1
|
Bokharaei-Salim F, Khanaliha K, Monavari SH, Kiani SJ, Tavakoli A, Jafari E, Chavoshpour S, Razizadeh MH, Kalantari S. Human Immunodeficiency Virus-1 Drug Resistance Mutations in Iranian Treatment-experienced Individuals. Curr HIV Res 2024; 22:53-64. [PMID: 38310469 DOI: 10.2174/011570162x273321240105081444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Human immunodeficiency virus-1 infection still remains a global health threat. While antiretroviral therapy is the primary treatment option, concerns about the emergence of drug-resistance mutations and treatment failure in HIV-infected patients persist. OBJECTIVE In this study, we investigated the development of drug resistance in HIV-1-infected individuals receiving antiretroviral therapy for 6-10 years. METHODS In this cross-sectional study, we evaluated 144 people living with HIV-1 who had received antiretroviral therapy for at least 6 years. Plasma specimens were collected, and the HIV-1 viral load and drug-resistance mutations were assessed using molecular techniques. RESULTS The demographic and epidemiological characteristics of the participants were also analyzed: Twelve [8.3%) of the studied patients showed a viral load over 1000 copies per/mL, which indicates the suboptimal response to antiretroviral therapy. Significant correlations were found between viral load and CD4 count, as well as epidemiological factors, such as vertical transmission, history of imprisonment, and needle stick injuries. Drug resistance mutations were detected in 10 (83.3%) of patients who failed on antiretroviral therapy, with the most common mutations observed against nucleoside reverse transcriptase inhibitors (5 (41.7%)) and non-nucleoside reverse transcriptase inhibitors (9 (75%)). Phylogenetic analysis revealed that 12 patients who failed treatment were infected with CRF35_AD. CONCLUSION Our study provides important insights into the characteristics and development of drug resistance in HIV-1-infected individuals receiving long-term antiretroviral therapy in Iran. The findings underline the need for regular viral load monitoring, individualized treatment selection, and targeted interventions to optimize treatment outcomes and prevent the further spread of drug-resistant strains.
Collapse
Affiliation(s)
- Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Jafari
- Department of Biology, Faculty of Basic Sciences, Noor Danesh University, Isfahan, Iran
| | - Sara Chavoshpour
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Martín-Alonso S, Kang D, Martínez Del Río J, Luczkowiak J, Frutos-Beltrán E, Zhang L, Cheng X, Liu X, Zhan P, Menéndez-Arias L. Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. J Mol Biol 2022; 434:167507. [PMID: 35217069 DOI: 10.1016/j.jmb.2022.167507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
In retroviruses, strand displacement DNA-dependent DNA polymerization catalyzed by the viral reverse transcriptase (RT) is required to synthesize double-stranded proviral DNA. In addition, strand displacement during RNA-dependent DNA synthesis is critical to generate high-quality cDNA for use in molecular biology and biotechnology. In this work, we show that the loss of RNase H activity due to inactivating mutations in HIV-1 RT (e.g. D443N or E478Q) has no significant effect on strand displacement while copying DNA templates, but has a large impact on DNA polymerization in reactions carried out with RNA templates. Similar effects were observed with β-thujaplicinol and other RNase H active site inhibitors, including compounds with dual activity (i.e., characterized also as inhibitors of HIV-1 integrase and/or the RT DNA polymerase). Among them, dual inhibitors of HIV-1 RT DNA polymerase/RNase H activities, containing a 7-hydroxy-6-nitro-2H-chromen-2-one pharmacophore were found to be very potent and effective strand displacement inhibitors in RNA-dependent DNA polymerization reactions. These findings might be helpful in the development of transcriptomics technologies to obtain more uniform read coverages when copying long RNAs and for the construction of more representative libraries avoiding biases towards 5' and 3' ends, while providing valuable information for the development of novel antiretroviral agents.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Javier Martínez Del Río
