1
|
Goldbeck SM, Costa DV, Yang SE, Whitt CC, Tora AE, Warren CA, Shin JH. Clostridioides difficile Infection in Aged Mice Decreases Memory Function, Which Can Be Protected with Alanyl-Glutamine Supplementation. J Nutr 2025:S0022-3166(25)00188-9. [PMID: 40222582 DOI: 10.1016/j.tjnut.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Adults aged >65 face a higher risk of both Clostridioides difficile infection (CDI) and dementia. CDI in the elderly may exacerbate functional and cognitive impairments. Current CDI treatment options are limited. Alanyl-glutamine (AQ) is a dipeptide shown to decrease C. difficile toxin effects in vitro and in vivo. OBJECTIVES We tested the potential benefits of AQ on the clinical outcomes and cognitive impairment in the aged mouse model of CDI treated at various timings of AQ and vancomycin treatment. METHODS C57BL/6 retired breeder (9 mo) and aged (18 mo) mice were treated with AQ-supplemented water as a 2-wk pretreatment or continuously. The mice underwent a standard CDI protocol (VPI10463) and were treated, or not, with vancomycin. Disease severity was tracked for 14 d, then novel object recognition (NOR) tests for acute memory were performed. Hippocampal tissues were assayed for molecular markers. RESULTS NOR testing confirmed CDI-induced cognitive impairment (P = 0.0352). AQ pretreatment had mild neuroprotective effects during CDI. Mice treated with vancomycin and continuous AQ had better clinical scores and better memory performance than vancomycin controls (P = 0.0286). Continuous AQ treatment, when used alone or paired with vancomycin, offered protection against CDI-induced cognitive impairment. The mechanism of CDI-induced memory impairment remains unclear, but infected mice had elevated synaptobrevin-2 (P = 0.0396) and neural cell adhesion molecule (P = 0.008) compared with uninfected controls on day 14 post infection. CONCLUSIONS Our findings suggest that neuroinflammation and memory loss occur during CDI, which may be ameliorated by AQ supplementation. AQ supplementation may have both neurological and intestinal protective effects during CDI treatment.
Collapse
Affiliation(s)
- Sophia M Goldbeck
- University of North Carolina School of Medicine, Chapel Hill, NC, United States; Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Deiziane Vs Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Suemin E Yang
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Caroline C Whitt
- Department of Physical and Rehabilitation Medicine, University of Virginia, Charlottesville, VA, United States; Hoag Memorial Hospital Presbyterian, Newport Beach, CA, United States
| | - Ayesha E Tora
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States.
| | - Jae Hyun Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States; Hoag Memorial Hospital Presbyterian, Newport Beach, CA, United States
| |
Collapse
|
2
|
Nazir U, Fu Z, Zheng X, Zafar MH, Yang Z, Wang Z, Yang H. Transcriptomic analysis of ileal adaptations and growth responses in growing hens supplemented with alanyl-glutamine dipeptide. Poult Sci 2024; 103:104479. [PMID: 39500264 PMCID: PMC11570710 DOI: 10.1016/j.psj.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The growing phase of laying hens is crucial for growth and development due to its direct impact on their productivity during laying phase. During initial growth phase, intestinal tract undergoes rapid development which requires plenty of nutrients to help laying hens grow and mature. This study investigated the effect of Alanyl-Glutamine (Aln-Gln) levels on growth performance, ileal morphology and transcriptomic analysis of growing Hy-line brown hens. A total of 480 day old Hy-line brown chicks having similar body weight (BW) were randomly divided to be fed diets having 0%, 0.1%, 0.2% and 0.3% Aln-Gln for 6-wks (8 replicates/group, 15 birds/replicate). One bird from every pen was slaughtered and morphological parameters of ileum were evaluated. Results taken on day 42 revealed an improved average daily gain (ADG), final body weight (FBW) and feed-to-gain ratio (F/G) in the birds that consumed 0.2% and 0.3% Aln-Gln supplemented diet (P < 0.05). Ileal morphological assays showed that villus height, villus width and villus to crypts ratio (V/C) were significantly increased at 42 days of age in birds fed diets with 0.2% Aln-Gln (P<0.05). The RNA sequencing (RNA-Seq) was executed to identify differentially expressed genes (DEGs) among groups that found 2265 DEGs (1256 up-regulated; 1009 down-regulated) in ileum tissue. According to the Kyoto Encyclopedia of Genes (KEGG) and Genomic Pathway Enrichment Analysis, majority of DEGs indicated change in metabolic pathways. Genes related to growth factors, intestinal morphology and protein metabolism were up-regulated in test groups as compared to control group. In conclusion, addition of Aln-Gln to the diet improved growth performance and ileum development in growing hens; transcriptomic analysis revealed up-regulation of genes related to growth and intestinal morphology.
