few studies have investigated the long-term effects of injury in rodent models of TBI. Shown here are behavioral measures that are well-established in TBI research for times early after injury, such as two weeks, until two months. Some of these methods have previously been used at later times after injury, up to one year, but by very few laboratories. The methods demonstrated here are a short neurological assessment to test reflexes, a Beam-Balance to test balance, a Beam-Walk to test balance and motor coordination, and a working memory version of the Morris water maze that can be sensitive to deficits in reference memory. Male rats were handled and pre-trained to neurological, balance, and motor coordination tests prior to receiving parasagittal fluid percussion injury (FPI) or sham injury. Rats can be tested on the short neurological assessment (neuroscore), the beam-balance, and the Beam-Walk multiple times, while testing on the water maze can only be done once. This difference is because rats can remember the task, thus confounding the results if repeated testing is attempted in the same animal. When testing from one to three days after injury, significant differences are detected in all three non-cognitive tasks. However, differences in the Beam-Walk task were not detectable at later time points (after 3 months). Deficits were detected at 3 months in the Beam-Balance and at 6 months in the neuroscore. Deficits in working memory were detected out to 12 months after injury, and a deficit in a reference memory first appeared at 12 months. Thus, standard behavioral tests can be useful measures of persistent behavioral deficits after FPI.
Collapse
Affiliation(s)
- Nicole Hausser
- Department of Anesthesiology, University of Texas Medical Branch
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch
| | | | - Jutatip Guptarak
- Department of Anesthesiology, University of Texas Medical Branch
| | - Heidi Spratt
- Department of Anesthesiology, University of Texas Medical Branch
| | - Stacy L Sell
- Department of Anesthesiology, University of Texas Medical Branch;
| |
Collapse
|
6
|
Preston KE, Corwin RL, Bader JO, Crimmins SL. Relatively enriched housing conditions delay binge onset but do not attenuate binge size. Physiol Behav 2017; 184:196-204. [PMID: 29155246 DOI: 10.1016/j.physbeh.2017.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Housing and enrichment conditions are essential factors to consider when using animal models of behavior, as they can alter the behavior that is under investigation. The goal of this study was to determine the impact of the relatively enriched environment recommended by current animal care guidelines on development and maintenance of binge-type behavior in rats, using the limited access (LA) binge model. Non-food-deprived rats were divided into two groups, enriched and nonenriched, with all rats housed in shoebox cages. Bedding, nesting material, toys, and a solid floor were provided only to the enriched group to create a state of relative enrichment, or RE, compared to the nonenriched conditions historically used in the LA model. Enriched and nonenriched groups were further divided into control and experimental groups. Control rats received access to an optional source of fat (vegetable shortening) for 30min each day (daily access) while experimental rats received 30-min optional fat access on Monday, Wednesday, and Friday only (intermittent access). The four groups were designated C-E (Control-Enriched), C-NE (Control-Nonenriched), I-E (Intermittent-Enriched), and I-NE (Intermittent-Nonenriched). Bingeing in the LA model is established when a group with intermittent access (i.e., the I-E or I-NE group) consumes significantly more vegetable shortening during the limited access period than a group with daily access (i.e., the C-E or C-NE group). Access sessions continued for 8weeks under these conditions, at which time the housing conditions of the I-E and I-NE groups were reversed for an additional 8weeks of access sessions. Intakes of the C-E and C-NE groups were similar and data from these two groups were combined. Relative to this Combined Control Group (CCG), the I-NE group began bingeing in week 3 while the I-E group binged during weeks 6 and 8. Following the reversal at the beginning of week 9, the newly enriched I-NE group ceased bingeing in week 9 but resumed bingeing in weeks 10-16. The newly nonenriched I-E group continued bingeing through the remainder of the study. Intakes of the I-E and I-NE groups were not significantly different at any time during the study. These results indicate that RE delays binge onset; that is, RE increases the time between the first fat access session and the first occurrence of bingeing. However, RE does not significantly alter the amount of fat consumed during binge sessions. Furthermore, addition of RE to a nonenriched group of animals (I-NE) does not reverse established binge behavior. Thus it appears that regardless of enrichment condition, intermittent access to vegetable shortening induces greater consumption of fat than does daily access. However, it is clear that a certain level of austerity in housing conditions is required for rapid development of lasting binge-type eating to occur. In addition, results suggest that it is unlikely that enrichment, to the degree provided in this study, can prevent or reverse binge-type eating in rats.
