1
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2025; 23:178-191. [PMID: 39367132 PMCID: PMC11832322 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Nandal R, Kumar D, Aggarwal N, Kumar V, Narasimhan B, Marwaha RK, Sharma PC, Kumar S, Bansal N, Chopra H, Deep A. Recent advances, challenges and updates on the development of therapeutics for malaria. EXCLI JOURNAL 2024; 23:672-713. [PMID: 38887396 PMCID: PMC11180964 DOI: 10.17179/excli2023-6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2024] [Indexed: 06/20/2024]
Abstract
Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.
Collapse
Affiliation(s)
- Rimmy Nandal
- Shri Baba MastNath Institute of Pharmaceutical Sciences and Research, Baba Mast Nath University, Asthal Bohar, Rohtak-124001, Haryana, India
| | - Davinder Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Virender Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | | | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001 Haryana, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| |
Collapse
|
3
|
Simwela NV, Guiguemde WA, Straimer J, Regnault C, Stokes BH, Tavernelli LE, Yokokawa F, Taft B, Diagana TT, Barrett MP, Waters AP. A conserved metabolic signature associated with response to fast-acting anti-malarial agents. Microbiol Spectr 2023; 11:e0397622. [PMID: 37800971 PMCID: PMC10714989 DOI: 10.1128/spectrum.03976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/27/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE In malaria drug discovery, understanding the mode of action of lead compounds is important as it helps in predicting the potential emergence of drug resistance in the field when these drugs are eventually deployed. In this study, we have employed metabolomics technologies to characterize the potential targets of anti-malarial drug candidates in the developmental pipeline at NITD. We show that NITD fast-acting leads belonging to spiroindolone and imidazothiadiazole class induce a common biochemical theme in drug-exposed malaria parasites which is similar to another fast-acting, clinically available drug, DHA. These biochemical features which are absent in a slower acting NITD lead (GNF17) point to hemoglobin digestion and inhibition of the pyrimidine pathway as potential action points for these drugs. These biochemical themes can be used to identify and inform on the mode of action of fast drug candidates of similar profiles in future drug discovery programs.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Judith Straimer
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Clement Regnault
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Barbara H. Stokes
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Luis E. Tavernelli
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | - Benjamin Taft
- Novartis Institute for Tropical Diseases, Emeryville, California, USA
| | | | - Michael P. Barrett
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew P. Waters
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Ramli AH, Mohd Faudzi SM. Diarylpentanoids, the privileged scaffolds in antimalarial and anti-infectives drug discovery: A review. Arch Pharm (Weinheim) 2023; 356:e2300391. [PMID: 37806761 DOI: 10.1002/ardp.202300391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Asia is a hotspot for infectious diseases, including malaria, dengue fever, tuberculosis, and the pandemic COVID-19. Emerging infectious diseases have taken a heavy toll on public health and the economy and have been recognized as a major cause of morbidity and mortality, particularly in Southeast Asia. Infectious disease control is a major challenge, but many surveillance systems and control strategies have been developed and implemented. These include vector control, combination therapies, vaccine development, and the development of new anti-infectives. Numerous newly discovered agents with pharmacological anti-infective potential are being actively and extensively studied for their bioactivity, toxicity, selectivity, and mode of action, but many molecules lose their efficacy over time due to resistance developments. These facts justify the great importance of the search for new, effective, and safe anti-infectives. Diarylpentanoids, a curcumin derivative, have been developed as an alternative with better bioavailability and metabolism as a therapeutic agent. In this review, the mechanisms of action and potential targets of antimalarial drugs as well as the classes of antimalarial drugs are presented. The bioactivity of diarylpentanoids as a potential scaffold for a new class of anti-infectives and their structure-activity relationships are also discussed in detail.
