1
|
Worthington AK, Borges B, Lum T, Echeverri ES, Zada FM, Cordero MA, Kim H, Zenhausern R, Celik O, Shaw C, Gutierrez-Martinez P, Omarova M, Blanchard C, Burns S, Cromer MK, Dahlman JE, MacKenzie TC. In utero lipid nanoparticle delivery achieves robust editing in hematopoietic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.12.652147. [PMID: 40463054 PMCID: PMC12132242 DOI: 10.1101/2025.05.12.652147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
In vivo genome editing for hematologic malignancies is limited by inefficient delivery of genome editors to hematopoietic stem cells (HSC) in the bone marrow. To overcome this limitation, we capitalized on the inherent liver tropism of lipid nanoparticles (LNPs) and the liver niche of fetal HSCs. We demonstrate that in utero delivery of LNPs without active targeting ligands to the fetal liver results in potentially therapeutic levels of HSC editing.
Collapse
|
2
|
Pronovost GN, Yu KB, Coley-O’Rourke EJ, Telang SS, Chen AS, Vuong HE, Williams DW, Chandra A, Rendon TK, Paramo J, Kim RH, Hsiao EY. The maternal microbiome promotes placental development in mice. SCIENCE ADVANCES 2023; 9:eadk1887. [PMID: 37801498 PMCID: PMC10558122 DOI: 10.1126/sciadv.adk1887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The maternal microbiome is an important regulator of gestational health, but how it affects the placenta as the interface between mother and fetus remains unexplored. Here, we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization. The maternal gut microbiota modulates metabolites in the maternal and fetal circulation. Short-chain fatty acids (SCFAs) stimulate cultured endothelial cell tube formation and prevent abnormalities in placental vascularization in microbiota-deficient mice. Furthermore, in a model of maternal malnutrition, gestational supplementation with SCFAs prevents placental growth restriction and vascular insufficiency. These findings highlight the importance of host-microbial symbioses during pregnancy and reveal that the maternal gut microbiome promotes placental growth and vascularization in mice.
Collapse
Affiliation(s)
- Geoffrey N. Pronovost
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristie B. Yu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elena J. L. Coley-O’Rourke
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sahil S. Telang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angela S. Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helen E. Vuong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drake W. Williams
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anisha Chandra
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomiko K. Rendon
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Paramo
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Goodman-Luskin Microbiome Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Calvet C, Seebeck P. What to consider for ECG in mice-with special emphasis on telemetry. Mamm Genome 2023; 34:166-179. [PMID: 36749381 PMCID: PMC10290603 DOI: 10.1007/s00335-023-09977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Genetically or surgically altered mice are commonly used as models of human cardiovascular diseases. Electrocardiography (ECG) is the gold standard to assess cardiac electrophysiology as well as to identify cardiac phenotypes and responses to pharmacological and surgical interventions. A variety of methods are used for mouse ECG acquisition under diverse conditions, making it difficult to compare different results. Non-invasive techniques allow only short-term data acquisition and are prone to stress or anesthesia related changes in cardiac activity. Telemetry offers continuous long-term acquisition of ECG data in conscious freely moving mice in their home cage environment. Additionally, it allows acquiring data 24/7 during different activities, can be combined with different challenges and most telemetry systems collect additional physiological parameters simultaneously. However, telemetry transmitters require surgical implantation, the equipment for data acquisition is relatively expensive and analysis of the vast number of ECG data is challenging and time-consuming. This review highlights the limits of non-invasive methods with respect to telemetry. In particular, primary screening using non-invasive methods can give a first hint; however, subtle cardiac phenotypes might be masked or compensated due to anesthesia and stress during these procedures. In addition, we detail the key differences between the mouse and human ECG. It is crucial to consider these differences when analyzing ECG data in order to properly translate the insights gained from murine models to human conditions.
Collapse
Affiliation(s)
- Charlotte Calvet
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Belicova L, Repnik U, Delpierre J, Gralinska E, Seifert S, Valenzuela JI, Morales-Navarrete HA, Franke C, Räägel H, Shcherbinina E, Prikazchikova T, Koteliansky V, Vingron M, Kalaidzidis YL, Zatsepin T, Zerial M. Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 2021; 220:212522. [PMID: 34328499 PMCID: PMC8329733 DOI: 10.1083/jcb.202103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.
Collapse
Affiliation(s)
- Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Helin Räägel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Nelson Laboratories LLC, Salt Lake City, UT
| | | | | | | | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
5
|
An interaction between fetal sex and placental weight and efficiency predicts intrauterine growth in response to maternal protein insufficiency and gestational exposure window in a mouse model of FASD. Biol Sex Differ 2020; 11:40. [PMID: 32690098 PMCID: PMC7372829 DOI: 10.1186/s13293-020-00320-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Individuals exposed to gestational stressors such as alcohol exhibit a spectrum of growth patterns, suggesting individualized responses to the stressors. We hypothesized that intrauterine growth responses to gestational alcohol are modified not only by the stressor's severity but by fetal sex and the placenta's adaptive capacity. METHODS Pregnant C57BL/6J mice were assigned to one of three groups. Group 1 consumed a normal protein diet (18% protein by weight) and received 4.5 g alcohol/kg body weight (NP-Alc-8) or isocaloric maltodextrin (NP-MD-8) daily from embryonic day (E) 8.5-E17.5. Group 2 consumed the same diet but received alcohol (NP-Alc-13) or maltodextrin (NP-MD-13) daily from E13.5-E17.5. Group 3 consumed the same diet but containing a lower protein content (12% protein by weight) from E0.5 and also received alcohol (LP-Alc-8) or maltodextrin (LP-MD-8) daily from E8.5-E17.5. Maternal, placental, and fetal outcomes were assessed on E17.5 using 2-way ANOVA or mixed linear model. RESULTS We found that intrauterine growth differed in the alcohol-exposed fetuses depending on sex and insult severity. Both NP-Alc-8 (vs. NP-MD-8) males and females had lower body weight and asymmetrical growth, but only NP-Alc-8 females had lower placental weight (P < 0.05). NP-Alc-13 (vs. NP-MD-13) females, but not their male littermates, had lower body weight (P = 0.019). Alcohol exposure beginning from E8.5 (vs. E13.5) decreased the ratio of fetal liver-to-body weight and increased the ratio of fetal brain-to-liver weight in both sexes (P < 0.05). LP-Alc-8 (vs. NP-MD-8) group had smaller litter size (P = 0.048), but the survivors had normal placental and body weight at E17.5. Nevertheless, LP-Alc-8 fetuses still showed asymmetrical growth. Correlation analyses reveal a relationship between litter size and placental outcomes, which were related to fetal outcomes in a sex-dependent manner, suggesting that the placenta may mediate the consequence of LP-Alc-altered litter size on fetal development. CONCLUSIONS Our data indicate that the placenta is strongly involved in the fetal stress response and adapts in a sex-dependent fashion to support fetal development under the alcohol stressor. These variables may further influence the spectrum of intrauterine growth outcomes observed in those diagnosed with fetal alcohol spectrum disorder.
Collapse
|
6
|
Morffy Smith CD, Russ BN, Andrew AK, Cooper CA, Moore JM. A novel murine model for assessing fetal and birth outcomes following transgestational maternal malaria infection. Sci Rep 2019; 9:19566. [PMID: 31862902 PMCID: PMC6925284 DOI: 10.1038/s41598-019-55588-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum infection during pregnancy is a major cause of severe maternal illness and neonatal mortality. Mouse models are important for the study of gestational malaria pathogenesis. When infected with Plasmodium chabaudi chabaudi AS in early gestation, several inbred mouse strains abort at midgestation. We report here that outbred Swiss Webster mice infected with P. chabaudi chabaudi AS in early gestation carry their pregnancies to term despite high parasite burden and malarial hemozoin accumulation in the placenta at midgestation, with the latter associated with induction of heme oxygenase 1 expression. Infection yields reduced fetal weight and viability at term and a reduction in pup number at weaning, but does not influence postnatal growth prior to weaning. This novel model allows for the exploration of malaria infection throughout pregnancy, modeling chronic infections observed in pregnant women prior to the birth of underweight infants and enabling the production of progeny exposed to malaria in utero, which is critical for understanding the postnatal repercussions of gestational malaria. The use of outbred mice allows for the exploration of gestational malaria in a genetically diverse model system, better recapitulating the diversity of infection responses observed in human populations.