Collapse
Affiliation(s)
- Kerry E Preston
- William Beaumont Army Medical Center, Dept of Clinical Investigation, 5005 N Piedras St, El Paso, TX 79920, United States.
| | - Rebecca L Corwin
- The Pennsylvania State University, Nutritional Sciences Dept, 110 Chandlee Laboratory, University Park, PA 16802, United States
| | - Julia O Bader
- William Beaumont Army Medical Center, Dept of Clinical Investigation, 5005 N Piedras St, El Paso, TX 79920, United States
| | - Stephen L Crimmins
- William Beaumont Army Medical Center, Dept of Clinical Investigation, 5005 N Piedras St, El Paso, TX 79920, United States
| |
Collapse
|
7
|
Schönfeld LM, Dooley D, Jahanshahi A, Temel Y, Hendrix S. Evaluating rodent motor functions: Which tests to choose? Neurosci Biobehav Rev 2017; 83:298-312. [PMID: 29107829 DOI: 10.1016/j.neubiorev.2017.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/18/2017] [Accepted: 10/23/2017] [Indexed: 01/11/2023]
Abstract
Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Ali Jahanshahi
- Department of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Yasin Temel
- Department of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium.
| |
Collapse
|
8
|
Repeated “Day 1” FOB testing in ICH S7A safety assessment protocols: The influence of within- and between-session learning. J Pharmacol Toxicol Methods 2017; 85:61-72. [DOI: 10.1016/j.vascn.2017.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/14/2016] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
|
9
|
Effects of experimental housing conditions on recovery of laboratory mice. Lab Anim (NY) 2015; 44:65-70. [PMID: 25602397 DOI: 10.1038/laban.662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/10/2014] [Indexed: 12/21/2022]
Abstract
The beneficial effects of environment and social support during disease recovery in humans are widely accepted. Because laboratory mice are social animals and are highly motivated to interact with each other and with their environment, it is very likely that environmental and social factors are also beneficial to their recovery from experimental interventions or spontaneous diseases. The beneficial effects of enriched environments have been particularly well analyzed in the field of brain disorders, but several studies suggest that positive social contact and a complex and familiar environment may also support recovery from injury, from invasive procedures such as surgery or from spontaneously occurring diseases. The author reviews relevant publications on the effects of environment and social housing on recovery from disease or surgery in laboratory mice and other rodents. She concludes that in addition to promoting animal welfare, provision of optimal experimental housing conditions might also contribute to the clinical relevance of preclinical animal models by more closely simulating the environmental and social characteristics of disease recovery in humans.
Collapse
|
10
|
Mering S, Jolkkonen J. Proper housing conditions in experimental stroke studies-special emphasis on environmental enrichment. Front Neurosci 2015; 9:106. [PMID: 25870536 PMCID: PMC4378295 DOI: 10.3389/fnins.2015.00106] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment provides laboratory animals with novelty and extra space, allowing different forms of multisensory stimulation ranging from social grouping to enhanced motor activity. At the extreme end of the spectrum, one can have a super-enriched environment. Environmental enrichment is believed to result in improved cognitive and sensorimotor functions both in naïve rodents and in animals with brain lesions such as those occurring after a stroke. Robust behavioral effects in animals which have suffered a stroke are probably related not only to neuronal plasticity in the perilesional cortex but also in remote brain areas. There is emerging evidence to suggest that testing restorative therapies in an enriched environment can maximize treatment effects, e.g., the perilesional milieu seems to be more receptive to concomitant pharmacotherapy and/or cell therapy. This review provides an updated overview on the effect of an enriched environment in stroke animals from the practical points to be considered when planning experiments to the mechanisms explaining why combined therapies can contribute to behavioral improvement in a synergistic manner.
