1
|
Acharjee A, Stephen Kingsly J, Kamat M, Kurlawala V, Chakraborty A, Vyas P, Vaishnav R, Srivastava S. Rise of the SARS-CoV-2 Variants: can proteomics be the silver bullet? Expert Rev Proteomics 2022; 19:197-212. [PMID: 35655386 DOI: 10.1080/14789450.2022.2085564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The challenges posed by emergent strains of SARS-CoV-2 need to be tackled by contemporary scientific approaches, with proteomics playing a significant role. AREAS COVERED In this review, we provide a brief synthesis of the impact of proteomics technologies in elucidating disease pathogenesis and classifiers for the prognosis of COVID-19 and propose proteomics methodologies that could play a crucial role in understanding emerging variants and their altered disease pathology. From aiding the design of novel drug candidates to facilitating the identification of T cell vaccine targets, we have discussed the impact of proteomics methods in COVID-19 research. Techniques varied as mass spectrometry, single-cell proteomics, multiplexed ELISA arrays, high-density proteome arrays, surface plasmon resonance, immunopeptidomics, and in silico docking studies that have helped augment the fight against existing diseases were useful in preparing us to tackle SARS-CoV-2 variants. We also propose an action plan for a pipeline to combat emerging pandemics using proteomics technology by adopting uniform standard operating procedures and unified data analysis paradigms. EXPERT OPINION The knowledge about the use of diverse proteomics approaches for COVID-19 investigation will provide a framework for future basic research, better infectious disease prevention strategies, improved diagnostics, and targeted therapeutics.
Collapse
Affiliation(s)
- Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Madhura Kamat
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Mumbai, India
| | - Vishakha Kurlawala
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Mumbai, India
| | | | - Priyanka Vyas
- Department of Biotechnology and Botany, Mahila PG Mahavidyalaya, J. N. V University, Jodhpur, India
| | - Radhika Vaishnav
- Department of Life Sciences, Ivy Tech Community College, Indianapolis, Indiana, USA
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Doritchamou JY, Renn JP, Jenkins B, Fried M, Duffy PE. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. eLife 2022; 11:76264. [PMID: 35103596 PMCID: PMC8959597 DOI: 10.7554/elife.76264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is known that naturally acquired antibodies target both variant-specific and conserved epitopes. It is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA variants. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. In two independent antibody purification/depletion experiments with permutated order of VAR2CSA variants, IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays conserved epitopes that are targeted by neutralizing (or binding-inhibitory) antibodies shared by multiple parasite strains, including maternal isolates. This suggests that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants. Contracting malaria during pregnancy – especially a first pregnancy – can lead to a severe, placental form of the disease that is often fatal. Red blood cells infected with the malaria parasite Plasmodium falciparum display a protein, VAR2CSA, which can recognize and bind CSA molecules present on placental cells and in placental blood spaces. This leads to the infected blood cells accumulating in the placenta and inducing harmful inflammation. Having been exposed to the parasite in prior pregnancies generates antibodies that target VAR2CSA, stopping the infected blood cells from latching onto placental CSA or tagging them for immune destruction. Overall, this makes placental malaria less severe in following pregnancies, and suggests that vaccines could be developed based on VAR2CSA. However, this protein has regions that can vary in structure, meaning that P. falciparaum can generate many VAR2CSA variants. Individuals exposed to the parasite naturally generate antibodies that block a wide array of variants from attaching to CSA. In contrast, first-generation vaccines based on VAR2CSA fragments have only induced variant-specific antibodies, therefore offering limited protection against infection. As a response, Doritchamou et al. set out to find VAR2CSA structures that could be recognized by antibodies targeting an array of variants. Blood was obtained from women who had had multiple pregnancies and were immune to malaria. Their plasma was passed over five different large VAR2CSA variants in order to isolate and purify antibodies that attached to these structures. Doritchamou et al. found that antibodies binding to individual VAR2CSA structures could also recognise a wide array of VAR2CSA variants and blocked all tested parasites from sticking to CSA. While further research is needed, these findings highlight antibodies that cross-react to diverse VAR2CSA variants and could be used to design more effective vaccines targeting placental malaria.