Collapse
Affiliation(s)
- Catherine D Morffy Smith
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Brittany N Russ
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Alicer K Andrew
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Caitlin A Cooper
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Julie M Moore
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States. .,Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
7
|
Placental cell death patterns exhibit differences throughout gestation in two strains of laboratory mice. Cell Tissue Res 2019; 378:341-358. [PMID: 31227907 DOI: 10.1007/s00441-019-03055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Cell death is an essential physiological process required for the proper development and function of the human placenta. Although the mouse is a commonly used animal model for development studies, little is known about the extent and distribution of cell death in the mouse placenta throughout development and its physiological relevance. In the present study, we report the results of a systematic and quantitative assessment of cell death patterns in the placentae of two strains of laboratory mice commonly used for developmental studies-ICR and C57Bl/6. TUNEL staining revealed that ICR and C57Bl/6 placentae exhibited similar cell death patterns to those reported in human placentae during pregnancy, with comparatively infrequent death observed during early gestation, which increased and became more organized towards term. Interestingly, when comparing strain differences, increased cell death was observed in almost all regions of the inbred C57Bl/6 placentae compared to the outbred ICR strain. Finally, since Bcl-2 ovarian killer (Bok) has been reported to be a key player in human placental cell death, we examined its expression in murine placentae throughout gestation. Bok protein expression was observed in all placental regions and increased towards term in both strains. The results of this study indicate that although strain-specific differences in placental cell death exist, the overall rates and patterns of cell death during murine placentation parallel those previously described in humans. Thus, the murine placenta is a useful model to investigate molecular pathways involved in cell death signaling during human placentation.
Collapse
|
8
|
Morffy Smith CD, Gong M, Andrew AK, Russ BN, Ge Y, Zadeh M, Cooper CA, Mohamadzadeh M, Moore JM. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome. EBioMedicine 2019; 44:639-655. [PMID: 31160271 PMCID: PMC6606560 DOI: 10.1016/j.ebiom.2019.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria infection in pregnancy is a major cause of maternal and foetal morbidity and mortality worldwide. Mouse models for gestational malaria allow for the exploration of the mechanisms linking maternal malaria infection and poor pregnancy outcomes in a tractable model system. The composition of the gut microbiota has been shown to influence susceptibility to malaria infection in inbred virgin mice. In this study, we explore the ability of the gut microbiota to modulate malaria infection severity in pregnant outbred Swiss Webster mice. METHODS In Swiss Webster mice, the composition of the gut microbiota was altered by disrupting the native gut microbes through broad-spectrum antibiotic treatment, followed by the administration of a faecal microbiota transplant derived from mice possessing gut microbes reported previously to confer susceptibility or resistance to malaria. Female mice were infected with P. chabaudi chabaudi AS in early gestation, and the progression of infection and pregnancy were tracked throughout gestation. To assess the impact of maternal infection on foetal outcomes, dams were sacrificed at term to assess foetal size and viability. Alternatively, pups were delivered by caesarean section and fostered to assess neonatal survival and pre-weaning growth in the absence of maternal morbidity. A group of dams was also euthanized at mid-gestation to assess infection and pregnancy outcomes. FINDINGS Susceptibility to infection varied significantly as a function of source of transplanted gut microbes. Parasite burden was negatively correlated with the abundance of five specific OTUs, including Akkermansia muciniphila and OTUs classified as Allobaculum, Lactobacillus, and S24-7 species. Reduced parasite burden was associated with reduced maternal morbidity and improved pregnancy outcomes. Pups produced by dams with high parasite burdens displayed a significant reduction in survival in the first days of life relative to those from malaria-resistant dams when placed with foster dams. At midgestation, plasma cytokine levels were similar across all groups, but expression of IFNγ in the conceptus was elevated in infected dams, and IL-10 only in susceptible dams. In the latter, transcriptional and microscopic evidence of monocytic infiltration was observed with high density infection; likewise, accumulation of malaria haemozoin was enhanced in this group. These responses, combined with reduced vascularization of the placenta in this group, may contribute to poor pregnancy outcomes. Thus, high maternal parasite burden and associated maternal responses, potentially dictated by the gut microbial community, negatively impacts term foetal health and survival in the early postnatal period. INTERPRETATION The composition of the gut microbiota in Plasmodium chabaudi chabaudi AS-infected pregnant Swiss Webster mice transcends the outbred genetics of the Swiss Webster mouse stock as a determinant of malaria infection severity, subsequently influencing pregnancy outcomes in malaria-exposed progeny. FUND: Research reported in this manuscript was supported by the University of Florida College of Veterinary Medicine (JMM, MM, and MG), the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award numbers T32AI060546 (to CDMS), R01HD46860 and R21AI111242 (to JMM), and R01 DK109560 (to MM). MG was supported by Department of Infectious Diseases and Immunology and University of Florida graduate assistantships. AA was supported by the 2017-2019 Peach State LSAMP Bridge to the Doctorate Program at the University of Georgia (National Science Foundation, Award # 1702361). The content is solely the responsibility of the authors and does not necessarily represent official views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, or the National Institutes of Health.
Collapse
Affiliation(s)
- Catherine D Morffy Smith
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Alicer K Andrew
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Brittany N Russ
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Caitlin A Cooper
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Julie M Moore
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States.
| |
Collapse
|
9
|
Wuri L, Agca C, Agca Y. Euthanasia via CO 2 inhalation causes premature cortical granule exocytosis in mouse oocytes and influences in vitro fertilization and embryo development. Mol Reprod Dev 2019; 86:825-834. [PMID: 31087431 DOI: 10.1002/mrd.23167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022]
Abstract
Generation of high quality mouse metaphase II oocytes is an integral part for efficient in vitro fertilization (IVF), and subsequent embryo production for reproductive studies and genome banking. The main objectives of this study were to investigate the impact of various euthanasia methods on IVF, embryo development, and subcellular structures of MII mouse oocytes. Following superovulation regimen, female mice were euthanized by high flow CO2 (H CO2 ), low flow CO2 (L CO2 ), or cervical dislocation (CD). The MII oocytes obtained from these mice were evaluated for subcellular integrity by assessing their cortical granules and F-actin. Furthermore, fertilization and subsequent embryonic development competence up to blastocyst stage were also evaluated in vitro. The oocytes collected from females euthanized by CD resulted in significantly higher two-cell development rates (p = 0.028) and subsequently lead to in higher embryo development rates (p = 0.027) compared with oocytes from females euthanized by L CO2 . The cortical granule integrity analysis revealed significantly higher rate of premature cortical granules exocytosis (PCGE) for L CO2 group compared with CD and H CO2 groups (p < 0.001). These data collectively suggest that CO2 associated PCGE during euthanasia procedure is the main cause of decreased IVF rates and CD is the optimal euthanasia method for the purpose of obtaining good quality MII oocytes for mouse IVF and other reproductive studies.
Collapse
Affiliation(s)
- Liga Wuri
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Visualising the Cardiovascular System of Embryos of Biomedical Model Organisms with High Resolution Episcopic Microscopy (HREM). J Cardiovasc Dev Dis 2018; 5:jcdd5040058. [PMID: 30558275 PMCID: PMC6306920 DOI: 10.3390/jcdd5040058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
The article will briefly introduce the high-resolution episcopic microscopy (HREM) technique and will focus on its potential for researching cardiovascular development and remodelling in embryos of biomedical model organisms. It will demonstrate the capacity of HREM for analysing the cardiovascular system of normally developed and genetically or experimentally malformed zebrafish, frog, chick and mouse embryos in the context of the whole specimen and will exemplarily show the possibilities HREM offers for comprehensive visualisation of the vasculature of adult human skin. Finally, it will provide examples of the successful application of HREM for identifying cardiovascular malformations in genetically altered mouse embryos produced in the deciphering the mechanisms of developmental disorders (DMDD) program.