Collapse
Affiliation(s)
- Satu Mering
- Lab Animal Centre, University of Eastern Finland Kuopio, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
11
|
Hånell A, Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Front Behav Neurosci 2014; 8:252. [PMID: 25100962 PMCID: PMC4106406 DOI: 10.3389/fnbeh.2014.00252] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 12/01/2022] Open
Abstract
A large variety of rodent behavioral tests are currently being used to evaluate traits such as sensory-motor function, social interactions, anxiety-like and depressive-like behavior, substance dependence and various forms of cognitive function. Most behavioral tests have an inherent complexity, and their use requires consideration of several aspects such as the source of motivation in the test, the interaction between experimenter and animal, sources of variability, the sensory modality required by the animal to solve the task as well as costs and required work effort. Of particular importance is a test’s validity because of its influence on the chance of successful translation of preclinical results to clinical settings. High validity may, however, have to be balanced against practical constraints and there are no behavioral tests with optimal characteristics. The design and development of new behavioral tests is therefore an ongoing effort and there are now well over one hundred tests described in the contemporary literature. Some of them are well established following extensive use, while others are novel and still unproven. The task of choosing a behavioral test for a particular project may therefore be daunting and the aim of the present review is to provide a structured way to evaluate rodent behavioral tests aimed at drug discovery research.
Collapse
Affiliation(s)
- Anders Hånell
- Department of Neuroscience, Section for Neurosurgery, Uppsala University Uppsala, Sweden ; Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Niklas Marklund
- Department of Neuroscience, Section for Neurosurgery, Uppsala University Uppsala, Sweden
| |
Collapse
|
12
|
Liguz-Lecznar M, Zakrzewska R, Daniszewska K, Kossut M. Functional assessment of sensory functions after photothrombotic stroke in the barrel field of mice. Behav Brain Res 2013; 261:202-9. [PMID: 24388975 DOI: 10.1016/j.bbr.2013.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
Motor, sensory and cognitive deficits are common impairments observed in human stroke as well as in animal stroke models. Using a battery of behavioural tests we assessed sensorimotor deficits after photothrombotic stroke localized within or beyond cortical representation of mouse sensory vibrissae. We found restricted, modality specific behavioural consequences in the acute post-stroke period. Among incorporated tests, adhesive removal test, novelty exploration test and sensory labyrinth task were sensitive to the somatosensory cortical deficits. Injured animals explored new objects significantly longer, they also needed distinctly more time to contact and to remove the adhesive tape placed on whiskers contralateral to the infarct. Moreover, we observed that after stroke animals were unable to solve the sensory labyrinth depending only upon tactile sensation from whiskers with injured cortical representation. Spontaneous recovery could be observed within the first post-stroke week for adhesive tape removal and within 14 days for labyrinth performance. However, for the novel object exploration we did not observed the recovery for the period of 18 days after stroke. Moreover, new object exploration test performance differed between the somatosensory and visual cortical impairments. We suggest that those three tests might be valuable in assessing the usefulness of therapies designed to support brain repair after experimental stroke.
Collapse
Affiliation(s)
- Monika Liguz-Lecznar
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Renata Zakrzewska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Daniszewska
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland; Warsaw School of Social Science and Humanities, 19 Chodakowska St., 03-815 Warsaw, Poland
| |
Collapse
|
13
|
Brooks SP, Trueman RC, Dunnett SB. Assessment of Motor Coordination and Balance in Mice Using the Rotarod, Elevated Bridge, and Footprint Tests. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2012; 2:37-53. [PMID: 26069004 DOI: 10.1002/9780470942390.mo110165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order fully to utilize animal models of disease states, to test experimental therapeutics, and to understand the underlying pathophysiology of neurodegenerative disease, behavioral characterization of the model is essential. Deterioration of normal motor function within a disease state signals the progression of an underlying pathological process, and identifies disease-sensitive time points according to which the onset of therapeutic trials may be scheduled. Deterioration in the performance of motor tasks may also indicate the point when motor deficits begin to compromise our ability to measure other deficits within cognitive and behavioral domains. In acute therapeutic trials, the separation of motor from cognitive or behavioral function may be crucial in determining the functional specificity of the drug effect. If we are to accurately measure motor performance in disease progression or during drug trials, tests of motor function that have been highly optimized with respect to sensitivity must be applied. Since motor coordination and balance are essential to normal motor function, tests that probe these facets are ideal for the purpose. In this chapter, we describe in detail three test protocols that principally measure motor coordination (the rotarod and footprint tests) and balance (the elevated bridge test) in mice. Curr. Protoc. Mouse Biol. 2:37-53 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Simon P Brooks
