1
|
Sharma N, Changotra H, Kaur M. Molecular epidemiology of human papillomavirus variants in cervical cancer in India. Indian J Med Res 2024; 160:531-551. [PMID: 39913513 PMCID: PMC11801769 DOI: 10.25259/ijmr_212_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/29/2024] [Indexed: 02/11/2025] Open
Abstract
Background & objectives Cervical cancer (CC) has been documented as the fourth most common cancer worldwide. Persistent infections with high-risk human papillomavirus (hr-HPV) have been suggested in the development of CC. Although prophylactic vaccines are available for the prevention of prevalent hr-HPV types, intra-type variations exist within a particular HPV type that has varying oncogenic potential as well as the mechanism of pathogenicity and varying neutralization by antibodies. Therefore, we carried out a systematic review to determine the distribution of HPV intra-typic variations in different geographical locations of India and their reported implications. Methods Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed to retrieve relevant articles from the standard databases using appropriate keywords. Consequently, 17 articles were included in the current review after screening based on inclusion and exclusion criteria. Results The majority of articles included in this review reported variations within the HPV16 E6 gene, followed by the L1 and E7 genes. Analysis of available data indicated the differential regional distribution of some variations. These variations have also been reported to impact the biological functions of various viral proteins. Interpretation & conclusions The distribution of lineages varied with the different genomic regions sequenced. Additionally, there were certain unique and common variations in the HPV genome with respect to geographical regions. Hence, we suggest the identification of region-specific variations for the development of diagnostic and prognostic interventions.
Collapse
Affiliation(s)
- Nita Sharma
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Shabanpour M, Jalali-Alhosseini P, Shoja Z, Ghafoori-Ghahdarijani F, Taherkhani S, Jalilvand S. Lineage and sublineage analysis of human papillomavirus type 58 in iranian women. Virol J 2024; 21:244. [PMID: 39363161 PMCID: PMC11451209 DOI: 10.1186/s12985-024-02521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Variant analysis of distinct HPV types is important from different aspects including epidemiology, pathogenicity, and evolution. METHODS For this reason, the full sequence of the E6 and E7 genes of HPV 58 was examined in 130 HPV 58-infected cervical samples using PCR and sequencing. RESULTS Our results revealed that three lineages A, B, and D were found in this study; among which the B lineage was more common (91.50%). About sublineages, all samples of the B lineage belonged to the B1 sublineage, and samples that were classified as the A and D lineages were found to belong to the A1 (0.77%), A2 (5.38%), A3 (1.50%), and D2 (0.77%) sublineages. No statistically significant differences were found between lineages and stages of disease or amino acid changes (P > 0.05). CONCLUSION Our results showed that lineage B, sublineage B1, was dominant in Iran. However, more studies with larger sample sizes from different parts of Iran are essential for assessing the pathogenicity risk of HPV 58 lineages in Iranian women with cervical cancer.
Collapse
Affiliation(s)
- Mohammad Shabanpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran
| | - Parvin Jalali-Alhosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran
| | | | | | - Sima Taherkhani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran.