Collapse
|
11
|
Sacco SM, Saint C, LeBlanc PJ, Ward WE. Nutritional Programming of Bone Structure in Male Offspring by Maternal Consumption of Citrus Flavanones. Calcif Tissue Int 2018; 102:671-682. [PMID: 29151126 PMCID: PMC5956010 DOI: 10.1007/s00223-017-0366-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/11/2017] [Indexed: 11/27/2022]
Abstract
Maternal exposure to hesperidin (HSP) and naringin (NAR) during pregnancy and lactation transiently compromised bone mineral density (BMD) and bone structure at the proximal tibia in female CD-1 offspring. We examined whether maternal consumption of HSP + NAR during pregnancy and lactation compromises BMD, bone structure, and bone strength in male CD-1 offspring. Male CD-1 offspring, from mothers fed a control diet (CON, n = 10) or a 0.5% HSP + 0.25% NAR diet (HSP + NAR, n = 8) for 5 weeks before mating and throughout pregnancy and lactation, were weaned and fed CON until 6 months of age. In vivo micro-computed tomography (µCT) measured tibia BMD and structure at 2, 4, and 6 months of age. Ex vivo µCT measured femur and lumbar vertebrae (LV) structure at age 6 months. Ex vivo BMD (femur, LV) and biomechanical strength (femur and tibia midpoint, femur neck) were assessed at age 6 months by dual energy x-ray absorptiometry and strength testing, respectively. At all ages, HSP + NAR offspring had greater (p < 0.05) proximal tibia cortical structure compared to CON offspring. At age 4 months, proximal tibia trabecular structure was greater (p < 0.05) than CON offspring. At age 6 months, femur neck and LV trabecular structure were greater (p < 0.05) than CON offspring. Our results demonstrate that unlike our previous study of female offspring, maternal consumption of HSP + NAR resulted in greater bone structure at the proximal tibia in male CD-1 offspring that persisted to 6 months of age. Thus, maternal programming of offspring BMD and bone structure from consumption of HSP + NAR occurred as a sex-specific response.
Collapse
Affiliation(s)
- Sandra M Sacco
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Caitlin Saint
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Paul J LeBlanc
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Wendy E Ward
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
12
|
McIlvride S, Mushtaq A, Papacleovoulou G, Hurling C, Steel J, Jansen E, Abu-Hayyeh S, Williamson C. A progesterone-brown fat axis is involved in regulating fetal growth. Sci Rep 2017; 7:10671. [PMID: 28878263 PMCID: PMC5587669 DOI: 10.1038/s41598-017-10979-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Pregnancy is associated with profound maternal metabolic changes, necessary for the growth and development of the fetus, mediated by reproductive signals acting on metabolic organs. However, the role of brown adipose tissue (BAT) in regulating gestational metabolism is unknown. We show that BAT phenotype is lost in murine pregnancy, while there is a gain of white adipose tissue (WAT)-like features. This is characterised by reduced thermogenic capacity and mitochondrial content, accompanied by increased levels of markers of WAT and lipid accumulation. Surgical ablation of BAT prior to conception caused maternal and fetal hyperlipidemia, and consequently larger fetuses. We show that BAT phenotype is altered from day 5 of gestation, implicating early pregnancy factors, which was confirmed by reduced expression of BAT markers in progesterone challenged oophorectomised mice. Moreover, in vitro data using primary BAT cultures show a direct impact of progesterone on expression of Ucp1. These data demonstrate that progesterone mediates a phenotypic change in BAT, which contributes to the gestational metabolic environment, and thus overall fetal size.
Collapse
Affiliation(s)
- Saraid McIlvride
- Women's Health Academic Centre, King's College London, London, SE1 1UL, United Kingdom
| | - Aleena Mushtaq
- Women's Health Academic Centre, King's College London, London, SE1 1UL, United Kingdom
| | | | - Chloe Hurling
- Women's Health Academic Centre, King's College London, London, SE1 1UL, United Kingdom
| | - Jennifer Steel
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, United Kingdom
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands
| | - Shadi Abu-Hayyeh
- Women's Health Academic Centre, King's College London, London, SE1 1UL, United Kingdom.
| | - Catherine Williamson
- Women's Health Academic Centre, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
13
|
A neonatal rat model of increased right ventricular afterload by pulmonary artery banding. J Thorac Cardiovasc Surg 2017; 154:1734-1739. [PMID: 28697895 DOI: 10.1016/j.jtcvs.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To construct a neonatal rat model of increased right ventricular (RV) afterload for studying the pathophysiological remodeling of the right ventricle in patients with congenital heart disease with increased RV afterload. METHODS Surgery was performed within 6 hours after birth. Horizontal thoracotomy was performed by dissecting the intercostal muscles and splitting the sternum. The PA was then banded with 11-0 nylon thread. At postnatal day 7 (P7), constriction of PA was confirmed by echocardiography. The RV systolic and diastolic pressures were measured by cardiac catheterization. The RV end-systolic volume, end-diastolic volume, end-diastolic diameter, and free wall thickness were assessed by magnetic resonance imaging. The histological changes in sham-operated and PA-banding (PAB) hearts were evaluated by hematoxylin and eosin staining. RESULTS Increased RV afterload was established by constriction of the PA in neonatal rats within 6 hours after birth. The survival rate was 75% at P7. Relative to the sham group, the peak pressure gradient across the PA constriction and RV systolic and diastolic pressures, end-systolic volume, end-diastolic volume, end-diastolic diameter, and free wall thickness were significantly increased in the PAB group at P7 (P < .01). Consistently, histological examination showed that the RV free wall was significantly hypertrophic in the PAB group. CONCLUSIONS We successfully established a neonatal RV afterload increase model through PAB within 6 hours after birth, which can be used to study the pathophysiological changes in congenital heart diseases with increased RV afterload.
Collapse
|
14
|
Rubin N, Harrison MR, Krainock M, Kim R, Lien CL. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice. Semin Cell Dev Biol 2016; 58:34-40. [PMID: 27132022 PMCID: PMC5028242 DOI: 10.1016/j.semcdb.2016.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/13/2016] [Accepted: 04/17/2016] [Indexed: 02/06/2023]
Abstract
Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.
Collapse
Affiliation(s)
- Nicole Rubin
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Michael R Harrison
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Michael Krainock
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Richard Kim
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States
| | - Ching-Ling Lien
- Heart Institute and Program of Developmental Biology and Regenerative Medicine, The Saban Research Institute of Children's Hospital Los Angeles, United States; Division of Cardiothoracic Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, United States; Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, United States.
| |
Collapse
|
15
|
Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci U S A 2015; 112:12858-63. [PMID: 26417088 DOI: 10.1073/pnas.1515484112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mothers with obesity or gestational diabetes mellitus have low circulating levels of adiponectin (ADN) and frequently deliver large babies with increased fat mass, who are susceptible to perinatal complications and to development of metabolic syndrome later in life. It is currently unknown if the inverse correlation between maternal ADN and fetal growth reflects a cause-and-effect relationship. We tested the hypothesis that ADN supplementation in obese pregnant dams improves maternal insulin sensitivity, restores normal placental insulin/mechanistic target of rapamycin complex 1 (mTORC1) signaling and nutrient transport, and prevents fetal overgrowth. Compared with dams on a control diet, female C57BL/6J mice fed an obesogenic diet before mating and throughout gestation had increased fasting serum leptin, insulin, and C-peptide, and reduced high-molecular-weight ADN at embryonic day (E) 18.5. Placental insulin and mTORC1 signaling was activated, peroxisome proliferator-activated receptor-α (PPARα) phosphorylation was reduced, placental transport of glucose and amino acids in vivo was increased, and fetal weights were 29% higher in obese dams. Maternal ADN infusion in obese dams from E14.5 to E18.5 normalized maternal insulin sensitivity, placental insulin/mTORC1 and PPARα signaling, nutrient transport, and fetal growth without affecting maternal fat mass. Using a mouse model with striking similarities to obese pregnant women, we demonstrate that ADN functions as an endocrine link between maternal adipose tissue and fetal growth by regulating placental function. Importantly, maternal ADN supplementation reversed the adverse effects of maternal obesity on placental function and fetal growth. Improving maternal ADN levels may serve as an effective intervention strategy to prevent fetal overgrowth caused by maternal obesity.