Collapse
Affiliation(s)
- Usman Nazir
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Zhenming Fu
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Xucheng Zheng
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Muhamamd Hammad Zafar
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhiyue Wang
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China
| | - Haiming Yang
- Yangzhou University, College of Animal Science and Technology, 225009 Yangzhou, China.
| |
Collapse
|
3
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
4
|
Fachi JL, Vinolo MAR, Colonna M. Reviewing the Clostridioides difficile Mouse Model: Insights into Infection Mechanisms. Microorganisms 2024; 12:273. [PMID: 38399676 PMCID: PMC10891951 DOI: 10.3390/microorganisms12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is an anaerobic, spore-forming bacterium associated with intestinal infection, manifesting a broad spectrum of gastrointestinal symptoms, ranging from mild diarrhea to severe colitis. A primary risk factor for the development of C. difficile infection (CDI) is antibiotic exposure. Elderly and immunocompromised individuals are particularly vulnerable to CDI. A pivotal aspect for comprehending the complexities of this infection relies on the utilization of experimental models that mimic human CDI transmission, pathogenesis, and progression. These models offer invaluable insights into host-pathogen interactions and disease dynamics, and serve as essential tools for testing potential therapeutic approaches. In this review, we examine the animal model for CDI and delineate the stages of infection, with a specific focus on mice. Our objective is to offer an updated description of experimental models employed in the study of CDI, emphasizing both their strengths and limitations.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Marco A. R. Vinolo
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
Warren CA, Shin JH, Bansal EN, Costa DVDS, Wang XQ, Wu M, Swann JR, Behm BW, Targonski PV, Archbald-Pannone L. Alanyl-glutamine supplementation for Clostridioides difficile infection treatment (ACT): a double-blind randomised controlled trial study protocol. BMJ Open 2023; 13:e075721. [PMID: 37474181 PMCID: PMC10357635 DOI: 10.1136/bmjopen-2023-075721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Clostridioides difficile is the leading cause of healthcare-associated infections in the USA, with an estimated 1 billion dollars in excess cost to the healthcare system annually. C. difficile infection (CDI) has high recurrence rate, up to 25% after first episode and up to 60% for succeeding episodes. Preliminary in vitro and in vivo studies indicate that alanyl-glutamine (AQ) may be beneficial in treating CDI by its effect on restoring intestinal integrity in the epithelial barrier, ameliorating inflammation and decreasing relapse. METHODS AND ANALYSIS This study is a randomised, placebo-controlled, double-blind, phase II clinical trial. The trial is designed to determine optimal dose and safety of oral AQ at 4, 24 and 44 g doses administered daily for 10 days concurrent with standard treatment of non-severe or severe uncomplicated CDI in persons age 18 and older. The primary outcome of interest is CDI recurrence during 60 days post-treatment follow-up, with the secondary outcome of mortality during 60 days post-treatment follow-up. Exploratory analysis will be done to determine the impact of AQ supplementation on intestinal and systemic inflammation, as well as intestinal microbial and metabolic profiles. ETHICS AND DISSEMINATION The study has received University of Virginia Institutional Review Board approval (HSR200046, Protocol v9, April 2023). Findings will be disseminated via conference presentations, lectures and peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT04305769.