Collapse
Affiliation(s)
- Amirah H Ramli
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti M Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
6
|
Carucci M, Duez J, Tarning J, García-Barbazán I, Fricot-Monsinjon A, Sissoko A, Dumas L, Gamallo P, Beher B, Amireault P, Dussiot M, Dao M, Hull MV, McNamara CW, Roussel C, Ndour PA, Sanz LM, Gamo FJ, Buffet P. Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening. Nat Commun 2023; 14:1951. [PMID: 37029122 PMCID: PMC10082216 DOI: 10.1038/s41467-023-37359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Mario Carucci
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | | | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Aurélie Fricot-Monsinjon
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Abdoulaye Sissoko
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Lucie Dumas
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pablo Gamallo
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | - Babette Beher
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pascal Amireault
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
| | - Michael Dussiot
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
| | - Mitchell V Hull
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Camille Roussel
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Laboratoire d'Hématologie générale, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Papa Alioune Ndour
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Laura Maria Sanz
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | | | - Pierre Buffet
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France.
- Department of Infectious & Tropical Disease, AP-HP, Necker Hospital, 75015, Paris, France.
- Centre Médical de l'Institut Pasteur (CMIP), Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
7
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
8
|
Qiu D, Pei JV, Rosling JEO, Thathy V, Li D, Xue Y, Tanner JD, Penington JS, Aw YTV, Aw JYH, Xu G, Tripathi AK, Gnadig NF, Yeo T, Fairhurst KJ, Stokes BH, Murithi JM, Kümpornsin K, Hasemer H, Dennis ASM, Ridgway MC, Schmitt EK, Straimer J, Papenfuss AT, Lee MCS, Corry B, Sinnis P, Fidock DA, van Dooren GG, Kirk K, Lehane AM. A G358S mutation in the Plasmodium falciparum Na + pump PfATP4 confers clinically-relevant resistance to cipargamin. Nat Commun 2022; 13:5746. [PMID: 36180431 PMCID: PMC9525273 DOI: 10.1038/s41467-022-33403-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.
Collapse
Affiliation(s)
- Deyun Qiu
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Jinxin V Pei
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - James E O Rosling
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Vandana Thathy
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dongdi Li
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Yi Xue
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - John D Tanner
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Jocelyn Sietsma Penington
- Bioinformatic Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Yi Tong Vincent Aw
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Jessica Yi Han Aw
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Guoyue Xu
- Department of Molecular Microbiology & Immunology and Johns Hopkins Malaria Institute, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Abhai K Tripathi
- Department of Molecular Microbiology & Immunology and Johns Hopkins Malaria Institute, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Nina F Gnadig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Barbara H Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James M Murithi
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Heath Hasemer
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Adelaide S M Dennis
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Melanie C Ridgway
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | | | - Judith Straimer
- Novartis Institute for Tropical Diseases, Emeryville, CA, 94608, USA
| | - Anthony T Papenfuss
- Bioinformatic Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology and Johns Hopkins Malaria Institute, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia.
| |
Collapse
|
9
|
Owoloye AJ, Ligali FC, Enejoh OA, Musa AZ, Aina O, Idowu ET, Oyebola KM. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors. PLoS One 2022; 17:e0268269. [PMID: 36026508 PMCID: PMC9417013 DOI: 10.1371/journal.pone.0268269] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT1) protein involved in hexose permeation is considered a potential drug target. In this study, we tested the antimalarial activity of some compounds against PfHT1 using computational techniques. We performed high throughput virtual screening of 21,352 small-molecule compounds against PfHT1. The stability of the lead compound complexes was evaluated via molecular dynamics (MD) simulation for 100 nanoseconds. We also investigated the pharmacodynamic, pharmacokinetic and physiological characteristics of the compounds in accordance with Lipinksi rules for drug-likeness to bind and inhibit PfHT1. Molecular docking and free binding energy analyses were carried out using Molecular Mechanics with Generalized Born and Surface Area (MMGBSA) solvation to determine the selectivity of the hit compounds for PfHT1 over the human glucose transporter (hGLUT1) orthologue. Five important PfHT1 inhibitors were identified: Hyperoside (CID5281643); avicularin (CID5490064); sylibin (CID5213); harpagoside (CID5481542) and quercetagetin (CID5281680). The compounds formed intermolecular interaction with the binding pocket of the PfHT1 target via conserved amino acid residues (Val314, Gly183, Thr49, Asn52, Gly183, Ser315, Ser317, and Asn48). The MMGBSA analysis of the complexes yielded high free binding energies. Four (CID5281643, CID5490064, CID5213, and CID5481542) of the identified compounds were found to be stable within the PfHT1 binding pocket throughout the 100 nanoseconds simulation run time. The four compounds demonstrated higher affinity for PfHT1 than the human major glucose transporter (hGLUT1). This investigation demonstrates the inhibition potential of sylibin, hyperoside, harpagoside, and avicularin against PfHT1 receptor. Robust preclinical investigations are required to validate the chemotherapeutic properties of the identified compounds.