Collapse
|
16
|
Denbeigh JM, Nixon BA, Puri MC, Foster FS. Contrast imaging in mouse embryos using high-frequency ultrasound. J Vis Exp 2015:52520. [PMID: 25867243 PMCID: PMC4401211 DOI: 10.3791/52520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Department of Medical Biophysics, University of Toronto; Sunnybrook Research Institute;
| | - Brian A Nixon
- Department of Medical Biophysics, University of Toronto; Sunnybrook Research Institute
| | - Mira C Puri
- Department of Medical Biophysics, University of Toronto; Sunnybrook Research Institute; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto; Sunnybrook Research Institute
| |
Collapse
|
17
|
Shen H, Cavallero S, Estrada KD, Sandovici I, Kumar SR, Makita T, Lien CL, Constancia M, Sucov HM. Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovasc Res 2015; 105:271-8. [PMID: 25560321 DOI: 10.1093/cvr/cvu269] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIMS The strategies that control formation of the ventricular wall during heart development are not well understood. In previous studies, we documented IGF2 as a major mitogenic signal that controls ventricular cardiomyocyte proliferation and chamber wall expansion. Our objective in this study was to define the tissue source of IGF2 in heart development and the upstream pathways that control its expression. METHODS AND RESULTS Using a number of mouse genetic tools, we confirm that the critical source of IGF2 is the epicardium. We find that epicardial Igf2 expression is controlled in a biphasic manner, first induced by erythropoietin and then regulated by oxygen and glucose with onset of placental function. Both processes are independently controlled by retinoic acid signalling. CONCLUSIONS Our results demonstrate that ventricular wall cardiomyocyte proliferation is subdivided into distinct regulatory phases. Each involves instructive cues that originate outside the heart and thereby act on the epicardium in an endocrine manner, a mode of regulation that is mostly unknown in embryogenesis.
Collapse
Affiliation(s)
- Hua Shen
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| | - Susana Cavallero
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| | - Kristine D Estrada
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| | - Ionel Sandovici
- MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, University of Cambridge Metabolic Research Laboratories, Cambridge, UK Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Takako Makita
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ching-Ling Lien
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Miguel Constancia
- MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology and NIHR Cambridge Biomedical Research Centre, University of Cambridge Metabolic Research Laboratories, Cambridge, UK Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Henry M Sucov
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, BCC-511, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Phenotyping the central nervous system of the embryonic mouse by magnetic resonance microscopy. Neuroimage 2014; 97:95-106. [PMID: 24769183 DOI: 10.1016/j.neuroimage.2014.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/07/2014] [Accepted: 04/13/2014] [Indexed: 11/20/2022] Open
Abstract
Genetic mouse models of neurodevelopmental disorders are being massively generated, but technologies for their high-throughput phenotyping are missing. The potential of high-resolution magnetic resonance imaging (MRI) for structural phenotyping has been demonstrated before. However, application to the embryonic mouse central nervous system has been limited by the insufficient anatomical detail. Here we present a method that combines staining of live embryos with a contrast agent together with MR microscopy after fixation, to provide unprecedented anatomical detail at relevant embryonic stages. By using this method we have phenotyped the embryonic forebrain of Robo1/2(-/-) double mutant mice enabling us to identify most of the well-known anatomical defects in these mutants, as well as novel more subtle alterations. We thus demonstrate the potential of this methodology for a fast and reliable screening of subtle structural abnormalities in the developing mouse brain, as those associated to defects in disease-susceptibility genes of neurologic and psychiatric relevance.
Collapse
|
19
|
Qiu W, Ye Z, Yu Y, Chen Y, Chi L, Mu P, Li G, Wang C, Xiao Y, Dai J, Sun L, Zheng H. A digital multigate Doppler method for high frequency ultrasound. SENSORS (BASEL, SWITZERLAND) 2014; 14:13348-60. [PMID: 25061836 PMCID: PMC4178981 DOI: 10.3390/s140813348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022]
Abstract
Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.
Collapse
Affiliation(s)
- Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zongying Ye
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yanyan Yu
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yan Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Liyang Chi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Peitian Mu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Guofeng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Congzhi Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yang Xiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jiyan Dai
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Lei Sun
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
20
|
Wise LD, Winkelmann CT, Dogdas B, Bagchi A. Micro-computed tomography imaging and analysis in developmental biology and toxicology. ACTA ACUST UNITED AC 2014; 99:71-82. [PMID: 23897592 DOI: 10.1002/bdrc.21033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/07/2013] [Indexed: 01/02/2023]
Abstract
Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed.
Collapse
Affiliation(s)
- L David Wise
- Merck Research Laboratories, Departments of Safety Assessment and Laboratory Animal Resources, Imaging, and Informatics IT, West Point, PA, USA.
| | | | | | | |
Collapse
|
21
|
Denbeigh JM, Nixon BA, Hudson JM, Puri MC, Foster FS. VEGFR2-targeted molecular imaging in the mouse embryo: an alternative to the tumor model. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:389-99. [PMID: 24342913 DOI: 10.1016/j.ultrasmedbio.2013.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 05/13/2023]
Abstract
As a tumor surrogate, the mouse embryo presents as an excellent alternative for examining the binding of angiogenesis-targeting microbubbles and assessing the quantitative nature of molecular ultrasound. We establish the validity of this model by developing a robust method to study microbubble kinetic behavior and investigate the reproducibility of targeted binding in the murine embryo. Vascular endothelial growth factor receptor 2 (VEGFR2)-targeted (MBV), rat immunoglobulin G2 (IgG2) control antibody-targeted (MBC) and untargeted (MBU) microbubbles were introduced into vasculature of living mouse embryos. Non-linear contrast-specific and B-mode ultrasound imaging, performed at 21 MHz with a Vevo-2100 scanner, was used to collect basic perfusion parameters and contrast mean power ratios for all bubble types. We observed a twofold increase (p < 0.001) in contrast mean power ratios for MBV (4.14 ± 1.78) compared with those for MBC (1.95 ± 0.78) and MBU (1.79 ± 0.45). Targeted imaging of endogenous endothelial cell surface markers in mouse embryos is possible with labeled microbubbles. The mouse embryo thus presents as a versatile model for testing the performance of ultrasound molecular targeting, where further development of quantitative imaging techniques may enable rapid evaluations of biomarker expression in studies of vascular development, disease and angiogenesis.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Brian A Nixon
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John M Hudson
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mira C Puri
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - F Stuart Foster
- Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Abstract
Although amphibian and fish models of heart regeneration have existed for decades, a mammalian equivalent has long remained elusive. Our discovery of a brief postnatal window for heart regeneration in neonatal mice has led to the establishment of surgical models for cardiac regenerative studies in mammals for the first time. This protocol describes a 10-min surgical procedure to induce cardiac injury in 1-d-old neonatal mice. This allows for the analysis of cardiac regeneration after surgical amputation of the left ventricle (LV) (apical resection) and coronary artery occlusion (myocardial infarction (MI)). A comparative analysis of neonatal and adult responses to myocardial injury should enable identification of the key differences between regenerative and nonregenerative responses to cardiac injury. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and it provides a valuable tool for unlocking the molecular mechanisms that guide mammalian heart regeneration during early postnatal life.
Collapse
|
23
|
Rennie MY, Sled JG, Adamson SL. Effects of Genes and Environment on the Fetoplacental Arterial Microcirculation in Mice Revealed by Micro-Computed Tomography Imaging. Microcirculation 2014; 21:48-57. [DOI: 10.1111/micc.12073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/22/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Monique Y. Rennie
- Heart Research Center; Oregon Health and Science University; Portland Oregon USA
| | - John G. Sled
- Mouse Imaging Centre of the Hospital for Sick Children, Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| | - S. Lee Adamson
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital; Departments of Obstetrics and Gynaecology, and Physiology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
24
|
Vandoorne K, Vandsburger MH, Weisinger K, Brumfeld V, Hemmings BA, Harmelin A, Neeman M. Multimodal imaging reveals a role for Akt1 in fetal cardiac development. Physiol Rep 2013; 1:e00143. [PMID: 24400145 PMCID: PMC3871458 DOI: 10.1002/phy2.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/29/2022] Open
Abstract
Even though congenital heart disease is the most prevalent malformation, little is known about how mutations affect cardiovascular function during development. Akt1 is a crucial intracellular signaling molecule, affecting cell survival, proliferation, and metabolism. The aim of this study was to determine the role of Akt1 on prenatal cardiac development. In utero echocardiography was performed in fetal wild-type, heterozygous, and Akt1-deficient mice. The same fetal hearts were imaged using ex vivo micro-computed tomography (μCT) and histology. Neonatal hearts were imaged by in vivo magnetic resonance imaging. Additional ex vivo neonatal hearts were analyzed using histology and real-time PCR of all three groups. In utero echocardiography revealed abnormal blood flow patterns at the mitral valve and reduced contractile function of Akt1 null fetuses, while ex vivo μCT and histology unraveled structural alterations such as dilated cardiomyopathy and ventricular septum defects in these fetuses. Further histological analysis showed reduced myocardial capillaries and coronary vessels in Akt1 null fetuses. At neonatal age, Akt1-deficient mice exhibited reduced survival with reduced endothelial cell density in the myocardium and attenuated cardiac expression of vascular endothelial growth factor A and collagen Iα1. To conclude, this study revealed a central role of Akt1 in fetal cardiac function and myocardial angiogenesis inducing fetal cardiomyopathy and reduced neonatal survival. This study links a specific physiological phenotype with a defined genotype, namely Akt1 deficiency, in an attempt to pinpoint intrinsic causes of fetal cardiomyopathies.