- The Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Rebecca C Trueman
- The Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
14
|
Abstract
Stroke is not only more prevalent but is also associated with more severe adverse functional outcomes among patients with sleep apnea. Monocarboxylate transporters (MCT) are important regulators of cellular bioenergetics, have been implicated in brain susceptibility to acute severe hypoxia (ASH), and could underlie the unfavorable prognosis of cerebrovascular accidents in sleep apnea patients. Rodents were exposed to either intermittent hypoxia (IH) during sleep, a characteristic feature of sleep apnea, or to sustained hypoxia (SH), and expression of MCT1 and MCT2 was assessed. In addition, the functional recovery to middle cerebral artery occlusion (MCAO) in rats and hMCT2 transgenic mice and of hippocampal slices subjected to ASH was assessed, as well as the effects of MCT blocker and MCT2 antisense oligonucleotides and siRNAs. IH, but not SH, induced significant reductions in MCT2 expression over time at both the mRNA and protein levels and in the functional recovery of hippocampal slices subjected to ASH. Similarly, MCAO-induced infarcts were significantly greater in IH-exposed rats and mice, and overexpression of hMCT2 in mice markedly attenuated the adverse effects of IH. Exogenous pyruvate treatment reduced infarct volumes in normoxic rats but not in IH-exposed rats. Administration of the MCT2 blocker 4CN, but not the MCT1 antagonist p-chloromercuribenzene sulfonate, increased infarct size. Thus, prolonged exposures to IH mimicking sleep apnea are associated with increased CNS vulnerability to ischemia that is mediated, at least in part, by concomitant decreases in the expression and function of MCT2. Efforts to develop agonists of MCT2 should provide opportunities to ameliorate the overall outcome of stroke.
Collapse
|
15
|
Lu XCM, Chen RW, Yao C, Wei H, Yang X, Liao Z, Dave JR, Tortella FC. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma 2009; 26:141-54. [PMID: 19119917 DOI: 10.1089/neu.2008.0629] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.
Collapse
Affiliation(s)
- Xi-Chun May Lu
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Belayev L, Khoutorova L, Zhao KL, Davidoff AW, Moore AF, Cramer SC. A novel neurotrophic therapeutic strategy for experimental stroke. Brain Res 2009; 1280:117-23. [DOI: 10.1016/j.brainres.2009.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/29/2009] [Accepted: 05/02/2009] [Indexed: 01/14/2023]
|
17
|
Goldstein LB. Stroke recovery and rehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2009; 94:1327-1337. [PMID: 18793903 DOI: 10.1016/s0072-9752(08)94066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Larry B Goldstein
- Duke Center for Cerebrovascular Disease and Durham VA Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Eickhoff SB, Dafotakis M, Grefkes C, Shah NJ, Zilles K, Piza-Katzer H. Central adaptation following heterotopic hand replantation probed by fMRI and effective connectivity analysis. Exp Neurol 2008; 212:132-44. [PMID: 18501895 DOI: 10.1016/j.expneurol.2008.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/29/2008] [Accepted: 03/17/2008] [Indexed: 11/18/2022]
Abstract
In this functional magnetic resonance imaging (fMRI) study, we examined changes--relative to healthy controls--in the cortical activation and connectivity patterns of two patients who had undergone unilateral heterotopic hand replantation. The study involved the patients and a group of control subjects performing visually paced hand movements with their left, right, or both hands. Changes of effective connectivity among a bilateral network of core motor regions comprising M1, lateral premotor cortex (PMC), and the supplementary motor area (SMA) were assessed using dynamic causal modelling. Both patients showed inhibition of ipsilateral PMC and SMA when moving the healthy hand, potentially indicating a suppression of inference with physiological motor execution by the hemisphere controlling the replanted hand. Moving the replanted hand, both patients showed increased activation of contralateral PMC, most likely reflecting the increased effort involved, and a pathological inhibition of the ipsilateral on the active contralateral M1 indicative of an unsuccessful modulation of the inhibitory M1-M1 balance. In one patient, M1 contralateral to the replanted hand experienced increased tonic (intrinsic connectivity) and phasic (replanted hand movement) facilitating input, whereas in the other, pathological suppression was present. These differences in effective connectivity correlated with decreased behavioural performance of the latter as assessed by kinematic analysis, and seemed to be related to earlier and more intense rehabilitative exercise commenced by the former. This study hence demonstrates the potential of functional neuroimaging to monitor plastic changes of cortical connectivity due to peripheral damage and recovery in individual patients, which may prove to be a valuable tool in understanding, evaluating and enhancing motor rehabilitation.