Collapse
Affiliation(s)
- Afolabi J. Owoloye
- Center for Genomic Research in Biomedicine (CeGRIB), College of Basic and Applied Sciences, Mountain Top University, Ibafo, Nigeria
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Funmilayo C. Ligali
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Biochemistry Department, Faculty of Basic Medical Science, University of Lagos, Lagos, Nigeria
| | - Ojochenemi A. Enejoh
- Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | | | | | - Emmanuel T. Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Kolapo M. Oyebola
- Center for Genomic Research in Biomedicine (CeGRIB), College of Basic and Applied Sciences, Mountain Top University, Ibafo, Nigeria
- Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
10
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
11
|
SheelaNair A, Romanczuk AS, Aogo RA, Haldar RN, Lansink LIM, Cromer D, Salinas YG, Guy RK, McCarthy JS, Davenport MP, Haque A, Khoury DS. Similarly efficacious anti-malarial drugs SJ733 and pyronaridine differ in their ability to remove circulating parasites in mice. Malar J 2022; 21:49. [PMID: 35172826 PMCID: PMC8848794 DOI: 10.1186/s12936-022-04075-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) has been a mainstay for malaria prevention and treatment. However, emergence of drug resistance has incentivised development of new drugs. Defining the kinetics with which circulating parasitized red blood cells (pRBC) are lost after drug treatment, referred to as the “parasite clearance curve”, has been critical for assessing drug efficacy; yet underlying mechanisms remain partly unresolved. The clearance curve may be shaped both by the rate at which drugs kill parasites, and the rate at which drug-affected parasites are removed from circulation. Methods In this context, two anti-malarials, SJ733, and an ACT partner drug, pyronaridine were compared against sodium artesunate in mice infected with Plasmodium berghei (strain ANKA). To measure each compound’s capacity for pRBC removal in vivo, flow cytometric monitoring of a single cohort of fluorescently-labelled pRBC was employed, and combined with ex vivo parasite culture to assess parasite maturation and replication. Results These three compounds were found to be similarly efficacious in controlling established infection by reducing overall parasitaemia. While sodium artesunate acted relatively consistently across the life-stages, single-dose SJ733 elicited a biphasic effect, triggering rapid, partly phagocyte-dependent removal of trophozoites and schizonts, followed by arrest of residual ring-stages. In contrast, pyronaridine abrogated maturation of younger parasites, with less pronounced effects on mature parasites, while modestly increasing pRBC removal. Conclusions Anti-malarials SJ733 and pyronaridine, though similarly efficacious in reducing overall parasitaemia in mice, differed markedly in their capacity to arrest replication and remove pRBC from circulation. Thus, similar parasite clearance curves can result for anti-malarials with distinct capacities to inhibit, kill and clear parasites.
Collapse
Affiliation(s)
- Arya SheelaNair
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Aleksandra S Romanczuk
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Rosemary A Aogo
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia
| | - Rohit Nemai Haldar
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Lianne I M Lansink
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Parkville, VIC, 3000, Australia
| | - Deborah Cromer
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia
| | | | - R Kiplin Guy
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Parkville, VIC, 3000, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia. .,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Parkville, VIC, 3000, Australia.
| | - David S Khoury
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
12
|
Assessment
in vitro
of the antimalarial and transmission blocking activities of Cipargamin and Ganaplacide in artemisinin resistant
Plasmodium falciparum. Antimicrob Agents Chemother 2022; 66:e0148121. [DOI: 10.1128/aac.01481-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in
Plasmodium falciparum
has emerged and spread widely in the Greater Mekong Subregion threatening current first line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit
P. falciparum
gametocytogenesis and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide and artesunate in artemisinin resistant
P. falciparum
isolates (N=7, K13 mutation; C580Y, G449A and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I based 72h
in vitro
assay, and the effects on male and female mature stage V gametocytes were assessed in the
P. falciparum
dual gamete formation assay. Ganaplacide had higher activities when compared to cipargamin and artesunate, with a mean (SD) IC50 against asexual stages of 5.5 (1.1) nM, 7.8 (3.9) nM for male gametocytes and 57.9 (59.6) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with a mean (SD) IC50 of 123.1 (80.2) nM for male gametocytes, 88.5 (52.7) nM for female gametocytes and 2.4 (0.6) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin resistant
P. falciparum
in vitro
.