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Lina Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Álvarez M, Sapena-Ventura E, Luczkowiak J, Martín-Alonso S, Menéndez-Arias L. Analysis and Molecular Determinants of HIV RNase H Cleavage Specificity at the PPT/U3 Junction. Viruses 2021; 13:131. [PMID: 33477685 PMCID: PMC7831940 DOI: 10.3390/v13010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023] Open
Abstract
HIV reverse transcriptases (RTs) convert viral genomic RNA into double-stranded DNA. During reverse transcription, polypurine tracts (PPTs) resilient to RNase H cleavage are used as primers for plus-strand DNA synthesis. Nonnucleoside RT inhibitors (NNRTIs) can interfere with the initiation of plus-strand DNA synthesis by enhancing PPT removal, while HIV RT connection subdomain mutations N348I and N348I/T369I mitigate this effect by altering RNase H cleavage specificity. Now, we demonstrate that among approved nonnucleoside RT inhibitors (NNRTIs), nevirapine and doravirine show the largest effects. The combination N348I/T369I in HIV-1BH10 RT has a dominant effect on the RNase H cleavage specificity at the PPT/U3 site. Biochemical studies showed that wild-type HIV-1 and HIV-2 RTs were able to process efficiently and accurately all tested HIV PPT sequences. However, the cleavage accuracy at the PPT/U3 junction shown by the HIV-2EHO RT was further improved after substituting the sequence YQEPFKNLKT of HIV-1BH10 RT (positions 342-351) for the equivalent residues of the HIV-2 enzyme (HQGDKILKV). Our results highlight the role of β-sheets 17 and 18 and their connecting loop (residues 342-350) in the connection subdomain of the large subunit, in determining the RNase H cleavage window of HIV RTs.
Collapse
Affiliation(s)
| | | | | | | | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Campus de Cantoblanco-UAM, 28049 Madrid, Spain; (M.Á.); (E.S.-V.); (J.L.); (S.M.-A.)
| |
Collapse
|
4
|
Giannini A, Vicenti I, Materazzi A, Boccuto A, Dragoni F, Zazzi M, Saladini F. The HIV-1 reverse transcriptase E138A natural polymorphism decreases the genetic barrier to resistance to etravirine in vitro. J Antimicrob Chemother 2020; 74:607-613. [PMID: 30462235 DOI: 10.1093/jac/dky479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The HIV-1 reverse transcriptase (RT) natural polymorphism E138A is included among the mutations with a minor impact on response to etravirine. However, the interpretation of E138A on etravirine susceptibility is not consistent across different genotypic resistance algorithms. The aim of the study was to investigate the effect of E138A on the genetic barrier to resistance to etravirine in vitro. METHODS A panel of 20 clinically derived recombinant viruses (10 with WT 138E and 10 with 138A, all without any other resistance mutation) were cultured in the presence of increasing etravirine concentrations and analysed for genotypic changes at virus breakthrough. Parallel experiments were conducted with 138E/A/G/K/Q NL4-3-based clones. RESULTS In the NL4-3 background, codon 138 changes increased etravirine resistance in the following order: Q > K > A > G > E. The 138A viruses were less susceptible to etravirine compared with the 138E viruses [median (IQR) fold change, 1.8 (1.5-2.8) versus 1.3 (0.8-1.8); P = 0.026], overcame etravirine pressure earlier [HR (95% CI) for viral outgrowth with 138A, 5.48 (2.95-28.24); P < 0.001] and grew at higher drug concentrations [median (IQR), 1350 (1350-1350) versus 0 (0-1350) nM; P = 0.005]. A variety of etravirine resistance-related mutations and changes in the RT connection and RNase H domains accumulated without any consistent pattern depending on baseline codon 138. CONCLUSIONS E138A can contribute to reduced response to etravirine through a decreased genetic barrier to resistance. In vitro drug resistance selection is a valuable complement to define the full potential of low-level resistance mutations.