Collapse
Affiliation(s)
- Katrien Vandoorne
- Biological Regulation, Weizmann Institute of Science Rehovot, Israel ; Biomedical engineering, Eindhoven University of Technology Eindhoven, The Netherlands
| | | | - Karen Weisinger
- Biological Regulation, Weizmann Institute of Science Rehovot, Israel
| | - Vlad Brumfeld
- Chemical Research Support, Weizmann Institute of Science Rehovot, Israel
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland
| | - Alon Harmelin
- Veterinary Resources, Weizmann Institute of Science Rehovot, Israel
| | - Michal Neeman
- Biological Regulation, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
25
|
Greco A, Ragucci M, Coda ARD, Rosa A, Gargiulo S, Liuzzi R, Gramanzini M, Albanese S, Pappatà S, Mancini M, Brunetti A, Salvatore M. High frequency ultrasound for in vivo pregnancy diagnosis and staging of placental and fetal development in mice. PLoS One 2013; 8:e77205. [PMID: 24155928 PMCID: PMC3796510 DOI: 10.1371/journal.pone.0077205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/09/2013] [Indexed: 01/10/2023] Open
Abstract
Background Ultrasound is a valuable non-invasive tool used in obstetrics and gynecology to monitor the growth and well being of the human fetus. The laboratory mouse has recently emerged as an appropriate model for fetal and perinatal studies because morphogenetic processes in mice exhibit adequate homology to those in humans, and genetic manipulations are relatively simple to perform in mice. High-frequency ultrasound (HFUS) has recently become available for small animal preclinical imaging and can be used to study pregnancy and development in the mouse. The objective of the current study was to assess the main applications of HFUS in the evaluation of fetal growth and placental function and to better understand human congenital diseases. Methodology/Principal Findings On each gestational day, at least 5 dams were monitored with HFUS; a total of ∼200 embryos were examined. Because it is not possible to measure each variable for the entire duration of the pregnancy, the parameters were divided into three groups as a function of the time at which they were measured. Univariate analysis of the relationship between each measurement and the embryonic day was performed using Spearman’s rank correlation (Rs). Continuous linear regression was adopted for multivariate analysis of significant parameters. All statistical tests were two-sided, and a p value of 0.05 was considered statistically significant. Conclusions/Significance The study describes the main applications of HFUS to assess changes in phenotypic parameters in the developing CD1 mouse embryo and fetus during pregnancy and to evaluating physiological fetal and placental growth and the development of principal organs such as the heart, kidney, liver, brain and eyes in the embryonic mouse. A database of normal structural and functional parameters of mouse development will provide a useful tool for the better understanding of morphogenetic and cardiovascular anomalies in transgenic and mutant mouse models.
Collapse
Affiliation(s)
- Adelaide Greco
- Dipartimento di Scienze Biomediche Avanzate, Università degli studi di Napoli Federico II, Napoli, Italy
- IRCCS Fondazione SDN, Napoli, Italy
- * E-mail:
| | | | | | - Alessandro Rosa
- Dipartimento di Scienze Biomediche Avanzate, Università degli studi di Napoli Federico II, Napoli, Italy
- IRCCS Fondazione SDN, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- Ceinge, Biotecnologie Avanzate, scarl, Napoli, Italy
| | - Sara Gargiulo
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | | | | | - Sandra Albanese
- Dipartimento di Scienze Biomediche Avanzate, Università degli studi di Napoli Federico II, Napoli, Italy
- IRCCS Fondazione SDN, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- Ceinge, Biotecnologie Avanzate, scarl, Napoli, Italy
| | - Sabina Pappatà
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| | | | - Arturo Brunetti
- Dipartimento di Scienze Biomediche Avanzate, Università degli studi di Napoli Federico II, Napoli, Italy
- IRCCS Fondazione SDN, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
- Ceinge, Biotecnologie Avanzate, scarl, Napoli, Italy
| | - Marco Salvatore
- Dipartimento di Scienze Biomediche Avanzate, Università degli studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
26
|
Norris FC, Wong MD, Greene NDE, Scambler PJ, Weaver T, Weninger WJ, Mohun TJ, Henkelman RM, Lythgoe MF. A coming of age: advanced imaging technologies for characterising the developing mouse. Trends Genet 2013; 29:700-11. [PMID: 24035368 DOI: 10.1016/j.tig.2013.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/17/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022]
Abstract
The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities.
Collapse
Affiliation(s)
- Francesca C Norris
- University College London (UCL) Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qiu W, Yu Y, Tsang FK, Zheng H, Sun L. A novel modulated excitation imaging system for microultrasound. IEEE Trans Biomed Eng 2013; 60:1884-90. [PMID: 23380848 DOI: 10.1109/tbme.2013.2244887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microultrasound (micro-US), also known as ultrasound biomicroscope, is able to delineate small structures with fine spatial resolution. However, micro-US suffers limited depth of penetration due to significantly large attenuation at high frequencies. Modulated excitation imaging has displayed the capability to improve the penetration depth, while maintaining the spatial resolution. But the effectiveness of this technique in micro-US has not been fully demonstrated. In addition, the current modulated excitation imaging systems for micro-US are designed for specific excitation method, therefore, lack of flexibility, and are typically bulky and expensive. This paper presents the development of a novel system to achieve modulated excitation imaging with high programmability and flexibility to satisfy various micro-US studies. It incorporates a high-voltage arbitrary waveform generator for producing desired excitation waveform, and a programmable imaging receiver implemented by the state-of-the-art electronics and field-programmable gate array. Test results show that the proposed modulated excitation imaging system can acquire up to 20 dB signal-to-noise ratio improvement and 83% increase of penetration depth in contrast to traditional short-pulse imaging method. In vivo experiment on the dorsal skin of a human hand demonstrates good performance of the programmable modulated excitation imaging system.
Collapse
Affiliation(s)
- Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
28
|
Qiu W, Yu Y, Chabok HR, Liu C, Tsang FK, Zhou Q, Shung KK, Zheng H, Sun L. A flexible annular-array imaging platform for micro-ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:178-186. [PMID: 23287923 PMCID: PMC3738186 DOI: 10.1109/tuffc.2013.2548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging.
Collapse
Affiliation(s)
- Weibao Qiu
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kan-O M, Takeya R, Abe T, Kitajima N, Nishida M, Tominaga R, Kurose H, Sumimoto H. Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biol Open 2012; 1:889-96. [PMID: 23213483 PMCID: PMC3507241 DOI: 10.1242/bio.20121370] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
Heart development requires organized integration of actin filaments into the sarcomere, the contractile unit of myofibrils, although it remains largely unknown how actin filaments are assembled during myofibrillogenesis. Here we show that Fhod3, a member of the formin family of proteins that play pivotal roles in actin filament assembly, is essential for myofibrillogenesis at an early stage of heart development. Fhod3−/− mice appear normal up to embryonic day (E) 8.5, when the developing heart, composed of premyofibrils, initiates spontaneous contraction. However, these premyofibrils fail to mature and myocardial development does not continue, leading to embryonic lethality by E11.5. Transgenic expression of wild-type Fhod3 in the heart restores myofibril maturation and cardiomyogenesis, which allow Fhod3−/− embryos to develop further. Moreover, cardiomyopathic changes with immature myofibrils are caused in mice overexpressing a mutant Fhod3, defective in binding to actin. These findings indicate that actin dynamics, regulated by Fhod3, participate in sarcomere organization during myofibrillogenesis and thus play a crucial role in heart development.