Collapse
Affiliation(s)
- Justin Ya Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Bethany Jenkins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
3
|
Keitany GJ, Jenkins BJ, Obiakor HT, Daniel S, Muehlenbachs A, Semblat JP, Gamain B, Doritchamou JYA, Desai SA, MacDonald NJ, Narum DL, Morrison R, Saveria T, Vignali M, Oleinikov AV, Fried M, Duffy PE. An invariant protein that co-localizes with VAR2CSA on Plasmodium falciparum-infected red cells binds to chondroitin sulfate A. J Infect Dis 2021; 225:2011-2022. [PMID: 34718641 DOI: 10.1093/infdis/jiab550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. Here, we characterize an invariant protein associated with PM called Plasmodium falciparum chondroitin sulfate A ligand (PfCSA-L). Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high affinity protein-protein interactions with VAR2CSA. This suggests iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.
Collapse
Affiliation(s)
- Gladys J Keitany
- Center for Infectious Disease Research, Seattle, WA, USA.,University of Washington, Department of Pathobiology, Seattle, WA, USA
| | - Bethany J Jenkins
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Harold T Obiakor
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Shaji Daniel
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Atis Muehlenbachs
- University of Washington Medical Center, Anatomic Pathology, Seattle, WA, USA
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, Inserm, F-75015, Paris, France
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, Inserm, F-75015, Paris, France
| | | | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD
| | | | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | | | - Tracy Saveria
- Center for Infectious Disease Research, Seattle, WA, USA
| | | | | | - Michal Fried
- Center for Infectious Disease Research, Seattle, WA, USA.,University of Washington, Department of Pathobiology, Seattle, WA, USA.,Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Patrick E Duffy
- Center for Infectious Disease Research, Seattle, WA, USA.,University of Washington, Department of Pathobiology, Seattle, WA, USA.,Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Dataset of single nucleotide polymorphisms and comprehensive proteomic analysis of Streptococcus equi subsp. equi ATCC 39506. Data Brief 2021; 38:107402. [PMID: 34621931 PMCID: PMC8479396 DOI: 10.1016/j.dib.2021.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Streptococcus equi subspecies equi (S. equi) is an opportunistic pathogen and a major causative agent of equine strangles, a contagious respiratory infection in horses and other equines. In this study, we provide the dataset associated with our research publication “Streptococcus equi-derived extracellular vesicles as a vaccine candidate against Streptococcus equi infections” [1]. We describe the genomic differences between S. equi 4047 and S. equi ATCC 39506 and outline the comprehensive proteome information of various fractions, including the whole cell lysate, membrane proteome, secretory proteome, and extracellular vesicle proteome. In addition, we included a dataset of highly immunoreactive proteins identified through immunoprecipitation. The specifications table provides a detailed summary of the gene annotation and quantitative information obtained for each proteome. The proteomics data were analyzed using shotgun proteomics with LTQ Velos and Q Exactive mass spectrometry in the data-dependent acquisition mode. We have deposited the acquired data, including the mass spectrometry raw files and exported MASCOT search results, in the PRIDE public repository under the accession numbers PXD025152 and PXD025527.
Collapse
|
5
|
Tomlinson A, Semblat JP, Gamain B, Chêne A. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Front Immunol 2021; 11:624126. [PMID: 33633743 PMCID: PMC7900151 DOI: 10.3389/fimmu.2020.624126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface. The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.