Collapse
Affiliation(s)
- Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Angelo Materazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Laut K, Kirk O, Rockstroh J, Phillips A, Ledergerber B, Gatell J, Gazzard B, Horban A, Karpov I, Losso M, d'Arminio Monforte A, Pedersen C, Ristola M, Reiss P, Scherrer AU, de Wit S, Aho I, Rasmussen LD, Svedhem V, Wandeler G, Pradier C, Chkhartishvili N, Matulionyte R, Oprea C, Kowalska JD, Begovac J, Miró JM, Guaraldi G, Paredes R, Raben D, Podlekareva D, Peters L, Lundgren JD, Mocroft A. The EuroSIDA study: 25 years of scientific achievements. HIV Med 2019; 21:71-83. [PMID: 31647187 DOI: 10.1111/hiv.12810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 01/19/2023]
Abstract
The EuroSIDA study was initiated in 1994 and follows adult people living with HIV (PLHIV) in 100 collaborating clinics across 35 countries covering all European regions, Israel and Argentina. The study aims to study the long-term virological, immunological and clinical outcomes of PLHIV and to monitor temporal changes and regional differences in outcomes across Europe. Annually collected data include basic demographic characteristics, information on AIDS- and non-AIDS-related clinical events, and details about antiretroviral therapy (ART), hepatitis C treatment and other medications, in addition to a range of laboratory values. The summer 2016 data set held data from a total of 23 071 individuals contributing 174 481 person-years of follow-up, while EuroSIDA's unique plasma repository held over 160 000 samples. Over the past 25 years, close to 300 articles have been published in peer-reviewed journals (h-index 52), covering a range of scientific focus areas, including monitoring of clinical and virological outcomes, ART uptake, efficacy and adverse events, the influence of hepatitis virus coinfection, variation in the quality of HIV care and management across settings and regions, and biomarker research. Recognizing that there remain unresolved issues in the clinical care and management of PLHIV in Europe, EuroSIDA was one of the cohorts to found The International Cohort Consortium of Infectious Disease (RESPOND) cohort consortium on infectious diseases in 2017. In celebration of the EuroSIDA study's 25th anniversary, this article aims to summarize key scientific findings and outline current and future scientific focus areas.
Collapse
Affiliation(s)
- K Laut
- Department of Infectious Diseases, CHIP, Centre of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - O Kirk
- Department of Infectious Diseases, CHIP, Centre of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - A Phillips
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global health, University College London, London, UK
| | - B Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J Gatell
- Hospital Clinic - IDIBAPS, University of Barcelona, Barcelona, Spain
| | - B Gazzard
- St Stephen's Clinic, Chelsea and Westminster Hospital, London, UK
| | - A Horban
- Hospital for Infectious Diseases in Warsaw, Medical University of Warsaw, Warsaw, Poland
| | - I Karpov
- Department of Infectious Diseases, Belarus State Medical University, Minsk, Belarus
| | - M Losso
- Latin America Coordination of Academic Clinical Research, Buenos Aires, Argentina
| | - A d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Saint Paul and Charles, University of Milan, Milan, Italy
| | - C Pedersen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - M Ristola
- Helsinki University Hospital, Helsinki, Finland
| | - P Reiss
- Division of Infectious Diseases and Department of Global Health, Academic Medical Center, University of Amsterdam and Stichting HIV Monitoring, Amsterdam, The Netherlands
| | - A U Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - S de Wit
- CHU Saint-Pierre, Brussels, Belgium
| | - I Aho
- Helsinki University Hospital, Helsinki, Finland
| | - L D Rasmussen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - V Svedhem
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - G Wandeler
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - N Chkhartishvili
- Infectious Diseases, AIDS & Clinical Immunology Research Center, Tbilisi, Georgia
| | - R Matulionyte
- Department of Infectious Diseases and Dermatovenerology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Centre of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - C Oprea
- 'Victor Babes' Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - J D Kowalska
- Hospital for Infectious Diseases in Warsaw, Medical University of Warsaw, Warsaw, Poland
| | - J Begovac
- University Hospital of Infectious Diseases, Zagreb, Croatia
| | - J M Miró
- Hospital Clinic - IDIBAPS, University of Barcelona, Barcelona, Spain
| | - G Guaraldi
- Department of Medical and Surgical Sciences for Adults and Children, Clinic of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - R Paredes
- Infectious Diseases Unit &, IrsiCaixa AIDS Research Institute, Germans Trias Hospital, Badalona, Spain
| | - D Raben
- Department of Infectious Diseases, CHIP, Centre of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - D Podlekareva
- Department of Infectious Diseases, CHIP, Centre of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - L Peters
- Department of Infectious Diseases, CHIP, Centre of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J D Lundgren
- Department of Infectious Diseases, CHIP, Centre of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - A Mocroft
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global health, University College London, London, UK
| |
Collapse
|
6
|
Alves BM, Siqueira JD, Garrido MM, Botelho OM, Prellwitz IM, Ribeiro SR, Soares EA, Soares MA. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy. Viruses 2017; 9:v9120392. [PMID: 29257103 PMCID: PMC5744166 DOI: 10.3390/v9120392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Increased access to highly active antiretroviral therapy (HAART) by human immunodeficiency virus postive (HIV+) individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.