Collapse
|
13
|
Gupta Y, Goicoechea S, Pearce CM, Mathur R, Romero JG, Kwofie SK, Weyenberg MC, Daravath B, Sharma N, Poonam, Akala HM, Kanzok SM, Durvasula R, Rathi B, Kempaiah P. The emerging paradigm of calcium homeostasis as a new therapeutic target for protozoan parasites. Med Res Rev 2022; 42:56-82. [PMID: 33851452 DOI: 10.1002/med.21804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/10/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Steven Goicoechea
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine M Pearce
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Raman Mathur
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Jesus G Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Matthew C Weyenberg
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Bharathi Daravath
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Neha Sharma
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Poonam
- Department of Chemistry, Miranda House University Enclave, University of Delhi, Delhi, India
| | | | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | | |
Collapse
|
14
|
Gómez F, Silva LS, Teixeira DE, Agero U, Pinheiro AAS, Viana NB, Pontes B. Plasmodium falciparum maturation across the intra-erythrocytic cycle shifts the soft glassy viscoelastic properties of red blood cells from a liquid-like towards a solid-like behavior. Exp Cell Res 2020; 397:112370. [PMID: 33186602 DOI: 10.1016/j.yexcr.2020.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
The mechanical properties of erythrocytes have been investigated by different techniques. However, there are few reports on how the viscoelasticity of these cells varies during malaria disease. Here, we quantitatively map the viscoelastic properties of Plasmodium falciparum-parasitized human erythrocytes. We apply new methodologies based on optical tweezers to measure the viscoelastic properties and defocusing microscopy to measure the erythrocyte height profile, the overall cell volume, and its form factor, a crucial parameter to convert the complex elastic constant into complex shear modulus. The storage and loss shear moduli are obtained for each stage of parasite maturation inside red blood cells, while the former increase, the latter decrease. Employing a soft glassy rheology model, we obtain the power-law exponent for the storage and loss shear moduli, characterizing the soft glassy features of red blood cells in each parasite maturation stage. Ring forms present a liquid-like behavior, with a slightly lower power-law exponent than healthy erythrocytes, whereas trophozoite and schizont stages exhibit increasingly solid-like behaviors. Finally, the surface elastic shear moduli, low-frequency surface viscosities, and shape recovery relaxation times all increase not only in a stage-dependent manner but also when compared to healthy red blood cells. Overall, the results call attention to the soft glassy characteristics of Plasmodium falciparum-parasitized erythrocyte membrane and may provide a basis for future studies to better understand malaria disease from a mechanobiological perspective.
Collapse
Affiliation(s)
- Fran Gómez
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ubirajara Agero
- Instituto de Ciências Exatas, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Acácia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nathan B Viana
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Bruno Pontes
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
15
|
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist 2020; 13:4047-4060. [PMID: 33204122 PMCID: PMC7666977 DOI: 10.2147/idr.s279433] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is among the most devastating and widespread tropical parasitic diseases in which most prevalent in developing countries. Antimalarial drug resistance is the ability of a parasite strain to survive and/or to multiply despite the administration and absorption of medicine given in doses equal to or higher than those usually recommended. Among the factors which facilitate the emergence of resistance to existing antimalarial drugs: the parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharmacokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor-quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. Molecular markers of antimalarial drug resistance are used to screen for the emergence of resistance and assess its spread. It provides information about the parasite genetics associated with resistance, either single nucleotide polymorphisms or gene copy number variations which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine proteases, and aminopeptidases are the novel targets for the development of new antimalarial drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets of antimalarial drugs.