Collapse
Affiliation(s)
- S B Eickhoff
- Institut für Neurowissenschaften und Biophysik-Medizin 3, Forschungszentrum Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Weston RM, Jarrott B, Ishizuka Y, Callaway JK. AM-36 modulates the neutrophil inflammatory response and reduces breakdown of the blood brain barrier after endothelin-1 induced focal brain ischaemia. Br J Pharmacol 2006; 149:712-23. [PMID: 17016500 PMCID: PMC2014659 DOI: 10.1038/sj.bjp.0706918] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Following transient focal stroke, rapid accumulation and activation of neutrophils in the ischaemic region is deleterious due to release of reactive oxygen species and myeloperoxidase (MPO). The purpose of this study was to examine whether AM-36, both a Na+ channel blocker and an antioxidant, afforded neuroprotection by modulating neutrophil accumulation into brain, following endothelin-1 (ET-1) induced middle cerebral artery occlusion (MCAo) in conscious rats. EXPERIMENTAL APPROACH AM-36 was administered at 3 and 24 h after ET-1-induced MCAo. Functional recovery was determined using grid-walking and cylinder tests. Image analysis of brain sections was used to determine infarct volume. The effect of AM-36 on neutrophil infiltration and their interaction with macrophages was examined in rats at 48 h following MCAo by both an MPO assay and double-label immunofluorescence. Blood brain barrier (BBB) breakdown was measured by the area stained by intravenous Evans Blue. KEY RESULTS AM-36 reduced functional deficits in both tests such that no difference existed from pre-ischaemic values at 48 h. Neutrophil infiltration, assessed by MPO activity, and infarct volume were significantly reduced following AM-36 administration by 54 and 60% respectively. Similarly, immunofluorescence revealed that AM-36 reduced neutrophil infiltration by approximately 50% in selected brain regions, when compared to controls, and also modulated macrophage phagocytosis of neutrophils. Breakdown of the BBB was significantly reduced by 60% following AM-36 treatment. CONCLUSIONS AND IMPLICATIONS These findings suggest that AM-36 can directly modulate the neutrophil inflammatory response and reduce BBB breakdown following MCAo.
Collapse
Affiliation(s)
- R M Weston
- Department of Pharmacology, Monash University Clayton, Australia
- Howard Florey Institute, The University of Melbourne Parkville, Australia
| | - B Jarrott
- Howard Florey Institute, The University of Melbourne Parkville, Australia
| | - Y Ishizuka
- Department of Pharmacology, Monash University Clayton, Australia
- Department of Psychiatry, Miyazaki Medical College Kihara, Kiyotake, Miyazaki, Japan
| | - J K Callaway
- Howard Florey Institute, The University of Melbourne Parkville, Australia
- Author for correspondence:
| |
Collapse
|
20
|
Abstract
There are complex relationships among behavioral experience, brain morphology, and functional recovery of an animal before and after brain injury. A large series of experimental studies have shown that exogenous manipulation of central neurotransmitter levels can directly affect plastic changes in the brain and can modulate the effects of experience and training. These complex relationships provide a formidable challenge for studies aimed at understanding neurotransmitter effects on the recovery process. Experiments delineating norepinephrine-modulated locomotor recovery after injury to the cerebral cortex illustrate the close relationships among neurotransmitter levels, brain plasticity, and behavioral recovery. Understanding the neurobiological processes underlying recovery, and how they might be manipulated, may lead to novel strategies for improving recovery from stroke-related gait impairment in humans.