Collapse
Affiliation(s)
- Cirle A Warren
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jae Hyun Shin
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ekta N Bansal
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Deiziane V D S Costa
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xin Qun Wang
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Wu
- Department of Biology, University of Virginia College and Graduate School of Arts and Sciences, Charlottesville, VA, USA
| | - Jonathan R Swann
- School of Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
| | - Brian W Behm
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Paul V Targonski
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Medicine, Division of General, Geriatric, Palliative & Hospital Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Laurie Archbald-Pannone
- Department of Medicine, Division of General, Geriatric, Palliative & Hospital Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
6
|
Loureiro AV, Barbosa MLL, Morais MLGS, Souza IP, Terceiro LS, Martins CS, Sousa APR, Leitão RFC, Shin JH, Warren CA, Costa DVS, Brito GAC. Host and Clostridioides difficile-Response Modulated by Micronutrients and Glutamine: An Overview. Front Nutr 2022; 9:849301. [PMID: 35795588 PMCID: PMC9251358 DOI: 10.3389/fnut.2022.849301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in intestinal microbiota are integral to development of Clostridioides difficile (C. difficile)—associated nosocomial diarrhea. Certain diets, especially Western diets, increase susceptibility to C. difficile infection (CDI). Here, we discuss recent findings regarding how nutrients modulate response of the host and C. difficile during infection. Calcium has a role in the sporulation and germination process. Selenium is effective in reducing the total amount of C. difficile toxin A (TcdA) and toxin B (TcdB) and in decreasing its cytotoxicity. In addition, selenium phosphate synthetase deficiency reduces C. difficile growth and spore production. On the other hand, iron has a dual role in C. difficile growth. For instance, high intracellular levels can generate reactive hydroxyl radicals, whereas low levels can reduce its growth. In humans, zinc deficiency appears to be related to the recurrence of CDI, in contrast, in the CDI model in mice a diet rich in zinc increased the toxin's activity. Low vitamin D levels contribute to C. difficile colonization, toxin production, and inflammation. Furthermore, glutamine appears to protect intestinal epithelial cells from the deleterious effects of TcdA and TcdB. In conclusion, nutrients play an important role in modulating host and pathogen response. However, further studies are needed to better understand the mechanisms and address some controversies.
Collapse
Affiliation(s)
- Andréa V. Loureiro
- Department of Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Maria L. L. Barbosa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Maria L. G. S. Morais
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Ismael P. Souza
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Letícia S. Terceiro
- Department of Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Conceição S. Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Arkila P. R. Sousa
- Department of Pharmacology and Physiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Renata F. C. Leitão
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Jae H. Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, United States
| | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, United States
| | - Deiziane V. S. Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, United States
| | - Gerly A. C. Brito
- Department of Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Pharmacology and Physiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Gerly A. C. Brito
| |
Collapse
|
7
|
Selimoglu MA, Kansu A, Aydogdu S, Sarioglu AA, Erdogan S, Dalgic B, Yuce A, Cullu Cokugras F. Nutritional Support in Malnourished Children With Compromised Gastrointestinal Function: Utility of Peptide-Based Enteral Therapy. Front Pediatr 2021; 9:610275. [PMID: 34164352 PMCID: PMC8215107 DOI: 10.3389/fped.2021.610275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
This review focuses on nutritional support in malnourished children with compromised gastrointestinal function addressing the interplay between malnutrition and gastrointestinal dysfunction, and the specific role of peptide-based enteral therapy in pediatric malnutrition. Malnutrition is associated with impaired gut functions such as increased intestinal permeability, malabsorption, and diarrhea, while pre-existing functional gastrointestinal disorders may also lead to malnutrition. Presence of compromised gastrointestinal function in malnourished children is critical given that alterations such as malabsorption and increased intestinal permeability directly interfere with efficacy of nutritional support and recovery from malnutrition. Appropriate nutritional intervention is the key step in the management of malnutrition, while alterations in gastrointestinal functions in malnourished children are likely even in those with mild degree malnutrition. Therefore, nutritional therapy in children with compromised gastrointestinal function is considered to involve gut-protective interventions that address the overlapping and interacting effects of diarrhea, enteropathy and malnutrition to improve child survival and developmental potential in the long-term. Peptide-based enteral formulas seem to have clinical applications in malnourished children with compromised gastrointestinal function, given their association with improved gastrointestinal tolerance and absorption, better nitrogen retention/ balance, reduced diarrhea and bacterial translocation, enhanced fat absorption, and maintained/restored gut integrity as compared with free amino acid or whole-protein formulas.