Collapse
Affiliation(s)
- Melkamu Adigo Shibeshi
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
16
|
Dick CF, Meyer-Fernandes JR, Vieyra A. The Functioning of Na +-ATPases from Protozoan Parasites: Are These Pumps Targets for Antiparasitic Drugs? Cells 2020; 9:E2225. [PMID: 33023071 PMCID: PMC7600311 DOI: 10.3390/cells9102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
The ENA ATPases (from exitus natru: the exit of sodium) belonging to the P-type ATPases are structurally very similar to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA); they exchange Na+ for H+ and, therefore, are also known as Na+-ATPases. ENA ATPases are required in alkaline milieu, as in the case for Aspergillus, where other transporters cannot mediate an uphill Na+ efflux. They are also important for salt tolerance, as described for Arabidopsis. During their life cycles, protozoan parasites might encounter a high pH environment, thus allowing consideration of ENA ATPases as possible targets for controlling certain severe parasitic diseases, such as Chagas' Disease. Phylogenetic analysis has now shown that, besides the types IIA, IIB, IIC, and IID P-type ATPases, there exists a 5th subgroup of ATPases classified as ATP4-type ATPases, found in Plasmodium falciparum and Toxoplasma gondii. In malaria, for example, some drugs targeting PfATP4 destroy Na+ homeostasis; these drugs, which include spiroindolones, are now in clinical trials. The ENA P-type (IID P-type ATPase) and ATP4-type ATPases have no structural homologue in mammalian cells, appearing only in fungi, plants, and protozoan parasites, e.g., Trypanosoma cruzi, Leishmania sp., Toxoplasma gondii, and Plasmodium falciparum. This exclusivity makes Na+-ATPase a potential candidate for the biologically-based design of new therapeutic interventions; for this reason, Na+-ATPases deserves more attention.
Collapse
Affiliation(s)
- Claudia F. Dick
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil;
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil;
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Graduate Programa of Translational Biomedicine/BIOTRANS, Unigranrio University, Duque de Caxias 25071-202, Brazil
| |
Collapse
|
17
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Bouwman SA, Zoleko-Manego R, Renner KC, Schmitt EK, Mombo-Ngoma G, Grobusch MP. The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. Travel Med Infect Dis 2020; 36:101765. [PMID: 32561392 DOI: 10.1016/j.tmaid.2020.101765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cipargamin (KAE609) is a novel spiroindolone class drug for the treatment of malaria, currently undergoing phase 2 clinical development. This review provides an overview and interpretation of the pre-clinical and clinical data of this possible next-generation antimalarial drug published to date. METHODS We systematically searched the literature for studies on the preclinical and clinical development of cipargamin. PubMed and Google Scholar databases were searched using the terms 'cipargamin', 'KAE609' or 'NITD609' in the English language; one additional article was identified during revision. Nineteen of these in total 43 papers identified reported original studies; 13 of those articles were on pre-clinical studies and 6 reported clinical trials. RESULTS A total of 20 studies addressing its preclinical and clinical development have been published on this compound at the time of writing. Cipargamin acts on the PfATP4, which is a P-type Na + ATPase disrupting the Na + homeostasis in the parasite. Cipargamin is a very fast-acting antimalarial, it is active against all intra-erythrocytic stages of the malaria parasite and exerts gametocytocidal activity, with transmission-blocking potential. It is currently undergoing phase 2 clinical trial to assess safety and efficacy, with a special focus on hepatic safety. CONCLUSION In the search for novel antimalarial drugs, cipargamin exhibits promising properties, exerting activity against multiple intra-erythrocytic stages of plasmodia, including gametocytes. It exhibits a favourable pharmacokinetic profile, possibly allowing for single-dose treatment with a suitable combination partner. According to the clinical results of the first studies in Asian malaria patients, a possible safety concern is hepatotoxicity.