Collapse
Affiliation(s)
- Meikun Kan-O
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Qiu W, Yu Y, Tsang F, Sun L. An FPGA-based open platform for ultrasound biomicroscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1432-1442. [PMID: 22828839 DOI: 10.1109/tuffc.2012.2344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrasound biomicroscopy (UBM) has been extensively applied to preclinical studies in small animal models. Individual animal study is unique and requires different utilization of the UBM system to accommodate different transducer characteristics, data acquisition strategies, signal processing, and image reconstruction methods. There is a demand for a flexible and open UBM platform to allow users to customize the system for various studies and have full access to experimental data. This paper presents the development of an open UBM platform (center frequency 20 to 80 MHz) for various preclinical studies. The platform design was based on a field-programmable gate array (FPGA) embedded in a printed circuit board to achieve B-mode imaging and directional pulsed-wave Doppler. Instead of hardware circuitry, most functions of the platform, such as filtering, envelope detection, and scan conversion, were achieved by FPGA programs; thus, the system architecture could be easily modified for specific applications. In addition, a novel digital quadrature demodulation algorithm was implemented for fast and accurate Doppler profiling. Finally, test results showed that the platform could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, and real-time imaging at more than 500 frames/s. Phantom and in vivo imaging experiments were conducted and the results demonstrated good system performance.
Collapse
Affiliation(s)
- Weibao Qiu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | | | |
Collapse
|
31
|
Expression and subcellular localization of mammalian formin Fhod3 in the embryonic and adult heart. PLoS One 2012; 7:e34765. [PMID: 22509354 PMCID: PMC3324543 DOI: 10.1371/journal.pone.0034765] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 11/28/2022] Open
Abstract
The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain.
Collapse
|
32
|
Roustan A, Perrin J, Berthelot-Ricou A, Lopez E, Botta A, Courbiere B. Evaluating methods of mouse euthanasia on the oocyte quality: cervical dislocation versus isoflurane inhalation. Lab Anim 2012; 46:167-9. [DOI: 10.1258/la.2012.011115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cervical dislocation is a commonly used method of mouse euthanasia. Euthanasia by isoflurane inhalation is an alternative method which allows the sacrifice of several mice at the same time with an anaesthesia, in the aim to decrease pain and animal distress. The objective of our study was to assess the impact of these two methods of euthanasia on the quality of mouse oocytes. By administering gonadotropins, we induced a superovulation in CD1 female mice. Mice were randomly assigned to euthanasia with cervical dislocation and isoflurane inhalation. Oviducts were collected and excised to retrieve metaphase II oocytes. After microscopic examination, oocytes were classified into three groups: intact, fragmented/cleaved and atretic. Intact metaphase II oocytes were employed for biomedical research. A total of 1442 oocytes in the cervical dislocation group were compared with 1230 oocytes in the isoflurane group. In the cervical dislocation group, 93.1% of the oocytes were intact, versus 65.8% in the isoflurane group ( P ≤ 0.001). In light of these results, we conclude that cervical dislocation is the best method of mouse euthanasia for obtaining intact oocytes for biomedical research.
Collapse
Affiliation(s)
- Audrey Roustan
- Biogénotoxicologie – Santé Humaine et Environnement, Aix-Marseille Université, UMR CNRS 7263 IMBE, FR CNRS 3098 ECCOREV, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jeanne Perrin
- Biogénotoxicologie – Santé Humaine et Environnement, Aix-Marseille Université, UMR CNRS 7263 IMBE, FR CNRS 3098 ECCOREV, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
- AP-HM, La Conception, Pôle de Gynécologie – Obstétrique et Reproduction, 147 Bd Baille, 13005 Marseille, France
- AP-HM, La Conception, CECOS – Laboratoire de Biologie de la Reproduction, 147 Bd Baille, 13005 Marseille, France
| | - Anaïs Berthelot-Ricou
- Biogénotoxicologie – Santé Humaine et Environnement, Aix-Marseille Université, UMR CNRS 7263 IMBE, FR CNRS 3098 ECCOREV, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Erica Lopez
- CFREMC/CEPA, UFR de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Alain Botta
- Biogénotoxicologie – Santé Humaine et Environnement, Aix-Marseille Université, UMR CNRS 7263 IMBE, FR CNRS 3098 ECCOREV, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Blandine Courbiere
- Biogénotoxicologie – Santé Humaine et Environnement, Aix-Marseille Université, UMR CNRS 7263 IMBE, FR CNRS 3098 ECCOREV, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
- AP-HM, La Conception, Pôle de Gynécologie – Obstétrique et Reproduction, 147 Bd Baille, 13005 Marseille, France
| |
Collapse
|
33
|
Cheddad A, Svensson C, Sharpe J, Georgsson F, Ahlgren U. Image processing assisted algorithms for optical projection tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1-15. [PMID: 21768046 DOI: 10.1109/tmi.2011.2161590] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Since it was first presented in 2002, optical projection tomography (OPT) has emerged as a powerful tool for the study of biomedical specimen on the mm to cm scale. In this paper, we present computational tools to further improve OPT image acquisition and tomographic reconstruction. More specifically, these methods provide: semi-automatic and precise positioning of a sample at the axis of rotation and a fast and robust algorithm for determination of postalignment values throughout the specimen as compared to existing methods. These tools are easily integrated for use with current commercial OPT scanners and should also be possible to implement in "home made" or experimental setups for OPT imaging. They generally contribute to increase acquisition speed and quality of OPT data and thereby significantly simplify and improve a number of three-dimensional and quantitative OPT based assessments.
Collapse
Affiliation(s)
- Abbas Cheddad
- Umeå Centre for Molecular Medicine, Umeå University, S-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Powell KA, Wilson D. 3-dimensional imaging modalities for phenotyping genetically engineered mice. Vet Pathol 2011; 49:106-15. [PMID: 22146851 DOI: 10.1177/0300985811429814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves.
Collapse
Affiliation(s)
- K A Powell
- Small Animal Imaging Shared Resource, The James Comprehensive Cancer Center Department of Biomedical Informatics, Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
35
|
Foster FS, Hossack J, Adamson SL. Micro-ultrasound for preclinical imaging. Interface Focus 2011; 1:576-601. [PMID: 22866232 DOI: 10.1098/rsfs.2011.0037] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, non-invasive preclinical imaging has emerged as an important tool to facilitate biomedical discovery. Not only have the markets for these tools accelerated, but the numbers of peer-reviewed papers in which imaging end points and biomarkers have been used have grown dramatically. High frequency 'micro-ultrasound' has steadily evolved in the post-genomic era as a rapid, comparatively inexpensive imaging tool for studying normal development and models of human disease in small animals. One of the fundamental barriers to this development was the technological hurdle associated with high-frequency array transducers. Recently, new approaches have enabled the upper limits of linear and phased arrays to be pushed from about 20 to over 50 MHz enabling a broad range of new applications. The innovations leading to the new transducer technology and scanner architecture are reviewed. Applications of preclinical micro-ultrasound are explored for developmental biology, cancer, and cardiovascular disease. With respect to the future, the latest developments in high-frequency ultrasound imaging are described.
Collapse
Affiliation(s)
- F Stuart Foster
- Sunnybrook and Health Sciences Centre , University of Toronto , Toronto, Ontario , Canada
| | | | | |
Collapse
|
36
|
Pallares P, Perez-Solana ML, Torres-Rovira L, Gonzalez-Bulnes A. Phenotypic Characterization by High-Resolution Three-Dimensional Magnetic Resonance Imaging Evidences Differential Effects of Embryo Genotype on Intrauterine Growth Retardation in NOS3-Deficient Mice. Biol Reprod 2011; 84:866-71. [DOI: 10.1095/biolreprod.110.088534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
37
|
Syed SH, Larin KV, Dickinson ME, Larina IV. Optical coherence tomography for high-resolution imaging of mouse development in utero. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:046004. [PMID: 21529073 PMCID: PMC3081861 DOI: 10.1117/1.3560300] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/01/2011] [Accepted: 02/09/2011] [Indexed: 05/19/2023]
Abstract
Although the mouse is a superior model to study mammalian embryonic development, high-resolution live dynamic visualization of mouse embryos remain a technical challenge. We present optical coherence tomography as a novel methodology for live imaging of mouse embryos through the uterine wall thereby allowing for time lapse analysis of developmental processes and direct phenotypic analysis of developing embryos. We assessed the capability of the proposed methodology to visualize structures of the living embryo from embryonic stages 12.5 to 18.5 days postcoitus. Repetitive in utero embryonic imaging is demonstrated. Our work opens the door for a wide range of live, in utero embryonic studies to screen for mutations and understand the effects of pharmacological and toxicological agents leading to birth defects.