Collapse
Affiliation(s)
- Alice Tomlinson
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Arnaud Chêne
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
6
|
Kamaliddin C, Guillochon E, Salnot V, Rombaut D, Huguet S, Guillonneau F, Houzé S, Cot M, Deloron P, Argy N, Bertin GI. Comprehensive Analysis of Transcript and Protein Relative Abundance During Blood Stages of Plasmodium falciparum Infection. J Proteome Res 2021; 20:1206-1216. [PMID: 33475364 DOI: 10.1021/acs.jproteome.0c00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmodium falciparum is the main causative agent of human malaria. During the intraerythrocytic development cycle, the P. falciparum morphology changes dramatically from circulating young rings to sequestered mature trophozoites and schizonts. Sequestered forms contribute to the pathophysiology of severe malaria as the infected erythrocytes obstruct the microvascular flow in deep organs and induce local inflammation. However, the sequestration mechanism limits the access to the corresponding parasitic form in the clinical samples from patients infected with P. falciparum. To complement this deficiency, we aimed to evaluate the relevance of mRNA study as a proxy of protein expression in sequestered parasites. To do so, we conducted a proteotranscriptomic analysis using five independent P. falciparum laboratory strain samples. RNA sequencing was performed, and the mRNA expression level was assessed on circulating ring-stage parasites. The level of protein expression were measured by LC-MS/MS on the corresponding sequestered mature forms after 18-24 h of maturation. Overall, our results showed a strong transcriptome/transcriptome and a very strong proteome/proteome correlation between samples. Moreover, positive correlations of mRNA and protein expression levels were found between ring-stage transcriptomes and mature form proteomes. However, twice more transcripts were identified at the ring stage than proteins at the mature trophozoite stage. A high level of transcript expression did not guarantee the detection of the corresponding protein. Finally, we pointed out discrepancies at the individual gene level. Taken together, our results show that transcript and protein expressions are overall correlated. However, mRNA abundance is not a perfect proxy of protein expression at the individual level. Importantly, our study shows limitations of the "blind" use of RNA-seq and the importance of multiomics approaches for P. falciparum blood stage study in clinical samples.
Collapse
Affiliation(s)
- Claire Kamaliddin
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France
| | - Emilie Guillochon
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France
| | - Virginie Salnot
- Université de Paris, 3p5-Proteom'IC Platform Institut Cochin, INSERM, U1016, CNRS, UMR8104, Île-de-France, FR 75006 Paris, France
| | - David Rombaut
- Université de Paris, 3p5-Proteom'IC Platform Institut Cochin, INSERM, U1016, CNRS, UMR8104, Île-de-France, FR 75006 Paris, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France.,Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
| | - François Guillonneau
- Université de Paris, 3p5-Proteom'IC Platform Institut Cochin, INSERM, U1016, CNRS, UMR8104, Île-de-France, FR 75006 Paris, France
| | - Sandrine Houzé
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France.,Centre National de Référence pour le Paludisme, Bichat-Claude Bernard Hospital, 75018 Paris, France.,Parasitology Laboratory, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Michel Cot
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France
| | - Philippe Deloron
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France
| | - Nicolas Argy
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France.,Centre National de Référence pour le Paludisme, Bichat-Claude Bernard Hospital, 75018 Paris, France.,Parasitology Laboratory, Bichat-Claude Bernard Hospital, 75018 Paris, France
| | - Gwladys I Bertin
- Université de Paris UMR261-MERIT Faculté de Pharmacie, 4 Ave. de l'observatoire, Île-de-France, FR 75006 Paris, France
| |
Collapse
|
7
|
The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum. Parasitology 2020; 147:1255-1262. [PMID: 32618524 DOI: 10.1017/s003118202000102x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmodium falciparum is the main cause of severe malaria in humans that can lead to death. There is growing evidence of drug-resistance in P. falciparum treatment, and the design of effective vaccines remains an ongoing strategy to control the disease. On the other hand, the recognition of specific diagnostic markers for P. falciparum can accelerate the diagnosis of this parasite in the early stages of infection. Therefore, the identification of novel antigenic proteins especially by proteomic tools is urgent for vaccination and diagnosis of P. falciparum. The proteome diversity of the life cycle stages of P. falciparum, the altered proteome of P. falciparum-infected human sera and altered proteins in P. falciparum-infected erythrocytes could be proposed as appropriate proteins for the aforementioned aims. Accordingly, this review highlights and proposes different proteins identified using proteomic approaches as promising markers in the diagnosis and vaccination of P. falciparum. It seems that most of the candidates identified in this study were able to elicit immune responses in the P. falciparum-infected hosts and they also played major roles in the life cycle, pathogenicity and key pathways of this parasite.