Collapse
Affiliation(s)
- Mukadder Ayse Selimoglu
- Department of Pediatric Gastroenterology, Atasehir and Bahcelievler Memorial Hospitals, Istanbul, Turkey
| | - Aydan Kansu
- Department of Pediatric Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Sema Aydogdu
- Department of Pediatric Gastroenterology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | | | - Buket Dalgic
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Aysel Yuce
- Department of Pediatric Gastroenterology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Fugen Cullu Cokugras
- Department of Pediatric Gastroenterology, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Foschetti DA, Braga-Neto MB, Bolick D, Moore J, Alves LA, Martins CS, Bomfin LE, Santos A, Leitão R, Brito G, Warren CA. Clostridium difficile toxins or infection induce upregulation of adenosine receptors and IL-6 with early pro-inflammatory and late anti-inflammatory pattern. ACTA ACUST UNITED AC 2020; 53:e9877. [PMID: 32725081 PMCID: PMC7405017 DOI: 10.1590/1414-431x20209877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Clostridium difficile causes intestinal inflammation, which increases adenosine. We compared the expression of adenosine receptors (AR) subtypes A1, A2A, A2B, and A3 in HCT-8, IEC-6 cells, and isolated intestinal epithelial cells, challenged or not with Clostridium difficile toxin A and B (TcdA and TcdB) or infection (CDI). In HCT-8, TcdB induced an early A2BR expression at 6 h and a late A2AR expression at 6 and 24 h. In addition, both TcdA and TcdB increased IL-6 expression at all time-points (peak at 6 h) and PSB603, an A2BR antagonist, decreased IL-6 expression and production. In isolated cecum epithelial cells, TcdA induced an early expression of A2BR at 2s and 6 h, followed by a late expression of A2AR at 6 and 24 h and of A1R at 24 h. In CDI, A2AR and A2BR expressions were increased at day 3, but not at day 7. ARs play a role in regulating inflammation during CDI by inducing an early pro-inflammatory and a late anti-inflammatory response. The timing of interventions with AR antagonist or agonists may be of relevance in treatment of CDI.
Collapse
Affiliation(s)
- D A Foschetti
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M B Braga-Neto
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - J Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - L A Alves
- Departamento de Ciências Médicas, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C S Martins
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L E Bomfin
- Departamento de Ciências Médicas, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Aaqa Santos
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Rfc Leitão
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Gac Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | |
Collapse
|
9
|
Freitas AKL, Silva MTB, Silva CMS, Prata MMG, Rodrigues FAP, Siqueira RJB, Lima AAM, Santos AA, Havt A. Alanyl-glutamine protects the intestinal barrier function in trained rats against the impact of acute exhaustive exercise. ACTA ACUST UNITED AC 2020; 53:e9211. [PMID: 32321150 PMCID: PMC7184964 DOI: 10.1590/1414-431x20209211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/11/2020] [Indexed: 01/29/2023]
Abstract
Strenuous exercise triggers deleterious effects on the intestinal epithelium, but their mechanisms are still uncertain. Here, we investigated whether a prolonged training and an additional exhaustive training protocol alter intestinal permeability and the putative effect of alanyl-glutamine (AG) pretreatment in this condition. Rats were allocated into 5 different groups: 1) sedentary; 2 and 3) trained (50 min per day, 5 days per week for 12 weeks) with or without 6 weeks oral (1.5 g/kg) AG supplementation; 4 and 5) trained and subjected to an additional exhaustive test protocol with or without oral AG supplementation. Venous blood samples were collected to determine gasometrical indices at the end of the 12-week protocol or after exhaustive test. Lactate and glucose levels were determined before, during, and after the exhaustive test. Ileum tissue collected after all experimental procedures was used for gene expression analysis of Zonula occludens 1 (ZO-1), occludin, claudin-2, and oligopeptide transporter 1 (PepT-1). Intestinal permeability was assessed by urinary lactulose/mannitol test collected after the 12-week protocol or the exhaustive test. The exhaustive test decreased pH and base excess and increased pCO2. Training sessions delayed exhaustion time and reduced the changes in blood glucose and lactate levels. Trained rats exhibited upregulation of PEPT-1, ZO-1, and occludin mRNA, which were partially protected by AG. Exhaustive exercise induced intestinal paracellular leakage associated with the upregulation of claudin-2, a phenomenon protected by AG treatment. Thus, AG partially prevented intestinal training adaptations but also blocked paracellular leakage during exhaustive exercise involving claudin-2 and occludin gene expression.
