1
|
Vidal M, Arch M, Fuentes E, Cardona PJ. Drosophila melanogaster experimental model to test new antimicrobials: a methodological approach. Front Microbiol 2024; 15:1478263. [PMID: 39568995 PMCID: PMC11576456 DOI: 10.3389/fmicb.2024.1478263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Given the increasing concern about antimicrobial resistance among the microorganisms that cause infections in our society, there is an urgent need for new drug discovery. Currently, this process involves testing many low-quality compounds, resulting from the in vivo testing, on mammal models, which not only wastes time, resources, and money, but also raises ethical questions. In this review, we have discussed the potential of D. melanogaster as an intermediary experimental model in this drug discovery timeline. We have tackled the topic from a methodological perspective, providing recommendations regarding the range of drug concentrations to test based on the mechanism of action of each compound; how to treat D. melanogaster, how to monitor that treatment, and what parameters we should consider when designing a drug screening protocol to maximize the study's benefits. We also discuss the necessary improvements needed to establish the D. melanogaster model of infection as a standard technique in the drug screening process. Overall, D. melanogaster has been demonstrated to be a manageable model for studying broad-spectrum infection treatment. It allows us to obtain valuable information in a cost-effective manner, which can improve the drug screening process and provide insights into our current major concern. This approach is also in line with the 3R policy in biomedical research, in particular on the replacement and reduce the use of vertebrates in preclinical development.
Collapse
Affiliation(s)
- Maria Vidal
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Marta Arch
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Esther Fuentes
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Pere-Joan Cardona
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital (HUGTP), Badalona, Catalonia, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Efficacy of Omadacycline against Multidrug-Resistant Enterococcus faecium Strains in a Mouse Peritonitis Model. Antimicrob Agents Chemother 2021; 65:e0070921. [PMID: 34125596 DOI: 10.1128/aac.00709-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omadacycline (OMC) showed better in vitro potency than daptomycin (DAP) or vancomycin (VAN) against Vanr, Ampr, DAP-nonsusceptible, linezolid-resistant, cfr(B)+ Enterococcus faecium strains. In a mouse peritonitis model, OMC also showed significantly better animal survival during the study and at its end than DAP or VAN with these E. faecium strains. However, OMC, DAP, and VAN showed comparable in vitro and in vivo efficacies against a non-vancomycin-resistant, tetracycline-resistant, DAP-susceptible E. faecium strain.
Collapse
|
3
|
Efficacy of Tedizolid against Enterococci and Staphylococci, Including cfr + Strains, in a Mouse Peritonitis Model. Antimicrob Agents Chemother 2019; 63:AAC.02627-18. [PMID: 30670435 DOI: 10.1128/aac.02627-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
In a mouse peritonitis model, tedizolid was comparable to linezolid and daptomycin against an Enterococcus faecium strain (VANr, AMPr), an Enterococcus faecalis strain, and a methicillin-resistant Staphylococcus aureus (MRSA) strain with and without cfr Against a cfr(B)+ E. faecium, tedizolid was inferior in vivo to linezolid and daptomycin, despite an ∼4-fold lower MIC.
Collapse
|
4
|
Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43:263-293. [PMID: 28129707 DOI: 10.3109/1040841x.2016.1169990] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early identification of microbial pathogens is essential for rational and conservative antibiotic use especially in the case of known regional resistance patterns. Here, we describe fluorescence in situ hybridization (FISH) as one of the rapid methods for easy identification of microbial pathogens, and its advantages and disadvantages for the diagnosis of pathogens in human infections in the laboratory diagnostic routine. Binding of short fluorescence-labeled DNA or nucleic acid-mimicking PNA probes to ribosomes of infectious agents with consecutive analysis by fluorescence microscopy allows identification of bacterial and eukaryotic pathogens at genus or species level. FISH analysis leads to immediate differentiation of infectious agents without delay due to the need for microbial culture. As a microscopic technique, FISH has the unique potential to provide information about spatial resolution, morphology and identification of key pathogens in mixed species samples. On-going automation and commercialization of the FISH procedure has led to significant shortening of the time-to-result and increased test reliability. FISH is a useful tool for the rapid initial identification of microbial pathogens, even from primary materials. Among the rapidly developing alternative techniques, FISH serves as a bridging technology between microscopy, microbial culture, biochemical identification and molecular diagnostic procedures.
Collapse
Affiliation(s)
- Hagen Frickmann
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | - Andreas Erich Zautner
- b Department of Medical Microbiology, University Medical Center Göttingen , Göttingen , Germany
| | - Annette Moter
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Judith Kikhney
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Ralf Matthias Hagen
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | | | - Sven Poppert
- e Institute for Medical Microbiology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
5
|
Metabolomics with Nuclear Magnetic Resonance Spectroscopy in a Drosophila melanogaster Model of Surviving Sepsis. Metabolites 2016; 6:metabo6040047. [PMID: 28009836 PMCID: PMC5192453 DOI: 10.3390/metabo6040047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/03/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham (pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate.