| |
Collapse
|
3
|
Kamuyu G, Coelho da Silva F, Tenet V, Schussler J, Godi A, Herrero R, Porras C, Mirabello L, Schiller JT, Sierra MS, Kreimer AR, Clifford GM, Beddows S. Global evaluation of lineage-specific human papillomavirus capsid antigenicity using antibodies elicited by natural infection. Nat Commun 2024; 15:1608. [PMID: 38383518 PMCID: PMC10881982 DOI: 10.1038/s41467-024-45807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Human Papillomavirus (HPV) type variants have been classified into lineages and sublineages based upon their whole genome sequence. Here we have examined the specificity of antibodies generated following natural infection with lineage variants of oncogenic types (HPV16, 18, 31, 33, 45, 52 and 58) by testing serum samples assembled from existing archives from women residing in Africa, The Americas, Asia or Europe against representative lineage-specific pseudoviruses for each genotype. We have subjected the resulting neutralizing antibody data to antigenic clustering methods and created relational antigenic profiles for each genotype to inform the delineation of lineage-specific serotypes. For most genotypes, there was evidence of differential recognition of lineage-specific antigens and in some cases of a sufficient magnitude to suggest that some lineages should be considered antigenically distinct within their respective genotypes. These data provide compelling evidence for a degree of lineage specificity within the humoral immune response following natural infection with oncogenic HPV.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Filomeno Coelho da Silva
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Vanessa Tenet
- International Agency for Research on Cancer (IARC/WHO) Early Detection, Prevention and Infections Branch, Lyon, France
| | - John Schussler
- Information Management Services Inc, Silver Spring, MD, USA
| | - Anna Godi
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John T Schiller
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mónica S Sierra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Gary M Clifford
- International Agency for Research on Cancer (IARC/WHO) Early Detection, Prevention and Infections Branch, Lyon, France
| | - Simon Beddows
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK.
- Blood Safety, Hepatitis, Sexually Transmitted Infections and HIV Division, UK Health Security Agency, London, UK.
| |
Collapse
|
4
|
Qu W, Sui L, Li Y. Vaccine escape challenges virus prevention: The example of two vaccine-preventable oncogenic viruses. J Med Virol 2023; 95:e29184. [PMID: 37943176 DOI: 10.1002/jmv.29184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Over the years, the pace of developing vaccines for HBV and HPV has never stopped. After more than 30 years of application, the HBV vaccine has reduced 80% of hepatocellular carcinoma (HCC). However, vaccine escape variants occur under selective pressure induced by widespread vaccination and antiviral therapy, which results in fulminant infection and horizontal transmission. Several mechanisms have been studied to explain HBV vaccine escape, including vaccine escape mutations (VEMs) in the major hydrophilic region, which leads to a decrease in the binding ability to neutralize antibodies and is the primary escape mechanism, protein conformational and N-linked glycosylation sites changes caused by VEMs, differences in genotype distribution, gene recombination, and some temporarily unknown reasons. However, effective solutions are still being explored. The HPV vaccine has also been proven to prevent 70%-90% of cervical cancer worldwide. Cases of HPV infection after being vaccinated have been observed in clinical practice. However, few researchers have paid attention to the mechanism of HPV vaccine escape. Thus, we reviewed the literature on vaccine escape of both HBV and HPV to discuss the mechanism of the virus escaping from vaccine protection and possible solutions to this problem. We analyzed the gap between studies of HPV and HBV and made prospects for further research in HPV vaccine escape.
Collapse
Affiliation(s)
- Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Pseudotyped Virus for Papillomavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:85-103. [PMID: 36920693 DOI: 10.1007/978-981-99-0113-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Papillomavirus is difficult to culture in vitro, which limits its related research. The development of pseudotyped virus technology provides a valuable research tool for virus infectivity research, vaccine evaluation, infection inhibitor evaluation, and so on. Depending on the application fields, different measures have been developed to generate various kinds of pseudotyped papillomavirus. L1-based and L2-based HPV vaccines should be evaluated using different pseudotyped virus system. Pseudotyped papillomavirus animal models need high-titer pseudotyped virus and unique handling procedure to generate robust results. This paper reviewed the development, optimization, standardization, and application of various pseudotyped papillomavirus methods.