Collapse
|
8
|
Gonzales Hurtado PA, Morrison R, Ribeiro JMC, Magale H, Attaher O, Diarra BS, Mahamar A, Barry A, Dicko A, Duffy PE, Fried M. Proteomics Pipeline for Identifying Variant Proteins in Plasmodium falciparum Parasites Isolated from Children Presenting with Malaria. J Proteome Res 2019; 18:3831-3839. [PMID: 31549843 PMCID: PMC11097108 DOI: 10.1021/acs.jproteome.9b00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plasmodium falciparum variant antigens named erythrocyte membrane protein 1 (PfEMP1) are important targets for developing a protective immunity to malaria caused by P. falciparum. One of the major challenges in P. falciparum proteomics studies is identifying PfEMP1s at the protein level due to antigenic variation. To identify these PfEMP1s using shotgun proteomics, we developed a pipeline that searches high-resolution mass spectrometry spectra against a custom protein sequence database. A local alignment algorithm, LAX, was developed as a part of the pipeline that matches peptide sequences to the most similar PfEMP1 and calculates a weight value based on peptide's uniqueness used for PfEMP1 protein inference. The pipeline was first validated in the analysis of a laboratory strain with a known PfEMP1, then it was implemented on the analysis of parasite isolates from malaria-infected pregnant women and finally on the analysis of parasite isolates from malaria-infected children where there was an increase of PfEMP1s identified in 27 out of 31 isolates using the expanded database.
Collapse
Affiliation(s)
- Patricia A. Gonzales Hurtado
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20852, United States
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20852, United States
| | - Jose M. C. Ribeiro
- Laboratory of Malaria Vector Research, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20852, United States
| | - Hussein Magale
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20852, United States
| | - Oumar Attaher
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O. Box 1805, Bamako, 1. 20892, Mali
| | - Bacary S. Diarra
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O. Box 1805, Bamako, 1. 20892, Mali
| | - Almahamoudou Mahamar
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O. Box 1805, Bamako, 1. 20892, Mali
| | - Amadou Barry
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O. Box 1805, Bamako, 1. 20892, Mali
| | - Alassane Dicko
- Malaria Research & Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, P.O. Box 1805, Bamako, 1. 20892, Mali
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20852, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland 20852, United States
| |
Collapse
|
9
|
Kamaliddin C, Rombaut D, Guillochon E, Royo J, Ezinmegnon S, Agbota G, Huguet S, Guemouri S, Peirera C, Coppée R, Broussard C, Alao JM, Aubouy A, Guillonneau F, Deloron P, Bertin GI. From genomic to LC-MS/MS evidence: Analysis of PfEMP1 in Benin malaria cases. PLoS One 2019; 14:e0218012. [PMID: 31251748 PMCID: PMC6599223 DOI: 10.1371/journal.pone.0218012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Background PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addition, PfEMP1 variability is endless and current publicly available protein repositories do not reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1 protein sequences expressed with samples remains challenging. The aim of our study is to identify the different PfEMP1 proteins variants expressed within patient samples, and therefore identify PfEMP1 proteins domains expressed by patients presenting uncomplicated malaria or severe malaria in malaria endemic setting in Cotonou, Benin. Methods We performed a multi-omic approach to decipher PfEMP1 expression at the patient’s level in different clinical settings. Using a combination of whole genome sequencing approach and RNA sequencing, we were able to identify new PfEMP1 sequences and created a new custom protein database. This database was used for protein identification in mass spectrometry analysis. Results The differential expression analysis of RNAsequencing data shows an increased expression of the var domains transcripts DBLα1.7, DBLα1.1, DBLα2 and DBLβ12 in samples from patients suffering from Cerebral Malaria compared to Uncomplicated Malaria. Our approach allowed us to attribute PfEMP1 sequences to each sample and identify new peptides associated to PfEMP1 proteins in mass spectrometry. Conclusion We highlighted the diversity of the PfEMP1 sequences from field sample compared to reference sequences repositories and confirmed the validity of our approach. These findings should contribute to further vaccine development strategies based on PfEMP1 proteins.