Collapse
Affiliation(s)
- A K L Freitas
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M T B Silva
- Departamento de Educação Física, Universidade Federal do Piauí, Teresina, PI, Brasil
| | - C M S Silva
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M M G Prata
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A P Rodrigues
- Departamento de Educação Física e Esporte, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, CE, Brasil
| | - R J B Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A A M Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A A Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
10
|
The Effect of Lactoferrin and Pepsin-Treated Lactoferrin on IEC-6 Cell Damage Induced by Clostridium Difficile Toxin B. Shock 2019; 50:119-125. [PMID: 28930913 DOI: 10.1097/shk.0000000000000990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infections (CDI) have recently increased worldwide. Some CDI progress to fulminant and recurrent CDI and are associated with high mortality and morbidity. CD produces toxins A and B, which cause intestinal mucosal damage, although toxin B exhibits greater cytotoxicity. Pepsin-treated lactoferrin (PLF) is the decomposed product of lactoferrin (LF), a multifunctional glycoprotein with anti-inflammatory properties. Here, we investigate the effects of LF and PLF in toxin B-stimulated rat intestinal epithelial (IEC-6) cells. Different toxin B concentrations were added to IEC-6 cells with or without LF or PLF. Mitochondrial function and cell cytotoxicity were assessed by measuring WST-1 and LDH levels, respectively. WST-1 levels were higher in IEC-6 cells treated with toxin B and LF or PLF than in the toxin B-only control (P < 0.05). Compared with the toxin B-only control, LDH levels significantly decreased after toxin B and LF or PLF addition (P < 0.05). Wound restitution measurement using microscopy demonstrated significantly greater levels of wound restitution in cells treated with toxin B and LF or PLF than in those treated with toxin B alone after 12 h (P < 0.001). Furthermore, changes in IEC-6 cell tight junctions (TJs) were evaluated by immunofluorescence microscopy and zonula occludens-1 (ZO-1) protein expression. When LF or PLF were added to IEC-6 cells, TJ structures were maintained, and ZO-1 and occludin expression was upregulated. Taken together, these results demonstrate that LF and PLF prevent the cytotoxicity of toxin B and might have the potential to control CDI.
Collapse
|
11
|
Dietary alanyl-glutamine improves growth performance of weaned piglets through maintaining intestinal morphology and digestion-absorption function. Animal 2019; 13:1826-1833. [PMID: 30789107 DOI: 10.1017/s1751731119000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alanyl-glutamine (Ala-Gln), a highly soluble and stable glutamine dipeptide, is known to improve gut integrity and function. The aim of this study was to evaluate whether dietary Ala-Gln supplementation could improve growth performance, intestinal development and digestive-absorption function in weaned piglets. A total of 100 purebred Yorkshire piglets weaned at 21 days of age were assigned randomly to four dietary treatment groups and fed a basal diet (control group) or a basal diet containing 0.15%, 0.30% and 0.45% Ala-Gln, respectively. Compared with the control group, piglets fed the Ala-Gln diets had higher average daily gain and lower feed : gain and diarrhea rate (P < 0.05). Moreover, dietary Ala-Gln supplementation increased villous height and villous height : crypt depth ratio in duodenum and jejunum (P < 0.05), as well as the activities of maltase and lysozyme in jejunum mucosa (P < 0.05). In addition, a decrease in serum diamine oxidase activity and crypt depth in duodenum and jejunum was observed in piglets fed the Ala-Gln diets (P < 0.05). Serum cytosolic phospholipase A2 (cPLA2) concentration and gene expression of cPLA2, Na+-dependent glucose transporter 1, glucose transporter 2 and peptide transporter 1 in jejunum were increased by feeding Ala-Gln diets relative to control diet (P < 0.05). These results indicated that feeding Ala-Gln diet has beneficial effects on the growth performance of weaned piglets, which associated with maintaining intestinal morphology and digestive-absorption function.