Collapse
Affiliation(s)
- Brunna M Alves
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Juliana D Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marianne M Garrido
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Ornella M Botelho
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Isabel M Prellwitz
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Sayonara R Ribeiro
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Esmeralda A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.
| |
Collapse
|
7
|
Barral MF, Sousa AK, Santos AF, Abreu CM, Tanuri A, Soares MA, for the Brazilian Consortium for th. Identification of Novel Resistance-Related Polymorphisms in HIV-1 Subtype C RT Connection and RNase H Domains from Patients Under Virological Failure in Brazil. AIDS Res Hum Retroviruses 2017; 33:465-471. [PMID: 27875905 DOI: 10.1089/aid.2015.0376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations in the connection and RNase H C-terminal reverse transcriptase (RT) domains of HIV-1 have been shown to impact drug resistance to RT inhibitors. However, their impact in the context of non-B subtypes has been poorly assessed. This study aimed to characterize resistance-related mutations in the C-terminal portions of RT in treatment-failing patients from southern Brazil, a region with endemic HIV-1 subtype C (HIV-1C). Viral RNA was isolated and reverse transcribed from 280 infected subjects, and genomic regions were analyzed by polymerase chain reaction, DNA sequencing, and phylogenetic analysis. Two novel mutations, M357R and E529D, were evidenced in Brazilian HIV-1C strains from treatment-failing patients. In global viral isolates of subjects on treatment, M357R was selected in HIV-1C and CRF01_AE and E529D was selected in HIV-1 subtype B (HIV-1B). While most C-terminal RT mutations described for HIV-1B also occur in HIV-1C, this work pinpointed novel mutations that display subtype-specific predominance or occurrence.
Collapse
Affiliation(s)
- Maria F.M. Barral
- Departamento de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Arielly K.P. Sousa
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina M. Abreu
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected Individuals after First-Line Antiretroviral Therapy Failure in South Africa. Antimicrob Agents Chemother 2017; 61:AAC.01805-16. [PMID: 27895013 DOI: 10.1128/aac.01805-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring.
Collapse
|
9
|
Betancor G, Álvarez M, Marcelli B, Andrés C, Martínez MA, Menéndez-Arias L. Effects of HIV-1 reverse transcriptase connection subdomain mutations on polypurine tract removal and initiation of (+)-strand DNA synthesis. Nucleic Acids Res 2015; 43:2259-2270. [PMID: 25662223 PMCID: PMC4344514 DOI: 10.1093/nar/gkv077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/25/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) connection subdomain mutations at positions 348, 369 and 376 have been associated with resistance to non-nucleoside RT inhibitors (NNRTIs). N348I may interfere with the initiation of (+)-strand DNA synthesis by reducing polypurine tract (PPT) removal in the presence of nevirapine. The effect of NNRTIs on the RNase H-mediated cleavage of PPT-containing template-primers has been studied with wild-type HIV-1 RT and mutants N348I, T369I, T369V, T376S and N348I/T369I. In the presence of NNRTIs, all RTs were able to stimulate PPT cleavage after primer elongation. The enhancing effects of nevirapine and efavirenz were reduced in RTs carrying mutation N348I, and specially N348I/T369I. However, those mutations had no effect on rilpivirine-mediated cleavage. Prior to elongation, the PPT remains resilient to cleavage, although efavirenz and rilpivirine facilitate RNase H-mediated trimming of its 3'-end. The integrity of the 3'-end is essential for the initiation of (+)-strand DNA synthesis. In the presence of dNTPs, rilpivirine was the most effective inhibitor of (+)-strand DNA synthesis blocking nucleotide incorporation and preventing usage of available PPT primers. The N348I/T369I RT showed reduced ability to generate short RNA products revealing a cleavage window defect. Its lower RNase H activity could be attributed to enhanced rigidity compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Barbara Marcelli
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Andrés
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Miguel A Martínez