Collapse
Affiliation(s)
| | - David Rombaut
- 3p5 Proteomic Facility, Université de Paris, Paris, France
| | | | - Jade Royo
- UMR 152 – PHARMADEV, IRD, Paul Sabatier Toulouse III University, Toulouse, France
| | - Sem Ezinmegnon
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
- Centre pour la Recherche et l’Etude du paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Gino Agbota
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
- Centre pour la Recherche et l’Etude du paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA Université Paris-Diderot, Sorbonne Paris-Cité, Gif sur Yvette, France
| | - Sayeh Guemouri
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
| | - Céline Peirera
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
| | - Romain Coppée
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
| | | | | | - Agnès Aubouy
- UMR 152 – PHARMADEV, IRD, Paul Sabatier Toulouse III University, Toulouse, France
| | | | | | | |
Collapse
|
10
|
Joste V, Maurice L, Bertin GI, Aubouy A, Boumédiène F, Houzé S, Ajzenberg D, Argy N, Massougbodji A, Dossou-Dagba I, Alao MJ, Cot M, Deloron P, Faucher JF. Identification of Plasmodium falciparum and host factors associated with cerebral malaria: description of the protocol for a prospective, case-control study in Benin (NeuroCM). BMJ Open 2019; 9:e027378. [PMID: 31142528 PMCID: PMC6549734 DOI: 10.1136/bmjopen-2018-027378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION In 2016, an estimated 216 million cases and 445 000 deaths of malaria occurred worldwide, in 91 countries. In Benin, malaria causes 26.8% of consultation and hospitalisation motif in the general population and 20.9% in children under 5 years old.The goal of the NeuroCM project is to identify the causative factors of neuroinflammation in the context of cerebral malaria. There are currently very few systematic data from West Africa on the aetiologies and management of non-malarial non-traumatic coma in small children, and NeuroCM will help to fill this gap. We postulate that an accurate understanding of molecular and cellular mechanisms involved in neuroinflammation may help to define efficient strategies to prevent and manage cerebral malaria. METHODS AND ANALYSIS This is a prospective, case-control study comparing cerebral malaria to uncomplicated malaria and non-malarial non-traumatic coma. This study takes place in Benin, precisely in Cotonou for children with coma and in Sô-Ava district for children with uncomplicated malaria. We aim to include 300 children aged between 24 and 71 months and divided in three different clinical groups during 12 months (from December 2017 to November 2018) with a 21 to 28 days follow-up for coma. Study data, including clinical, biological and research results will be collected and managed using CSOnline-Ennov Clinical. ETHICS AND DISSEMINATION Ethics approval for the NeuroCM study has been obtained from Comité National d'Ethique pour la Recherche en santé of Benin (n°67/MS/DC/SGM/DRFMT/CNERS/SA; 10/17/2017). NeuroCM study has also been approved by Comité consultatif de déontologie et d'éthique of Institut de Recherche pour le Développement (IRD; 10/24/2017). The study results will be disseminated through the direct consultations with the WHO's Multilateral Initiative on Malaria (TDR-MIM) and Roll Back Malaria programme, through scientific meetings and peer-reviewed publications in scientific or medical journals, and through guidelines and booklets.