Collapse
|
6
|
Godi A, Vaghadia S, Cocuzza C, Miller E, Beddows S. Contribution of Surface-Exposed Loops on the HPV16 Capsid to Antigenic Domains Recognized by Vaccine or Natural Infection Induced Neutralizing Antibodies. Microbiol Spectr 2022; 10:e0077922. [PMID: 35475682 PMCID: PMC9241894 DOI: 10.1128/spectrum.00779-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Human papillomavirus (HPV) is the causative agent of cervical and other cancers and represents a significant global health burden. HPV vaccines demonstrate excellent efficacy in clinical trials and effectiveness in national immunization programmes against the most prevalent genotype, HPV16. It is unclear whether the greater protection conferred by vaccine-induced antibodies, compared to natural infection antibodies, is due to differences in antibody magnitude and/or specificity. We explore the contribution of the surface-exposed loops of the major capsid protein to antigenic domains recognized by vaccine and natural infection neutralizing antibodies. Chimeric pseudoviruses incorporating individual (BC, DE, EF, FG, HI) or combined (All: BC/DE/EF/FG/HI) loop swaps between the target (HPV16) and control (HPV35) genotypes were generated, purified by ultracentrifugation and characterized by SDS-PAGE and electron microscopy. Neutralizing antibody data were subjected to hierarchical clustering and outcomes modeled on the HPV16 capsomer crystal model. Vaccine antibodies exhibited an FG loop preference followed by the EF and HI loops while natural infection antibodies displayed a more diverse pattern, most frequently against the EF loop followed by BC and FG. Both vaccine and natural infection antibodies demonstrated a clear requirement for multiple loops. Crystal modeling of these neutralizing antibody patterns suggested natural infection antibodies typically target the outer rim of the capsomer while vaccine antibodies target the central ring around the capsomer lumen. Chimeric pseudoviruses are useful tools for probing vaccine and natural infection antibody specificity. These data add to the evidence base for the effectiveness of an important public health intervention. IMPORTANCE The human papillomavirus type 16 (HPV16) major virus coat (capsid) protein is a target for antibodies induced by both natural infection and vaccination. Vaccine-induced immunity is highly protective against HPV16-related infection and disease while natural infection associated immunity significantly less so. For this study, we created chimeric functional pseudoviruses based upon an antigenically distant HPV genotype (HPV35) resistant to HPV16-specific antibodies with inserted capsid surface fragments (external loops) from HPV16. By using these chimeric pseudoviruses in functional neutralization assays we were able to highlight specific and distinct areas on the capsid surface recognized by both natural infection and vaccine induced antibodies. These data improve our understanding of the difference between natural infection and vaccine induced HPV16-specific immunity.
Collapse
Affiliation(s)
- Anna Godi
- Reference Services Division, UK Health Security Agency (UKHSA), London, United Kingdom
| | - Stuti Vaghadia
- Reference Services Division, UK Health Security Agency (UKHSA), London, United Kingdom
| | - Clementina Cocuzza
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Elizabeth Miller
- Immunisation and Vaccine-Preventable Diseases Division, UKHSA, London, United Kingdom
| | - Simon Beddows
- Reference Services Division, UK Health Security Agency (UKHSA), London, United Kingdom
- Blood Safety, Hepatitis, Sexually Transmitted Infections and HIV Division, UKHSA, London, United Kingdom
| |
Collapse
|
7
|
Tawe L, Choga WT, Paganotti GM, Bareng OT, Ntereke TD, Ramatlho P, Ditshwanelo D, Gaseitsiwe S, Kasvosve I, Ramogola-Masire D, Orang'o OE, Robertson E, Zetola N, Moyo S, Grover S, Ermel AC. Genetic diversity in L1 ORF of human papillomavirus in women with cervical cancer with and without human immunodeficiency virus in Botswana and Kenya. BMC Infect Dis 2022; 22:95. [PMID: 35086475 PMCID: PMC8796425 DOI: 10.1186/s12879-022-07081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The variation of human papillomavirus (HPV) genotypes shapes the risks of cervical cancer and these variations are not well defined in Africa. Nucleotide changes within the L1 gene, nucleotide variability, and phylogeny were explored in relation to HIV in samples from Botswana and Kenya. METHODS A total of 98 HPV-positive cervical samples were sequenced to identify different HPV variants. Phylogenetic inferences were used to determine HPV genotypes and investigate the clustering of sequences between women living with HIV (WLWHIV) and -women not living with HIV (WNLWHIV). RESULTS Out of 98 generated sequences, 83.7% (82/98) participants had high-risk (HR) HPV genotypes while 16.3% (16/98) had low-risk (LR) HPV genotypes. Among participants with HR-HPV genotypes, 47.6% (39/82) were coinfected with HIV. The prevalence of HR-HPV genotypes was statistically higher in the Botswana population compared to Kenya (p-value < 0.001). Multiple amino acid mutations were identified in both countries. Genetic diversity differed considerably among WLWHIV and WNLWHIV. The mean pairwise distances between HPV-16 between HIV and HIV/HPV as well as for HPV-18 were statistically significant. Six (6) new deleterious mutations were identified in the HPV genotypes based on the sequencing of the L1 region, HPV-16 (L441P, S343P), HPV-18 (S424P), HPV-45 (Q366H, Y365F), and HPV-84 (F458L). The majority of the patients with these mutations were co-infected with HIV. CONCLUSIONS Genomic diversity and different genomic variants of HPV sequences were demonstrated. Candidate novel mutations within the L1 gene were identified in both countries which can be further investigated using functional assays.