Collapse
|
6
|
Munita JM, Bayer AS, Arias CA. Evolving resistance among Gram-positive pathogens. Clin Infect Dis 2016; 61 Suppl 2:S48-57. [PMID: 26316558 DOI: 10.1093/cid/civ523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial therapy is a key component of modern medical practice and a cornerstone for the development of complex clinical interventions in critically ill patients. Unfortunately, the increasing problem of antimicrobial resistance is now recognized as a major public health threat jeopardizing the care of thousands of patients worldwide. Gram-positive pathogens exhibit an immense genetic repertoire to adapt and develop resistance to virtually all antimicrobials clinically available. As more molecules become available to treat resistant gram-positive infections, resistance emerges as an evolutionary response. Thus, antimicrobial resistance has to be envisaged as an evolving phenomenon that demands constant surveillance and continuous efforts to identify emerging mechanisms of resistance to optimize the use of antibiotics and create strategies to circumvent this problem. Here, we will provide a broad perspective on the clinical aspects of antibiotic resistance in relevant gram-positive pathogens with emphasis on the mechanistic strategies used by these organisms to avoid being killed by commonly used antimicrobial agents.
Collapse
Affiliation(s)
- Jose M Munita
- Division of Infectious Diseases, Department of Internal Medicine International Center for Microbial Genomics Clinica Alemana de Santiago, Universidad del Desarrollo, Chile
| | - Arnold S Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston International Center for Microbial Genomics Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
7
|
Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 2015; 12:1221-36. [PMID: 25199988 DOI: 10.1586/14787210.2014.956092] [Citation(s) in RCA: 412] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multidrug-resistant (MDR) enterococci are important nosocomial pathogens and a growing clinical challenge. These organisms have developed resistance to virtually all antimicrobials currently used in clinical practice using a diverse number of genetic strategies. Due to this ability to recruit antibiotic resistance determinants, MDR enterococci display a wide repertoire of antibiotic resistance mechanisms including modification of drug targets, inactivation of therapeutic agents, overexpression of efflux pumps and a sophisticated cell envelope adaptive response that promotes survival in the human host and the nosocomial environment. MDR enterococci are well adapted to survive in the gastrointestinal tract and can become the dominant flora under antibiotic pressure, predisposing the severely ill and immunocompromised patient to invasive infections. A thorough understanding of the mechanisms underlying antibiotic resistance in enterococci is the first step for devising strategies to control the spread of these organisms and potentially establish novel therapeutic approaches.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical School, 6431 Fannin St. Rm. MSB 2.112, Houston, TX 77030, USA
| | | | | |
Collapse
|
8
|
Rincón S, Panesso D, Díaz L, Carvajal LP, Reyes J, Munita JM, Arias CA. [Resistance to "last resort" antibiotics in Gram-positive cocci: The post-vancomycin era]. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2014; 34 Suppl 1:191-208. [PMID: 24968051 PMCID: PMC4435674 DOI: 10.1590/s0120-41572014000500022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
New therapeutic alternatives have been developed in the last years for the treatment of multidrug-resistant Gram-positive infections. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are considered a therapeutic challenge due to failures and lack of reliable antimicrobial options. Despite concerns related to the use of vancomycin in the treatment of severe MRSA infections in specific clinical scenarios, there is a paucity of solid clinical evidence that support the use of alternative agents (when compared to vancomycin). Linezolid, daptomycin and tigecycline are antibiotics approved in the last decade and newer cephalosporins (such as ceftaroline and ceftobiprole) and novel glycopeptides (dalvavancin, telavancin and oritavancin) have reached clinical approval or are in the late stages of clinical development. This review focuses on discussing these newer antibiotics used in the "post-vancomycin" era with emphasis on relevant chemical characteristics, spectrum of antimicrobial activity, mechanisms of action and resistance, as well as their clinical utility.
Collapse
Affiliation(s)
- Sandra Rincón
- Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá, D.C., Colombia
| | - Diana Panesso
- Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá, D.C., Colombia
- University of Texas Medical School at Houston, Houston, TX, USA
| | - Lorena Díaz
- Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá, D.C., Colombia
| | - Lina P. Carvajal
- Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá, D.C., Colombia
| | - Jinnethe Reyes
- Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá, D.C., Colombia
- University of Texas Medical School at Houston, Houston, TX, USA
| | - José M. Munita
- University of Texas Medical School at Houston, Houston, TX, USA
- Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago de Chile, Chile
| | - César A. Arias
- Unidad de Genética y Resistencia Antimicrobiana (UGRA), Universidad El Bosque, Bogotá, D.C., Colombia
- University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|