Collapse
Affiliation(s)
- Suzan Am Bouwman
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, the Netherlands; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Rella Zoleko-Manego
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Esther K Schmitt
- Novartis Pharma AG, Global Health Development Unit, Basel, Switzerland
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, the Netherlands; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
19
|
Depond M, Henry B, Buffet P, Ndour PA. Methods to Investigate the Deformability of RBC During Malaria. Front Physiol 2020; 10:1613. [PMID: 32038293 PMCID: PMC6990122 DOI: 10.3389/fphys.2019.01613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
Despite a 30% decline in mortality since 2000, malaria still affected 219 million subjects and caused 435,000 deaths in 2017. Red blood cells (RBC) host Plasmodium parasites that cause malaria, of which Plasmodium falciparum is the most pathogenic. The deformability of RBC is markedly modified by invasion and development of P. falciparum. Surface membrane area is potentially impacted by parasite entry and development, the cytoskeleton is modified by parasite proteins and cytosol viscosity is altered by parasite metabolism. RBC hosting mature parasites (second half of the asexual erythrocytic cycle) are abnormally stiff but the main reason for their absence from the circulation is their adherence to endothelial cells, mediated by parasite proteins exposed at the infected-RBC surface. By contrast, the circulation of non-adherent rings and gametocytes, depends predominantly on deformability. Altered deformability of rings and of uninfected-RBC altered by malaria infection is an important determinant of malaria pathogenesis. It also impacts the response to antimalarial therapy. Unlike conventional antimalarials that target mature stages, currently recommended first-line artemisinin derivatives and the emerging spiroindolones act on circulating rings. Methods to investigate the deformability of RBC are therefore critical to understand the clearance of infected- and uninfected-RBC in malaria. Herein, we review the main methods to assess the deformability of P. falciparum infected-RBC, and their contribution to the understanding of how P. falciparum infection causes disease, how the parasite is transmitted and how antimalarial drugs induce parasite clearance.
Collapse
Affiliation(s)
- Mallorie Depond
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoit Henry
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Buffet
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Papa Alioune Ndour
- UMR_S1134, BIGR, Inserm, Universit de Paris, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
20
|
Chua ACY, Ong JJY, Malleret B, Suwanarusk R, Kosaisavee V, Zeeman AM, Cooper CA, Tan KSW, Zhang R, Tan BH, Abas SN, Yip A, Elliot A, Joyner CJ, Cho JS, Breyer K, Baran S, Lange A, Maher SP, Nosten F, Bodenreider C, Yeung BKS, Mazier D, Galinski MR, Dereuddre-Bosquet N, Le Grand R, Kocken CHM, Rénia L, Kyle DE, Diagana TT, Snounou G, Russell B, Bifani P. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun 2019; 10:3635. [PMID: 31406175 PMCID: PMC6690977 DOI: 10.1038/s41467-019-11332-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts. Present understanding of Plasmodium vivax biology is hampered by its inability to grow in vitro. Here, the authors developed an in vitro culture of its simian counterpart, P. cynomolgi, which shares morphological and phenotypic similarities with P. vivax, initiating a new phase in vivax research.
Collapse
Affiliation(s)
- Adeline C Y Chua
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore.,Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand.,Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore
| | - Jessica Jie Ying Ong
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand.,Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Rossarin Suwanarusk
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore.,Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Varakorn Kosaisavee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288, The Netherlands
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, 30602, USA
| | - Kevin S W Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Rou Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Bee Huat Tan
- Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore
| | | | - Andy Yip
- Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore
| | - Anne Elliot
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, 30602, USA
| | - Chester J Joyner
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, 30322, USA.,Emory Vaccine Center, Emory University, Atlanta, 30317, USA
| | - Jee Sun Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kate Breyer
- Laboratory Animal Services, Scientific Operations, Novartis Institutes for Biomedical Research, East Hanover, 07936-1080, USA
| | - Szczepan Baran
- Laboratory Animal Services, Scientific Operations, Novartis Institutes for Biomedical Research, East Hanover, 07936-1080, USA
| | - Amber Lange
- Laboratory Animal Services, Scientific Operations, Novartis Institutes for Biomedical Research, East Hanover, 07936-1080, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, 30602, USA
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7FZ, UK
| | | | - Bryan K S Yeung
- Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, F-75013, France.,CIMI-Paris, INSERM, U1135, CNRS, Paris, F-75013, France
| | - Mary R Galinski
- Emory Vaccine Center, Emory University, Atlanta, 30317, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, 30322, USA
| | - Nathalie Dereuddre-Bosquet
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, 92265, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, 92265, France
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288, The Netherlands
| | - Laurent Rénia
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, 30602, USA
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore
| | - Georges Snounou
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, F-75013, France.,CIMI-Paris, INSERM, U1135, CNRS, Paris, F-75013, France.,CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBJF, DRF, Fontenay-aux-Roses, 92265, France
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand.