Collapse
Affiliation(s)
- Leabaneng Tawe
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Private Bag 00712, Gaborone, Botswana.
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Wonderful T Choga
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Giacomo M Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Ontlametse T Bareng
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Private Bag 00712, Gaborone, Botswana
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Pleasure Ramatlho
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Private Bag 00712, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | | | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Private Bag 00712, Gaborone, Botswana
| | - Doreen Ramogola-Masire
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | | | - Erle Robertson
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Zetola
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Surbhi Grover
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron C Ermel
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Comprehensive Assessment of the Antigenic Impact of Human Papillomavirus Lineage Variation on Recognition by Neutralizing Monoclonal Antibodies Raised against Lineage A Major Capsid Proteins of Vaccine-Related Genotypes. J Virol 2020; 94:JVI.01236-20. [PMID: 32967963 DOI: 10.1128/jvi.01236-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus (HPV) is the causative agent of cervical and other epithelial cancers. Naturally occurring variants of HPV have been classified into lineages and sublineages based on their whole-genome sequences, but little is known about the impact of this diversity on the structure and function of viral gene products. The HPV capsid is an icosahedral lattice comprising 72 pentamers of the major capsid protein (L1) and the associated minor capsid protein (L2). We investigated the potential impact of this genome variation on the capsid antigenicity of lineage and sublineage variants of seven vaccine-relevant, oncogenic HPV genotypes by using a large panel of monoclonal antibodies (MAbs) raised against the L1 proteins of lineage A antigens. Each genotype had at least one variant that displayed a ≥4-fold reduced neutralizing antibody sensitivity against at least one MAb, demonstrating that naturally occurring variation can affect one or more functional antigenic determinants on the HPV capsid. For HPV16, HPV18, HPV31, and HPV45, the overall impact was of a low magnitude. For HPV33 (sublineages A2 and A3 and lineages B and C), HPV52 (lineage D), and HPV58 (lineage C), however, variant residues in the indicated lineages and sublineages reduced their sensitivity to neutralization by all MAbs by up to 1,000-fold, suggesting the presence of key antigenic determinants on the surface of these capsids. These determinants were resolved further by site-directed mutagenesis. These data improve our understanding of the impact of naturally occurring variation on the antigenicity of the HPV capsid of vaccine-relevant oncogenic HPV genotypes.IMPORTANCE Human papillomavirus (HPV) is the causative agent of cervical and some other epithelial cancers. HPV vaccines generate functional (neutralizing) antibodies that target the virus particles (or capsids) of the most common HPV cancer-causing genotypes. Each genotype comprises variant forms that have arisen over millennia and which include changes within the capsid proteins. In this study, we explored the potential for these naturally occurring variant capsids to impact recognition by neutralizing monoclonal antibodies. All genotypes included at least one variant form that exhibited reduced recognition by at least one antibody, with some genotypes affected more than others. These data highlight the impact of naturally occurring variation on the structure of the HPV capsid proteins of vaccine-relevant oncogenic HPV genotypes.