Collapse
Affiliation(s)
- Larry B Goldstein
- Department of Medicine (Neurology), Duke Center for Cerebrovascular Disease, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Farr TD, Carswell HVO, Gallagher L, Condon B, Fagan AJ, Mullin J, Macrae IM. 17β-Estradiol treatment following permanent focal ischemia does not influence recovery of sensorimotor function. Neurobiol Dis 2006; 23:552-62. [PMID: 16759876 DOI: 10.1016/j.nbd.2006.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/07/2006] [Accepted: 04/24/2006] [Indexed: 11/23/2022] Open
Abstract
The development of therapy to aid poststroke recovery is essential. The female hormone 17beta-estradiol has been shown to promote synaptogenesis; the purpose of this study was to attempt to harness these mechanisms to promote repair and recovery in the peri-infarct zone. Rats were ovariectomized, tested for sensorimotor function, and the middle cerebral artery permanently occluded (MCAO). Infarct volumes were calculated using MRI, and damage was equivalent in all animals prior to implantation of either 17beta-estradiol or placebo pellets. Animals were tested for functional recovery for 28 days and tissue processed for synaptic marker syntaxin immunohistochemistry. The stroke induced a significant behavioral deficit, which persisted out to 28 days, and was not significantly different between 17beta-estradiol and placebo treatment groups. There was no difference in syntaxin immunostaining between groups in either the peri-infarct cortex or in the dendritic CA1 reference region. In conclusion, 17beta-estradiol treatment, delivered poststroke, did not influence recovery of function or synaptogenesis.
Collapse
Affiliation(s)
- Tracy D Farr
- 7TMRI Facility and Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, Scotland G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Brown AW, Bjelke B, Fuxe K. Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp Neurol 2004; 190:102-8. [PMID: 15473984 DOI: 10.1016/j.expneurol.2004.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/22/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
Despite advances in acute treatment of ischemic cerebrovascular events, the most common clinical outcome is disabling neurological impairment. Despite experimental evidence that psychostimulant treatment can positively affect recovery rate after focal brain lesions, beyond rehabilitation therapies there are no currently accepted medical treatments indicated for diminishing neurological impairment after clinically established stroke. To test the effect of amphetamine, task-specific training, limiting motor experience, and their interaction on motor recovery in a postacute animal model of stroke, animals were nonaversively trained in beam walking before a unilateral photochemical sensorimotor cortex lesion and tested for 10 days after lesion. Animals were randomized to groups receiving: a single session of motor training 24 h after lesion; a single injection of amphetamine 2 mg/kg 24 h after lesion; beam-walking experience limited to testing on days 1 and 10 after lesion; and groups that received amphetamine treatment combined with training or combined with limited experience. Motor recovery was maximally enhanced by training, delayed by amphetamine treatment, and most negatively affected by limiting beam-walking experience during the recovery period. These findings support physical training after stroke, indicating that limiting physical activity negatively affects motor recovery and raises questions about the role of stimulant treatment to enhance motor recovery in the postacute phase after stroke.
Collapse
Affiliation(s)
- Allen W Brown
- Department of Physical Medicine and Rehabilitation, Mayo Clinic and Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
23
|
Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 2004; 28:1757-69. [PMID: 14584829 DOI: 10.1023/a:1026025408742] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Voluntary exercise, treadmill activity, skills training, and forced limb use have been utilized in animal studies to promote brain plasticity and functional change. Motor enrichment may prime the brain to respond more adaptively to injury, in part by upregulating trophic factors such as GDNF, FGF-2, or BDNF. Discontinuation of exercise in advance of brain injury may cause levels of trophic factor expression to plummet below baseline, which may leave the brain more vulnerable to degeneration. Underfeeding and motor enrichment induce remarkably similar molecular and cellular changes that could underlie their beneficial effects in the aged or injured brain. Exercise begun before focal ischemic injury increases BDNF and other defenses against cell death and can maintain or expand motor representations defined by cortical microstimulation. Interfering with BDNF synthesis causes the motor representations to recede or disappear. Injury to the brain, even in sedentary rats, causes a small, gradual increase in astrocytic expression of neurotrophic factors in both local and remote brain regions. The neurotrophic factors may inoculate those areas against further damage and enable brain repair and use-dependent synaptogenesis associated with recovery of function or compensatory motor learning. Plasticity mechanisms are particularly active during time-windows early after focal cortical damage or exposure to dopamine neurotoxins. Motor and cognitive impairments may contribute to self-imposed behavioral impoverishment, leading to a reduced plasticity. For slow degenerative models, early forced forelimb use or exercise has been shown to halt cell loss, whereas delayed rehabilitation training is ineffective and disuse is prodegenerative. However, it is possible that, in the chronic stages after brain injury, a regimen of exercise would reactivate mechanisms of plasticity and thus enhance rehabilitation targeting residual functional deficits.
Collapse
Affiliation(s)
- Jeffrey A Kleim
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
24
|
|