| | - Pablo Bifani
- Singapore Immunology Network, A*STAR, Singapore, 138648, Singapore. .,Novartis Institute for Tropical Diseases, Singapore, 138670, Singapore. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
21
|
Ashton TD, Devine SM, Möhrle JJ, Laleu B, Burrows JN, Charman SA, Creek DJ, Sleebs BE. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials. J Med Chem 2019; 62:10526-10562. [DOI: 10.1021/acs.jmedchem.9b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Trent D. Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jörg J. Möhrle
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Susan A. Charman
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Antimalarial Transmission-Blocking Interventions: Past, Present, and Future. Trends Parasitol 2018; 34:735-746. [PMID: 30082147 DOI: 10.1016/j.pt.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
Malaria remains a major global health challenge. Appropriate use of current antimalarial tools has reduced the disease burden, but morbidity and mortality remain unacceptably high. It is widely accepted that, to achieve long-term control/eradication, it will be necessary to use interventions that inhibit the transmission of parasites to mosquitoes - these tools are termed transmission-blocking interventions (TBIs). This article aims to outline the rationale for the development of TBIs, with a focus on transmission-blocking drugs and (parasite-derived) transmission-blocking vaccines. We describe and summarise the current status of each of these intervention classes and attempt to identify future requirements in development, with a focus on the challenges of establishing each method within an integrated malarial control programme in the future.
Collapse
|
23
|
Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrob Agents Chemother 2018; 62:AAC.00087-18. [PMID: 29555632 DOI: 10.1128/aac.00087-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/18/2018] [Indexed: 12/15/2022] Open
Abstract
For an increasing number of antimalarial agents identified in high-throughput phenotypic screens, there is evidence that they target PfATP4, a putative Na+ efflux transporter on the plasma membrane of the human malaria parasite Plasmodium falciparum For several such "PfATP4-associated" compounds, it has been noted that their addition to parasitized erythrocytes results in cell swelling. Here we show that six structurally diverse PfATP4-associated compounds, including the clinical candidate KAE609 (cipargamin), induce swelling of both isolated blood-stage parasites and intact parasitized erythrocytes. The swelling of isolated parasites is dependent on the presence of Na+ in the external environment and may be attributed to the osmotic consequences of Na+ uptake. The swelling of the parasitized erythrocyte results in an increase in its osmotic fragility. Countering cell swelling by increasing the osmolarity of the extracellular medium reduces the antiplasmodial efficacy of PfATP4-associated compounds, consistent with cell swelling playing a role in the antimalarial activity of this class of compounds.
Collapse
|
24
|
Duez J, Carucci M, Garcia-Barbazan I, Corral M, Perez O, Presa JL, Henry B, Roussel C, Ndour PA, Rosa NB, Sanz L, Gamo FJ, Buffet P. High-throughput microsphiltration to assess red blood cell deformability and screen for malaria transmission–blocking drugs. Nat Protoc 2018; 13:1362-1376. [DOI: 10.1038/nprot.2018.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Hansen CE, Lam WA. Clinical Implications of Single-Cell Microfluidic Devices for Hematological Disorders. Anal Chem 2017; 89:11881-11892. [PMID: 28942646 DOI: 10.1021/acs.analchem.7b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell microfluidic devices are poised to substantially impact the hematology field by providing a high-throughput and rapid device to analyze disease-mediated biophysical cellular changes in the clinical setting in order to diagnose patients and monitor disease prognosis. In this Feature, we cover recent advances of single-cell microfluidic devices for studying and diagnosing hematological dysfunctions and the clinical impact made possible by these advances.