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Muniz CP, Soares MA, Santos AF. Early selection of resistance-associated mutations in HIV-1 RT C-terminal domains across different subtypes: role of the genetic barrier to resistance. J Antimicrob Chemother 2014; 69:2741-5. [DOI: 10.1093/jac/dku214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Melikian GL, Rhee SY, Varghese V, Porter D, White K, Taylor J, Towner W, Troia P, Burack J, Dejesus E, Robbins GK, Razzeca K, Kagan R, Liu TF, Fessel WJ, Israelski D, Shafer RW. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J Antimicrob Chemother 2013; 69:12-20. [PMID: 23934770 DOI: 10.1093/jac/dkt316] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The introduction of two new non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the past 5 years and the identification of novel NNRTI-associated mutations have made it necessary to reassess the extent of phenotypic NNRTI cross-resistance. METHODS We analysed a dataset containing 1975, 1967, 519 and 187 genotype-phenotype correlations for nevirapine, efavirenz, etravirine and rilpivirine, respectively. We used linear regression to estimate the effects of RT mutations on susceptibility to each of these NNRTIs. RESULTS Sixteen mutations at 10 positions were significantly associated with the greatest contribution to reduced phenotypic susceptibility (≥10-fold) to one or more NNRTIs, including: 14 mutations at six positions for nevirapine (K101P, K103N/S, V106A/M, Y181C/I/V, Y188C/L and G190A/E/Q/S); 10 mutations at six positions for efavirenz (L100I, K101P, K103N, V106M, Y188C/L and G190A/E/Q/S); 5 mutations at four positions for etravirine (K101P, Y181I/V, G190E and F227C); and 6 mutations at five positions for rilpivirine (L100I, K101P, Y181I/V, G190E and F227C). G190E, a mutation that causes high-level nevirapine and efavirenz resistance, also markedly reduced susceptibility to etravirine and rilpivirine. K101H, E138G, V179F and M230L mutations, associated with reduced susceptibility to etravirine and rilpivirine, were also associated with reduced susceptibility to nevirapine and/or efavirenz. CONCLUSIONS The identification of novel cross-resistance patterns among approved NNRTIs illustrates the need for a systematic approach for testing novel NNRTIs against clinical virus isolates with major NNRTI-resistance mutations and for testing older NNRTIs against virus isolates with mutations identified during the evaluation of a novel NNRTI.
Collapse
|
12
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 2013; 98:93-120. [PMID: 23403210 DOI: 10.1016/j.antiviral.2013.01.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Hachiya A, Marchand B, Kirby KA, Michailidis E, Tu X, Palczewski K, Ong YT, Li Z, Griffin DT, Schuckmann MM, Tanuma J, Oka S, Singh K, Kodama EN, Sarafianos SG. HIV-1 reverse transcriptase (RT) polymorphism 172K suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and non-nucleoside RT inhibitors. J Biol Chem 2012; 287:29988-99. [PMID: 22761416 DOI: 10.1074/jbc.m112.351551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.g. thymidine-associated mutations) and not by discrimination mechanism mutations (e.g. Q151M complex). Moreover, it attenuated resistance to nevirapine or efavirenz imparted by NNRTI mutations. Although 172K favored RT-DNA binding at an excisable pre-translocation conformation, it decreased excision by thymidine-associated mutation-containing RT. 172K affected DNA handling and decreased RT processivity without significantly affecting the k(cat)/K(m) values for dNTP. Surface plasmon resonance experiments revealed that RT(172K) decreased DNA binding by increasing the dissociation rate. Hence, the increased zidovudine susceptibility of RT(172K) results from its increased dissociation from the chain-terminated DNA and reduced primer unblocking. We solved a high resolution (2.15 Å) crystal structure of RT mutated at 172 and compared crystal structures of RT(172R) and RT(172K) bound to NNRTIs or DNA/dNTP. Our structural analyses highlight differences in the interactions between α-helix E (where 172 resides) and the active site β9-strand that involve the YMDD loop and the NNRTI binding pocket. Such changes may increase dissociation of DNA, thus suppressing excision-based NRTI resistance and also offset the effect of NNRTI resistance mutations thereby restoring NNRTI binding.
Collapse
Affiliation(s)
- Atsuko Hachiya
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Menéndez-Arias L, Betancor G, Matamoros T. HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Res 2011; 92:139-49. [DOI: 10.1016/j.antiviral.2011.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/25/2022]
|