Collapse
Affiliation(s)
- Saba H Syed
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Road, 3605 Cullen Boulevard, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
38
|
Rennie MY, Detmar J, Whiteley KJ, Yang J, Jurisicova A, Adamson SL, Sled JG. Vessel tortuousity and reduced vascularization in the fetoplacental arterial tree after maternal exposure to polycyclic aromatic hydrocarbons. Am J Physiol Heart Circ Physiol 2011; 300:H675-84. [DOI: 10.1152/ajpheart.00510.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and the main toxicants found in cigarettes. Women are often exposed to PAHs before pregnancy, typically via prepregnancy smoking. To determine how prepregnancy exposure affects the fetoplacental vasculature of the placenta, we exposed female mice to PAHs before conception, perfused the fetoplacental arterial trees with X-ray contrast agent, and imaged the vasculature ex vivo by microcomputed tomography (micro-CT) at embryonic day 15.5. Automated vascular segmentation and flow calculations revealed that in control trees, <40 chorionic plate vessels (diameter >180 μm) gave rise to ∼1,300 intraplacental arteries (50–180 μm), predicting an arterial vascular resistance of 0.37 ± 0.04 mmHg·s·μl−1. PAH exposure increased vessel curvature of chorionic plate vessels and significantly increased the tortuousity ratio of the tree. Intraplacental arteries were reduced by 17%, primarily due to a 27% decrease in the number of arteriole-sized (50–100 μm) vessels. There were no changes in the number of chorionic vessels, the depth or span of the tree, the diameter scaling coefficient, or the segment length-to-diameter ratio. PAH exposure resulted in a tree with a similar size and dichotomous branching structure, but one that was comparatively sparse so that arterial vascular resistance was increased by 30%. Assuming the same pressure gradient, blood flow would be 19% lower. Low flow may contribute to the 23% reduction observed in fetal weight. New insights into the specific effects of PAH exposure on a developing arterial tree were achieved using micro-CT imaging and automated vascular segmentation analysis.
Collapse
Affiliation(s)
- Monique Y. Rennie
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario
- Department of Medical Biophysics,
- Department of Obstetrics and Gynecology,
| | - Jacqui Detmar
- Department of Obstetrics and Gynecology,
- Institute of Medical Studies and
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kathie J. Whiteley
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jian Yang
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario
| | - Andrea Jurisicova
- Department of Obstetrics and Gynecology,
- Department of Physiology, University of Toronto, Toronto, Ontario; and
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - S. Lee Adamson
- Department of Obstetrics and Gynecology,
- Department of Physiology, University of Toronto, Toronto, Ontario; and
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario
- Department of Medical Biophysics,
| |
Collapse
|
39
|
Abstract
The completed sequencing of genomes has forced upon us the challenge of understanding how the detailed information in the genome gives rise to the specific characteristics--phenotype--of the individual. This is crucial for understanding not only normal development but also, from a medical perspective, the genetic basis of disease. Much of the mammalian genome-to-phenotype relationship will be worked out in the mouse, for which powerful genetic-manipulation tools are available. Mouse imaging combined with powerful statistical methods has a unique and growing role to play in phenotyping genetically modified mice. This review outlines the challenges for image-based phenotyping, summarizes the current state of three-dimensional imaging technologies for the mouse, and highlights new opportunities in systems biology that are opened by imaging mice.
Collapse
Affiliation(s)
- R Mark Henkelman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
40
|
Wise LD, Buschmann J, Feuston MH, Fisher JE, Hew KW, Hoberman AM, Lerman SA, Ooshima Y, Stump DG. Embryo-fetal developmental toxicity study design for pharmaceuticals. ACTA ACUST UNITED AC 2009; 86:418-28. [DOI: 10.1002/bdrb.20214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Corrigan N, Brazil DP, Auliffe FM. High-frequency ultrasound assessment of the murine heart from embryo through to juvenile. Reprod Sci 2009; 17:147-57. [PMID: 19843878 DOI: 10.1177/1933719109348923] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM The aim of this study is to assess the murine heart of normal embryos, neonates, and juveniles using high-frequency ultrasound. METHODS Diastolic function was measured with E/A ratio (E wave velocity/A wave velocity) and isovolumetric relaxation time (IRT), systolic function with isovolumetric contraction time (ICT), percentage fractional shortening (FS %), percentage ejection fraction (EF %). Global cardiac performance was quantified using myocardial performance index (MPI). RESULTS Isovolumetric relaxation time remained stable from E10.5 to 3 weeks. Systolic function (ICT) improved with gestation and remained stable from E18.5 onward. Myocardial performance index showed improvement in embryonic life (0.82- 0.63) and then stabilized from 1 to 3 week (0.60-0.58). Percentage ejection fraction remained high during gestation (77%-69%) and then decreased from the neonate to juvenile (68%-51%). CONCLUSION The ultrasound biomicroscope allows for noninvasive in-depth assessment of cardiac function of embryos and pups. Detailed physiological and functional cardiac function readouts can be obtained, which is invaluable for comparison to mouse models of disease.
Collapse
Affiliation(s)
- Niamh Corrigan
- UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
42
|
Winkelmann CT, Wise LD. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J Pharmacol Toxicol Methods 2009; 59:156-65. [DOI: 10.1016/j.vascn.2009.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/07/2009] [Indexed: 10/20/2022]
|
43
|
Pallares P, Fernandez-Valle ME, Gonzalez-Bulnes A. In vivo virtual histology of mouse embryogenesis by ultrasound biomicroscopy and magnetic resonance imaging. Reprod Fertil Dev 2009; 21:283-92. [PMID: 19210919 DOI: 10.1071/rd08124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 09/08/2008] [Indexed: 11/23/2022] Open
Abstract
Feasibility of magnetic resonance imaging (MRI) and ultrasound biomicroscopy (UBM) for sequential in vivo study of mouse embryo development between Days 6.5 and 13.5 of pregnancy was assessed in a first experiment. A second trial, based on the results of the first, determined the accuracy of UBM for imaging morphogenesis from implantation to the late embryo stage (Days 4.5 to 15.5). MRI allowed imaging of the entire uterus and all gestational sacs and embryos inside whilst the small scanning range of UBM precluded accurate counting of fetuses; however, its high resolution identified the decidual reaction at implantation sites from Day 4.5. At later stages, it was possible to assess key morphogenetic processes such as differentiation of the placenta, the cephalic region, the thoracic and abdominal organs, the skeletal system and the limbs, and dynamic structures such as the cardiovascular system. Thus, both techniques are reliable for in utero imaging of mouse embryo development. MRI may be more appropriate for studying embryo lethality and intrauterine growth retardation, because the entire uterus can be viewed. UBM may be more suitable for studies of cellular components of organs and tissues and assessment of haemodynamic changes in the circulatory system.
Collapse
Affiliation(s)
- P Pallares
- BIONOSTRA, S.L. Ronda de Poniente, 4. 28760-Tres Cantos, Madrid, Spain
| | | | | |
Collapse
|
44
|
Turgeon B, Meloche S. Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev 2009; 89:1-26. [PMID: 19126753 DOI: 10.1152/physrev.00040.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mouse represents the model of choice to study the biological function of mammalian genes through mutation of its genome. However, the biggest challenge of mouse geneticists remains the phenotypic analysis of mouse mutants. A survey of mouse mutant databases reveals a surprisingly high number of gene mutations leading to neonatal death. These genetically modified mouse mutants have been instrumental in elucidating gene function and have become important models of congenital human diseases. The main complication when phenotyping mutant mice dying during the neonatal period is the large spectrum of physiological systems whose defects can challenge neonatal survival. Here, we present a comprehensive review of gene mutations leading to neonatal lethality and discuss the impact of these mutations on the major physiological processes critical to mouse newborn survival: parturition, breathing, suckling, and homeostasis. Selected examples of mouse mutants are highlighted to illustrate how the precise identification of the timing and cause of death associated with these physiological processes allows for a more profound understanding of the underlying cellular and molecular defects. This review provides a guide for the analysis of neonatal lethal phenotypes in mutant mice that will be helpful for dissecting out the function of specific genes during mouse development.