Collapse
|
12
|
Alanyl-glutamine Protects Against Damage Induced by Enteroaggregative Escherichia coli Strains in Intestinal Cells. J Pediatr Gastroenterol Nutr 2019; 68:190-198. [PMID: 30247422 DOI: 10.1097/mpg.0000000000002152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an important pathogen causing enteric infections worldwide. This pathotype is linked to malnutrition in children from developing countries. Alanyl-glutamine (Ala-Gln) is an immune modulator nutrient that acts during intestinal damage and/or inflammation. This study investigated the effect of EAEC infection and Ala-Gln on cell viability, cell death, and inflammation of intestinal epithelium cells (IEC-6). METHODS Cells were infected with an EAEC prototype 042 strain, an EAEC wild-type strain isolated from a Brazilian malnourished child, and a commensal E coli HS. Gene transcription and protein levels of caspases-3, -8, and -9 and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) were evaluated using RT-qPCR, western blot analysis, and ELISA. RESULTS Infections with both EAEC strains decreased cell viability and induced apoptosis and necrosis after 24 hours. Ala-Gln supplementation increased cell proliferation and reduced cell death in infected cells. Likewise, EAEC strain 042 significantly increased the transcript levels of caspases-3, -8, and -9 when compared to the control group, and Ala-Gln treatment reversed this effect. Furthermore, EAEC induced CXCL1 protein levels, which were also reduced by Ala-Gln supplementation. CONCLUSION These findings suggest that EAEC infection promotes apoptosis, necrosis, and intestinal inflammation with involvement of caspases. Supplementation of Ala-Gln inhibits cell death, increases cell proliferation, attenuates mediators associated with cell death, and inflammatory pathways in infected cells.
Collapse
|
13
|
Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol 2019; 7:692-707. [PMID: 30630118 PMCID: PMC6477186 DOI: 10.1016/j.jcmgh.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Environmental enteric dysfunction (EED) (also referred to as environmental enteropathy) is a subclinical chronic intestinal disorder that is an emerging contributor to early childhood malnutrition. EED is common in resource-limited settings, and is postulated to consist of small intestinal injury, dysfunctional nutrient absorption, and chronic inflammation that results in impaired early child growth attainment. Although there is emerging interest in the hypothetical potential for chemical toxins in the environmental exposome to contribute to EED, the propensity of published data, and hence the focus of this review, implicates a critical role of environmental microbes. Early childhood malnutrition and EED are most prevalent in resource-limited settings where food is limited, and inadequate access to clean water and sanitation results in frequent gastrointestinal pathogen exposures. Even as overt diarrhea rates in these settings decline, silent enteric infections and faltering growth persist. Furthermore, beyond restricted physical growth, EED and/or enteric pathogens also associate with impaired oral vaccine responses, impaired cognitive development, and may even accelerate metabolic syndrome and its cardiovascular consequences. As these potentially costly long-term consequences of early childhood enteric infections increasingly are appreciated, novel therapeutic strategies that reverse damage resulting from nutritional deficiencies and microbial insults in the developing small intestine are needed. Given the inherent limitations in investigating how specific intestinal pathogens directly injure the small intestine in children, animal models provide an affordable and controlled opportunity to elucidate causal sequelae of specific enteric infections, to differentiate consequences of defined nutrient deprivation alone from co-incident enteropathogen insults, and to correlate the resulting gut pathologies with their functional impact during vulnerable early life windows.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - David T Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
14
|
Dieterle MG, Rao K, Young VB. Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections. Ann N Y Acad Sci 2019; 1435:110-138. [PMID: 30238983 PMCID: PMC6312459 DOI: 10.1111/nyas.13958] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Clostridium difficile is the leading infectious cause of antibiotic-associated diarrhea and colitis. C. difficile infection (CDI) places a heavy burden on the healthcare system, with nearly half a million infections yearly and an approximate 20% recurrence risk after successful initial therapy. The high incidence has driven new research on improved prevention such as the emerging use of probiotics, intestinal microbiome manipulation during antibiotic therapies, vaccinations, and newer antibiotics that reduce the disruption of the intestinal microbiome. While the treatment of acute C. difficile is effective in most patients, it can be further optimized by adjuvant therapies that improve the initial treatment success and decrease the risk of subsequent recurrence. Finally, the high risk of recurrence has led to multiple emerging therapies that target toxin activity, recovery of the intestinal microbial community, and elimination of latent C. difficile in the intestine. In summary, CDIs illustrate the complex interaction among host physiology, microbial community, and pathogen that requires specific therapies to address each of the factors leading to primary infection and recurrence.