Collapse
|
9
|
Godi A, Kemp TJ, Pinto LA, Beddows S. Sensitivity of Human Papillomavirus (HPV) Lineage and Sublineage Variant Pseudoviruses to Neutralization by Nonavalent Vaccine Antibodies. J Infect Dis 2020; 220:1940-1945. [PMID: 31412122 PMCID: PMC6834066 DOI: 10.1093/infdis/jiz401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
Natural variants of human papillomavirus (HPV) are classified into lineages and sublineages based upon whole-genome sequence, but the impact of diversity on protein function is unclear. We investigated the susceptibility of 3–8 representative pseudovirus variants of HPV16, HPV18, HPV31, HPV33, HPV45, HPV52, and HPV58 to neutralization by nonavalent vaccine (Gardasil®9) sera. Many variants demonstrated significant differences in neutralization sensitivity from their consensus A/A1 variant but these were of a low magnitude. HPV52 D and HPV58 C variants exhibited >4-fold reduced sensitivities compared to their consensus A/A1 variant and should be considered distinct serotypes with respect to nonavalent vaccine-induced immunity.
Collapse
Affiliation(s)
- Anna Godi
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Troy J Kemp
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Maryland, USA
| | - Ligia A Pinto
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Maryland, USA
| | - Simon Beddows
- Virus Reference Department, Public Health England, London, United Kingdom
| |
Collapse
|
10
|
Godi A, Bissett SL, Masloh S, Fleury M, Li S, Zhao Q, Xia N, Cocuzza CE, Beddows S. Impact of naturally occurring variation in the human papillomavirus 52 capsid proteins on recognition by type-specific neutralising antibodies. J Gen Virol 2019; 100:237-245. [PMID: 30657447 DOI: 10.1099/jgv.0.001213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated the impact of naturally occurring variation within the major (L1) and minor (L2) capsid proteins on the antigenicity of human papillomavirus (HPV) type 52 (HPV52). L1L2 pseudoviruses (PsVs) representing HPV52 lineage and sublineage variants A1, A2, B1, B2, C and D were created and tested against serum from naturally infected individuals, preclinical antisera raised against HPV52 A1 and D virus-like particles (VLPs) and neutralising monoclonal antibodies (MAbs) raised against HPV52 A1 VLP. HPV52 lineage D PsV displayed a median 3.1 (inter-quartile range 2.0-5.6) fold lower sensitivity to antibodies elicited following natural infection with, where data were available, HPV52 lineage A. HPV52 lineage variation had a greater impact on neutralisation sensitivity to pre-clinical antisera and MAbs. Chimeric HPV52 A1 and D PsV were created which identified variant residues in the FG (Q281K) and HI (K354T, S357D) loops as being primarily responsible for the reported differential sensitivities. Homology models of the HPV52 L1 pentamer were generated which permitted mapping these residues to a small cluster on the outer rim of the surface exposed pentameric L1 protein. These data contribute to our understanding of HPV L1 variant antigenicity and may have implications for seroprevalence or vaccine immunity studies based upon HPV52 antigens.
Collapse
Affiliation(s)
- Anna Godi
- 1Virus Reference Department, Public Health England, London, UK
| | - Sara L Bissett
- 1Virus Reference Department, Public Health England, London, UK.,†Present address: Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Solène Masloh
- 1Virus Reference Department, Public Health England, London, UK.,2Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Maxime Fleury
- 2Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), UNIV Angers, UNIV Brest, Université Bretagne-Loire, Angers, France
| | - Shaowei Li
- 3National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Fujian, PR China
| | - Qinjian Zhao
- 3National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Fujian, PR China
| | - Ningshao Xia
- 3National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Fujian, PR China
| | - Clementina E Cocuzza
- 4Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Simon Beddows
- 1Virus Reference Department, Public Health England, London, UK
| |
Collapse
|