Collapse
Affiliation(s)
- Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
45
|
Rapid 3-dimensional imaging of embryonic craniofacial morphology using microscopic computed tomography. J Comput Assist Tomogr 2008; 32:816-21. [PMID: 18830118 DOI: 10.1097/rct.0b013e318157c5e2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Microscopic computed tomography (microCT) has been recently applied to morphological evaluation of mouse embryos with or without congenital malformations, and 3-dimensional (3D) digital images of the whole embryo can be obtained. In the present study, the authors report a modified, rapid technique of 3D embryonic microCT without processing with osmium tetroxide. METHODS Normal embryonic days 10.5 to 11 mouse embryos, as well as those with craniofacial anomalies treated with teratogens, were examined. After fixation, we processed the embryo samples with hexamethyldisilazane, instead of highly toxic osmium tetroxide in the original method. RESULTS Our protocol enabled clear 3D craniofacial imaging of the normal and anomalous mouse embryos within a short period of 20 minutes or 1 hour. In addition, some anatomical landmarks were clearly detected in the reconstituted craniofacial section images. CONCLUSION Our present data suggest a possible role of microCT for high-throughput morphological screening of the mouse embryos with craniofacial anomalies.
Collapse
|
46
|
Mu J, Slevin JC, Qu D, McCormick S, Adamson SL. In vivo quantification of embryonic and placental growth during gestation in mice using micro-ultrasound. Reprod Biol Endocrinol 2008; 6:34. [PMID: 18700008 PMCID: PMC2527569 DOI: 10.1186/1477-7827-6-34] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/12/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Non-invasive micro-ultrasound was evaluated as a method to quantify intrauterine growth phenotypes in mice. Improved methods are required to accelerate research using genetically-altered mice to investigate the interactive roles of genes and environments on embryonic and placental growth. We determined (1) feasible age ranges for measuring specific variables, (2) normative growth curves, (3) accuracy of ultrasound measurements in comparison with light microscopy, and (4) weight prediction equations using regression analysis for CD-1 mice and evaluated their accuracy when applied to other mouse strains. METHODS We used 30-40 MHz ultrasound to quantify embryonic and placental morphometry in isoflurane-anesthetized pregnant CD-1 mice from embryonic day 7.5 (E7.5) to E18.5 (full-term), and for C57Bl/6J, B6CBAF1, and hIGFBP1 pregnant transgenic mice at E17.5. RESULTS Gestational sac dimension provided the earliest measure of conceptus size. Sac dimension derived using regression analysis increased from 0.84 mm at E7.5 to 6.44 mm at E11.5 when it was discontinued. The earliest measurement of embryo size was crown-rump length (CRL) which increased from 1.88 mm at E8.5 to 16.22 mm at E16.5 after which it exceeded the field of view. From E10.5 to E18.5 (full term), progressive increases were observed in embryonic biparietal diameter (BPD) (0.79 mm to 7.55 mm at E18.5), abdominal circumference (AC) (4.91 mm to 26.56 mm), and eye lens diameter (0.20 mm to 0.93 mm). Ossified femur length was measureable from E15.5 (1.06 mm) and increased linearly to 2.23 mm at E18.5. In contrast, placental diameter (PD) and placental thickness (PT) increased from E10.5 to E14.5 then remained constant to term in accord with placental weight. Ultrasound and light microscopy measurements agreed with no significant bias and a discrepancy of less than 25%. Regression equations predicting gestational age from individual variables, and embryonic weight (BW) from CRL, BPD, and AC were obtained. The prediction equation BW = -0.757 + 0.0453 (CRL) + 0.0334 (AC) derived from CD-1 data predicted embryonic weights at E17.5 in three other strains of mice with a mean discrepancy of less than 16%. CONCLUSION Micro-ultrasound provides a feasible tool for in vivo morphometric quantification of embryonic and placental growth parameters in mice and for estimation of embryonic gestational age and/or body weight in utero.
Collapse
Affiliation(s)
- Junwu Mu
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - John C Slevin
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada
| | - Dawei Qu
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
| | | | - S Lee Adamson
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Abstract
Imaging technologies for in vivo functional and molecular imaging in small animals have undergone a very fast development in the last years with very intense competition to further develop resolution and molecular sensitivity. Among the imaging technologies available, ultrasound-based molecular imaging methods are of particular interest, since the use of ultrasound contrast agents allows specific and sensitive depiction of molecular targets. Together with new developments in quantification methods of targeted microbubbles, sonography represents a dynamic and seminal tool for molecular imaging.
Collapse
Affiliation(s)
- Peter Hauff
- Global Drug Discovery, Bayer Schering Pharma AG, 13342, Berlin, Germany.
| | | | | |
Collapse
|
48
|
Okajima K, Abe Y, Fujimoto K, Fujikura K, Girard EE, Asai T, Kwon SH, Jin Z, Nakamura Y, Yoshiyama M, Homma S. Comparative Study of High-resolution Microimaging with 30-MHz Scanner for Evaluating Cardiac Function in Mice. J Am Soc Echocardiogr 2007; 20:1203-10. [PMID: 17588720 DOI: 10.1016/j.echo.2007.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Indexed: 01/01/2023]
Abstract
BACKGROUND The accurate assessment of cardiac function in mice is challenging because of their small heart size and rapid heart rate. METHODS We examined the usefulness of novel high-resolution echocardiography (HRE) with a 30-MHz transducer in evaluating cardiac function in 20 mice compared with conventional echocardiography (CE) with a 13-MHz transducer. The left ventricular (LV) regional wall motion (RWM), LV end-diastolic dimension, fractional shortening, anterior LV wall thickness, E/A, and myocardial performance index were assessed. RESULTS RWM analysis was more feasible by HRE than by CE (P < .05). Interobserver agreement in RWM analysis and correlation in LV end-diastolic dimension, fractional shortening, anterior LV wall thickness, E/A, and myocardial performance index were all better with HRE than CE. CONCLUSIONS HRE is superior to CE in assessing LV function in mice. HRE is potentially a useful method for accurate assessment of cardiac function in various mice models.
Collapse
Affiliation(s)
- Kazue Okajima
- Department of Medicine, Division of Cardiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mu J, Qu D, Bartczak A, Phillips MJ, Manuel J, He W, Koscik C, Mendicino M, Zhang L, Clark DA, Grant DR, Backx PH, Levy GA, Adamson SL. Fgl2 deficiency causes neonatal death and cardiac dysfunction during embryonic and postnatal development in mice. Physiol Genomics 2007; 31:53-62. [PMID: 17550996 DOI: 10.1152/physiolgenomics.00026.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We hypothesized that cardiac dysfunction was responsible for the high perinatal lethality that we previously reported in fibrinogen-like protein 2 (Fgl2) knockout (KO) mice. We therefore used ultrasound biomicroscopy to assess left ventricular (LV) cardiac structure and function during development in Fgl2 KO and wild-type (WT) mice. The only deaths observed between embryonic day (E)8.5 (onset of heart beating) and postnatal day (P)28 (weaning) were within 3 days after birth, when 33% of Fgl2 KO pups died. Histopathology and Doppler assessments suggested that death was due to acute congestive cardiac failure without evidence of valvular or other obvious cardiac structural abnormalities. Heart rates in Fgl2 KO embryos were significantly reduced at E8.5 and E17.5, and irregular heart rhythms were significantly more common in Fgl2 KO (21/26) than WT (2/21) embryos at E13.5. Indexes of systolic and/or diastolic cardiac function were also abnormal in KO mice at E13.5 and E17.5, in postnatal mice studied at P1, and in KO mice surviving to P28. M-mode analysis showed no difference in LV diastolic chamber dimension, although posterior wall thickness was thinner at P7 and P28 in Fgl2 KO mice. We conclude that Fgl2 deficiency is not associated with obvious structural cardiac defects but is associated with a high incidence of neonatal death as well as contractile dysfunction and rhythm abnormalities during embryonic and postnatal development in mice.
Collapse
Affiliation(s)
- Junwu Mu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lucocq JM. Efficient quantitative morphological phenotyping of genetically altered organisms using stereology. Transgenic Res 2006; 16:133-45. [PMID: 17103237 DOI: 10.1007/s11248-006-9048-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
Genetically modified organisms present the challenge of quantifying structures and functions in organs, tissues and cells. Morphological investigation is greatly facilitated by taking sections in MRI, CAT scanning, histological preparations or EM, and powerful unbiased quantitative tools called stereology can use these sections in a sampling based approach to measure volume, number surface and length. Stereological tools have become methods of choice in the fields of neurobiology, nephrology and cell biology and allow accurate unbiased description of intact organs, tissues, cells and organelles. Stereology has yet to be applied widely in the field of transgenics. Here I provide an overview of stereological methods and explain how they represent a powerful addition to the transgenic biologists armoury of techniques.
Collapse
Affiliation(s)
- John Milton Lucocq
- Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|