Collapse
Affiliation(s)
| | - Laurine Maurice
- MERIT, Sorbonne Paris Cité, IRD, 75006, Paris, France
- PHARMADEV, Université de Toulouse, IRD, UPS, France, Toulouse, France
| | | | - Agnès Aubouy
- PHARMADEV, Université de Toulouse, IRD, UPS, France, Toulouse, France
| | | | - Sandrine Houzé
- MERIT, Sorbonne Paris Cité, IRD, 75006, Paris, France
- Parasitology Laboratory, Hopital Bichat - Claude-Bernard, Paris, France
| | | | - Nicolas Argy
- MERIT, Sorbonne Paris Cité, IRD, 75006, Paris, France
- Parasitology Laboratory, Hopital Bichat - Claude-Bernard, Paris, France
| | | | | | - Maroufou Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHU-MEL), Cotonou, Benin
| | - Michel Cot
- MERIT, Sorbonne Paris Cité, IRD, 75006, Paris, France
| | | | - Jean-François Faucher
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- Infectious diseases and tropical medicine department, Limoges University Hospital, Limoges, France
| |
Collapse
|
11
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney) and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3576157. [PMID: 29992139 PMCID: PMC5994327 DOI: 10.1155/2018/3576157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/17/2017] [Accepted: 01/21/2018] [Indexed: 01/04/2023]
Abstract
During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.
Collapse
|
13
|
PFI1785w: A highly conserved protein associated with pregnancy associated malaria. PLoS One 2017; 12:e0187817. [PMID: 29121643 PMCID: PMC5679621 DOI: 10.1371/journal.pone.0187817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
Pregnancy-associated malaria (PAM) is one of the severe forms of Plasmodium falciparum infection. The main antigen VAR2CSA is the target of vaccine development. However, the large size of VAR2CSA protein and its high degree of variability limit to the efficiency of the vaccination. Using quantitative mass spectrometry method, we detected and quantified proteotypic peptides from 5 predicted PAM associated proteins. Our results confirmed that PFI1785w is over-expressed in PAM samples. Then, we investigated PFI1785w variability among a set of parasite samples from various endemic areas. PFI1785w appear to be more conserved than VAR2CSA. PFB0115w, another PAM associated protein, seems also associated with the pathology. Further vaccination strategies could integrate other proteins in addition to the major VAR2CSA antigen to improve immune response to vaccination.
Collapse
|
14
|
Chan S, Frasch A, Mandava CS, Ch'ng JH, Quintana MDP, Vesterlund M, Ghorbal M, Joannin N, Franzén O, Lopez-Rubio JJ, Barbieri S, Lanzavecchia A, Sanyal S, Wahlgren M. Regulation of PfEMP1-VAR2CSA translation by a Plasmodium translation-enhancing factor. Nat Microbiol 2017; 2:17068. [PMID: 28481333 DOI: 10.1038/nmicrobiol.2017.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
Pregnancy-associated malaria commonly involves the binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate A (CSA) through the PfEMP1-VAR2CSA protein. VAR2CSA is translationally repressed by an upstream open reading frame. In this study, we report that the P. falciparum translation enhancing factor (PTEF) relieves upstream open reading frame repression and thereby facilitates VAR2CSA translation. VAR2CSA protein levels in var2csa-transcribing parasites are dependent on the expression level of PTEF, and the alleviation of upstream open reading frame repression requires the proteolytic processing of PTEF by PfCalpain. Cleavage generates a C-terminal domain that contains a sterile-alpha-motif-like domain. The C-terminal domain is permissive to cytoplasmic shuttling and interacts with ribosomes to facilitate translational derepression of the var2csa coding sequence. It also enhances translation in a heterologous translation system and thus represents the first non-canonical translation enhancing factor to be found in a protozoan. Our results implicate PTEF in regulating placental CSA binding of infected erythrocytes.