Collapse
Affiliation(s)
- Caroline E Hansen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wilbur A Lam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta/Emory University School of Medicine , Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Abstract
Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order processes. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deformable, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-pharmacodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeutic responses and in dose-optimization.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
27
|
Estimation of the In Vivo MIC of Cipargamin in Uncomplicated Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2017; 61:AAC.01940-16. [PMID: 27872070 PMCID: PMC5278730 DOI: 10.1128/aac.01940-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023] Open
Abstract
The MIC of an antimalarial drug for a particular infection is the drug level associated with a net parasite multiplication rate of one per asexual cycle. To ensure the cure of malaria, the MIC must be exceeded until all parasites have been eliminated. The development of highly sensitive and accurate PCR quantitation of low-density malaria parasitemia enables the prospective pharmacokinetic-pharmacodynamic (PK-PD) characterization of antimalarial drug effects and now allows identification of the in vivo MIC. An adaptive design and a PK-PD modeling approach were used to determine prospectively the MIC of the new antimalarial cipargamin (KAE609) in adults with uncomplicated Plasmodium falciparum malaria in an open-label, dose-ranging phase 2a study. Vietnamese adults with acute P. falciparum malaria were allocated sequentially to treatment with a single 30-mg (n = 6), 20-mg (n = 5), 10-mg (n = 7), or 15-mg (n = 7) dose of cipargamin. Artemisinin-based combination therapy was given after parasite densities had fallen and then risen as cipargamin levels declined below the MIC but before a return of signs or symptoms. The rates of parasite clearance were dose dependent, with near saturation of the effect being seen at an adult dose of 30 mg. The developed PK-PD model accurately predicted the therapeutic responses in 23/25 patients. The predicted median in vivo MIC was 0.126 ng/ml (range, 0.038 to 0.803 ng/ml). Pharmacometric characterization of the relationship between antimalarial drug concentrations and parasite clearance rates following graded subtherapeutic antimalarial drug dosing is safe and provides a rational framework for dose finding in antimalarial drug development. (This study has been registered at ClinicalTrials.gov under identifier NCT01836458.)
Collapse
|
28
|
The Rheopathobiology of Plasmodium vivax and Other Important Primate Malaria Parasites. Trends Parasitol 2016; 33:321-334. [PMID: 28040374 DOI: 10.1016/j.pt.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
Our current understanding of how malaria parasites remodel their host red blood cells (RBCs) and ultimately cause disease is largely based on studies of Plasmodium falciparum. In this review, we expand our knowledge to include what is currently known about pathophysiological changes to RBCs that are infected by non-falciparum malaria parasites. We highlight the potential folly of making generalizations about the rheology of malaria infection, and emphasize the need for more systematic studies into the erythrocytic biology of non-falciparum malaria parasites. We propose that a better understanding of the mechanisms that underlie the changes to RBCs induced by malaria parasites other than P. falciparum may be highly informative for the development of therapeutics that specifically disrupt the altered rheological profile of RBCs infected with either sexual- or asexual-stage parasites, resulting in drugs that block transmission, reduce disease severity, and help delay the onset of resistance to current and future anti-malaria drugs.
Collapse
|
29
|
Zhang R, Lee WC, Lau YL, Albrecht L, Lopes SCP, Costa FTM, Suwanarusk R, Nosten F, Cooke BM, Rénia L, Russell B. Rheopathologic Consequence of Plasmodium vivax Rosette Formation. PLoS Negl Trop Dis 2016; 10:e0004912. [PMID: 27509168 PMCID: PMC4980013 DOI: 10.1371/journal.pntd.0004912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen. While Plasmodium vivax is generally not as virulent as P. falciparum; severe manifestations of vivax malaria do occur. While little is known about the mechanisms underlying the pathobiology of P. vivax, most agree its ability to increase the deformability of stiff host reticulocytes is key adaptation to avoid splenic clearance. We show that P. vivax-infected red blood cells (PvIRBCs) rosette irreversibly with normocytes and are significantly more stiff than non-rosetting PvIRBCs. We discuss how these stiff PvIRBC rosettes are removed from the peripheral circulation and its rheopathological consequences.
Collapse
Affiliation(s)
- Rou Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Wenn-Chyau Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Stefanie C. P. Lopes
- Laboratory of Tropical Diseases, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Rossarin Suwanarusk
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, MaeSot, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brian M. Cooke
- Programs in Infection and Immunity and Cardiovascular Disease, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
30
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
31
|
Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum. PLoS Pathog 2016; 12:e1005647. [PMID: 27227970 PMCID: PMC4881962 DOI: 10.1371/journal.ppat.1005647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.
Collapse
|
32
|
Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:149-62. [PMID: 26401486 PMCID: PMC4559606 DOI: 10.1016/j.ijpddr.2015.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.
Collapse
Affiliation(s)
- Natalie Jane Spillman
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia ; Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|