Collapse
Affiliation(s)
- Michael G. Dieterle
- University of Michigan Medical School, Medical Scientist Training Program (MSTP), Ann Arbor, Michigan
- University of Michigan Department of Microbiology and Immunology, Ann Arbor, Michigan
| | - Krishna Rao
- University of Michigan Department of Internal Medicine, Infectious Diseases Division, Ann Arbor, Michigan
| | - Vincent B. Young
- University of Michigan Department of Microbiology and Immunology, Ann Arbor, Michigan
- University of Michigan Department of Internal Medicine, Infectious Diseases Division, Ann Arbor, Michigan
| |
Collapse
|
15
|
Fehér C, Soriano A, Mensa J. A Review of Experimental and Off-Label Therapies for Clostridium difficile Infection. Infect Dis Ther 2017; 6:1-35. [PMID: 27910000 PMCID: PMC5336415 DOI: 10.1007/s40121-016-0140-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
In spite of increased awareness and the efforts taken to optimize Clostridium difficile infection (CDI) management, with the limited number of currently available antibiotics for C. difficile the halt of this increasing epidemic remains out of reach. There are, however, close to 80 alternative treatment methods with controversial anti-clostridial efficacy or in experimental phase today. Indeed, some of these therapies are expected to become acknowledged members of the recommended anti-CDI arsenal within the next few years. None of these alternative treatment methods can respond in itself to all the major challenges of CDI management, which are primary prophylaxis in the susceptible population, clinical cure of severe cases, prevention of recurrences, and forestallment of asymptomatic C. difficile carriage and in-hospital spread. Yet, the greater the variety of treatment choices on hand, the better combination strategies can be developed to reach these goals in the future. The aim of this article is to provide a comprehensive summary of these experimental and currently off-label therapeutic options.
Collapse
Affiliation(s)
- Csaba Fehér
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain.
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
16
|
Prasetyo RH, Safitri E. Effects of honey to mobilize endogenous stem cells in efforts intestinal and ovarian tissue regeneration in rats with protein energy malnutrition. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Zhang JW, Zhang GX, Chen HL, Liu GL, Owusu L, Wang YX, Wang GY, Xu CM. Therapeutic effect of Qingyi decoction in severe acute pancreatitis-induced intestinal barrier injury. World J Gastroenterol 2015; 21:3537-3546. [PMID: 25834318 PMCID: PMC4375575 DOI: 10.3748/wjg.v21.i12.3537] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/06/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Qingyi decoction on the expression of secreted phospholipase A2 (sPLA2) in intestinal barrier injury.
METHODS: Fifty healthy Sprague-Dawley rats were randomly divided into control, severe acute pancreatitis (SAP), Qingyi decoction-treated (QYT), dexamethasone-treated (DEX), and verapamil-treated (VER) groups. The SAP model was induced by retrograde infusion of 1.5% sodium deoxycholate into the biliopancreatic duct of the rats. All rats were sacrificed 24 h post-SAP induction. Arterial blood, intestine, and pancreas from each rat were harvested for investigations. The levels of serum amylase (AMY) and diamine oxidase (DAO) were determined using biochemical methods, and serum tumor necrosis factor (TNF)-α level was measured by an enzyme linked immunosorbent assay. Pathologic changes in the harvested tissues were investigated by microscopic examination of hematoxylin and eosin-stained tissue sections. The expressions of sPLA2 at mRNA and protein levels were detected by reverse transcriptase PCR and Western blot, respectively. A terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was used to investigate apoptosis of epithelial cells in the intestinal tissues.