Collapse
Affiliation(s)
- Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, 171 77 Stockholm, Sweden
| | - Alejandra Frasch
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, 171 77 Stockholm, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Uppsala University, Box-596, 751 24 Uppsala, Sweden
| | - Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, 171 77 Stockholm, Sweden.,Department of Microbiology, National University of Singapore 117545, Singapore
| | - Maria Del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, 171 77 Stockholm, Sweden.,Escuela de Medicina y Ciencias de la Salud, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Calle 12C No. 6-25, Bogotá, Colombia
| | - Mattias Vesterlund
- Cancer Proteomics, Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Mehdi Ghorbal
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier F34090, France.,CNRS - 5290, IRD 224 - University of Montpellier (UMR 'MiVEGEC'), Montpellier, France
| | - Nicolas Joannin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, 171 77 Stockholm, Sweden
| | - Oscar Franzén
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jose-Juan Lopez-Rubio
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier F34090, France.,CNRS - 5290, IRD 224 - University of Montpellier (UMR 'MiVEGEC'), Montpellier, France
| | - Sonia Barbieri
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, 751 24 Uppsala, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, 171 77 Stockholm, Sweden
| |
Collapse
|
15
|
Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling. Microbiol Mol Biol Rev 2016; 80:905-27. [PMID: 27582258 DOI: 10.1128/mmbr.00014-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family.
Collapse
|
16
|
Bertin GI, Sabbagh A, Argy N, Salnot V, Ezinmegnon S, Agbota G, Ladipo Y, Alao JM, Sagbo G, Guillonneau F, Deloron P. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria. Sci Rep 2016; 6:26773. [PMID: 27245217 PMCID: PMC4887788 DOI: 10.1038/srep26773] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 01/31/2023] Open
Abstract
Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM.
Collapse
Affiliation(s)
- Gwladys I Bertin
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France
| | - Audrey Sabbagh
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France
| | - Nicolas Argy
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,Parasitology laboratory, Bichat-Claude Bernard hospital, Paris 75018, France.,French national reference center of malaria laboratory, Bichat-Claude Bernard hospital, Paris 75018, France
| | - Virginie Salnot
- COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,3P5 Proteomics facility, Université Paris Descartes, Paris, France
| | - Sem Ezinmegnon
- Centre d'Étude et de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance (CERPAGE), Cotonou, Benin
| | - Gino Agbota
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,Centre d'Étude et de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance (CERPAGE), Cotonou, Benin
| | - Yélé Ladipo
- Paediatric Department, Mother and child hospital (HOMEL), Cotonou, Benin
| | - Jules M Alao
- Paediatric Department, Mother and child hospital (HOMEL), Cotonou, Benin
| | - Gratien Sagbo
- Paediatric Department, Centre National Hospitalo-Universitaire (CNHU), Cotonou, Benin
| | - François Guillonneau
- COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,3P5 Proteomics facility, Université Paris Descartes, Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France
| |
Collapse
|
17
|
Broadbent JA, Broszczak DA, Tennakoon IUK, Huygens F. Pan-proteomics, a concept for unifying quantitative proteome measurements when comparing closely-related bacterial strains. Expert Rev Proteomics 2016; 13:355-65. [PMID: 26889693 DOI: 10.1586/14789450.2016.1155986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The comparison of proteomes between genetically heterogeneous bacterial strains may offer valuable insights into physiological diversity and function, particularly where such variation aids in the survival and virulence of clinically-relevant strains. However, reports of such comparisons frequently fail to account for underlying genetic variance. As a consequence, the current knowledge regarding bacterial physiological diversity at the protein level may be incomplete or inaccurate. To address this, greater consideration must be given to the impact of genetic heterogeneity on proteome comparisons. This may be possible through the use of pan-proteomics, an analytical concept that permits the ability to qualitatively and quantitatively compare the proteomes of genetically heterogeneous organisms. Limited examples of this emerging technology highlight currently unmet analytical challenges. In this article we define pan-proteomics, where its value lies in microbiology, and discuss the technical considerations critical to its successful execution and potential future application.
Collapse
Affiliation(s)
- James A Broadbent
- a Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia.,b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Daniel A Broszczak
- a Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Imalka U K Tennakoon
- b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Flavia Huygens
- b Molecular Microbiological Pathogenesis Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
18
|
Fried M, Duffy PE. Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine 2015; 33:7483-8. [PMID: 26469717 PMCID: PMC5077158 DOI: 10.1016/j.vaccine.2015.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
Placental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1–2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (~350 kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, TWB1/Room 1111, Rockville, MD, USA.
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, TWB1/Room 1111, Rockville, MD, USA.
| |
Collapse
|