RESULTS: Compared to the control group, the expression of sPLA2 at both the mRNA and protein levels increased significantly in the SAP group (0.36 ± 0.13 vs 0.90 ± 0.38, and 0.16 ± 0.05 vs 0.64 ± 0.05, respectively; Ps < 0.01). The levels of AMY, TNF-α and DAO in serum were also significantly increased (917 ± 62 U/L vs 6870 ± 810 U/L, 59.7 ± 14.3 ng/L vs 180.5 ± 20.1 ng/L, and 10.37 ± 2.44 U/L vs 37.89 ± 5.86 U/L, respectively; Ps < 0.01). The apoptosis index of intestinal epithelial cells also differed significantly between the SAP and control rats (0.05 ± 0.02 vs 0.26 ± 0.06; P < 0.01). The serum levels of DAO and TNF-α, and the intestinal apoptosis index significantly correlated with sPLA2 expression in the intestine (r = 0.895, 0.893 and 0.926, respectively; Ps < 0.05). The levels of sPLA2, AMY, TNF-α, and DAO in the QYT, VER, and DEX groups were all decreased compared with the SAP group, but not the control group. Qingyi decoction intervention, however, gave the most therapeutic effect against intestinal barrier damage, although the onset of its therapeutic effect was slower.
CONCLUSION: Qingyi decoction ameliorates acute pancreatitis-induced intestinal barrier injury by inhibiting the overexpression of intestinal sPLA2. This mechanism may be similar to that of verapamil.
Collapse
|
18
|
Wang X, Pierre JF, Heneghan AF, Busch RA, Kudsk KA. Glutamine Improves Innate Immunity and Prevents Bacterial Enteroinvasion During Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2014; 39:688-97. [PMID: 24836948 DOI: 10.1177/0148607114535265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/20/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Patients receiving parenteral nutrition (PN) are at increased risk of infectious complications compared with enteral feeding, which is in part explained by impaired mucosal immune function during PN. Adding glutamine (GLN) to PN has improved outcome in some clinical patient groups. Although GLN improves acquired mucosal immunity, its effect on innate mucosal immunity (defensins, mucus, lysozymes) has not been investigated. METHODS Forty-eight hours following venous cannulation, male Institute of Cancer Research mice were randomized to chow (n = 10), PN (n = 12), or PN + GLN (n = 13) for 5 days. Small intestine tissue and luminal fluid were collected for mucin 2 (MUC2), lysozyme, cryptdin 4 analysis, and luminal interleukin (IL)-4, IL-10, and IL-13 level measurement. Tissue was also harvested for ex vivo intestinal segment culture to assess tissue susceptibility to enteroinvasive Escherichia coli. RESULTS In both luminal and tissue samples, PN reduced MUC2 and lysozyme (P < .0001, respectively) compared with chow, whereas GLN addition increased MUC2 and lysozyme (luminal, P < .05; tissue, P < .0001, respectively) compared with PN alone. PN significantly suppressed cryptdin 4 expression, while GLN supplementation significantly enhanced expression. IL-4, IL-10, and IL-13 decreased significantly with PN compared with chow, whereas GLN significantly increased these cytokines compared with PN. Functionally, bacterial invasion increased with PN compared with chow (P < .05), while GLN significantly decreased enteroinvasion to chow levels (P < .05). CONCLUSIONS GLN-supplemented PN improves innate immunity and resistance to bacterial mucosal invasion lost with PN alone. This work confirms a clinical rationale for providing glutamine for the protection of the intestinal mucosa.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin Department of Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Joseph F Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Aaron F Heneghan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Rebecca A Busch
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kenneth A Kudsk
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin Veterans Administration Surgical Services, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
19
|
Ren W, Liu S, Chen S, Zhang F, Li N, Yin J, Peng Y, Wu L, Liu G, Yin Y, Wu G. Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids 2013; 45:947-55. [DOI: 10.1007/s00726-013-1551-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
|