1
|
Brebu M, Simion VE, Andronie V, Jaimes-Mogollón AL, Beleño-Sáenz KDJ, Ionescu F, Welearegay TG, Suschinel R, de Lema JB, Ionescu R. Putative volatile biomarkers of bovine tuberculosis infection in breath, skin and feces of cattle. Mol Cell Biochem 2023; 478:2473-2480. [PMID: 36840799 DOI: 10.1007/s11010-023-04676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
Bovine tuberculosis (bTB) is an infectious disease with significant impact on animal health, public health and international trade. Standard bTB screening in live cattle consists in injecting tuberculin and measuring the swelling at the place of injection few days later. This procedure is expensive, time-consuming, logistically challenging, and is not conclusive before performing confirmatory tests and additional analysis. The analysis of the volatile organic compounds (VOCs) emitted by non-invasive biological samples can provide an alternative diagnostic approach suitable for bTB screening. In the present study, we analyzed VOC samples emitted through the breath, feces and skin of 18 cows diagnosed with bTB from three farms from Romania, as well as of 27 negative cows for bTB from the same farms. Analytical studies employing gas chromatography coupled to mass spectrometry revealed 80 VOCs emitted through the breath, 200 VOCs released by feces, and 80 VOCs emitted through the skin. Statistical analysis of these compounds allowed the identification of 3 tentative breath VOC biomarkers (acetone; 4-methyldecane; D-limonene), 9 tentative feces VOC biomarkers (toluene; [(1,1-dimethylethyl)thio]acetic acid; alpha-thujene; camphene; phenol; o-cymene; 3-(1,1-dimethylethyl)-2,2,4,4-tetramethyl-3-pentanol; 2,5-dimethylhexane-2,5-dihydroperoxide; 2,4-di-tert-butylphenol), and 3 tentative skin VOC biomarkers (ammonia; 1-methoxy-2-propanol; toluene). The possible pathway of these volatile biomarkers is discussed.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | - Violeta Elena Simion
- Faculty of Veterinary Medicine, Spiru Haret University, Bd. Basarabia 256, 030171, Bucharest, Romania
| | - Viorel Andronie
- Faculty of Veterinary Medicine, Spiru Haret University, Bd. Basarabia 256, 030171, Bucharest, Romania
| | - Aylen Lisset Jaimes-Mogollón
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Ciudad Universitaria, Via Bucaramanga Km 1, 543050, Pamplona, Colombia
| | - Kelvin de Jesús Beleño-Sáenz
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Ciudad Universitaria, Via Bucaramanga Km 1, 543050, Pamplona, Colombia
- Department of Mechatronics Engineering, Universidad Autónoma del Caribe, Calle 90 #46-112, 080020, Barranquilla, Colombia
| | - Florina Ionescu
- The Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, 75103, Uppsala, Sweden
| | - Tesfalem Geremariam Welearegay
- The Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, 75103, Uppsala, Sweden
| | - Raluca Suschinel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
| | - Jose Bruno de Lema
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- D Asociation, Paseo de la Montaña 14, 08402, Granollers, Barcelona, Spain
| | - Radu Ionescu
- D Asociation, Paseo de la Montaña 14, 08402, Granollers, Barcelona, Spain.
| |
Collapse
|
2
|
Zhu R, Wen Y, Wu W, Zhang L, Salman Farid M, Shan S, Wen J, Farag MA, Zhang Y, Zhao C. The flavors of edible mushrooms: A comprehensive review of volatile organic compounds and their analytical methods. Crit Rev Food Sci Nutr 2022; 64:5568-5582. [PMID: 36519553 DOI: 10.1080/10408398.2022.2155798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their distinctive flavors, edible mushrooms have gained attention in flavor-related research, and the quality of their flavors determines their consumption. The odor is a vital element of food flavor that significantly impacts consumers' perceptions and purchase decisions. The volatile organic compounds (VOCs) of the odorant ingredient is the primary factors affecting scent characteristics. VOCs analysis and identification require technical assistance. The production and use of edible mushrooms can be aided by a broader examination of their volatile constituents. This review discusses the composition of VOCs in edible mushrooms and how they affect flavors. The principles, advantages, and disadvantages of various methods for extraction, isolation, and characterization of the VOCs of edible mushrooms are also highlighted. The numerous VOCs found in edible mushrooms such as primarily C-8 compounds, organic sulfur compounds, aldehydes, ketones, alcohols, and esters are summarized along with their effects on the various characteristics of scent. Combining multiple extraction, isolation, identification, and quantification technologies will facilitate rapid and accurate analysis of VOCs in edible mushrooms as proof of sensory attributes and quality.
Collapse
Affiliation(s)
- Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Yang HY, Chen WC, Tsai RC. Accuracy of the Electronic Nose Breath Tests in Clinical Application: A Systematic Review and Meta-Analysis. BIOSENSORS 2021; 11:bios11110469. [PMID: 34821685 PMCID: PMC8615633 DOI: 10.3390/bios11110469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/25/2023]
Abstract
(1) Background: An electronic nose applies a sensor array to detect volatile biomarkers in exhaled breath to diagnose diseases. The overall diagnostic accuracy remains unknown. The objective of this review was to provide an estimate of the diagnostic accuracy of sensor-based breath tests for the diagnosis of diseases. (2) Methods: We searched the PubMed and Web of Science databases for studies published between 1 January 2010 and 14 October 2021. The search was limited to human studies published in the English language. Clinical trials were not included in this review. (3) Results: Of the 2418 records identified, 44 publications were eligible, and 5728 patients were included in the final analyses. The pooled sensitivity was 90.0% (95% CI, 86.3-92.8%, I2 = 47.7%), the specificity was 88.4% (95% CI, 87.1-89.5%, I2 = 81.4%), and the pooled area under the curve was 0.93 (95% CI 0.91-0.95). (4) Conclusion: The findings of our review suggest that a standardized report of diagnostic accuracy and a report of the accuracy in a test set are needed. Sensor array systems of electronic noses have the potential for noninvasiveness at the point-of-care in hospitals. Nevertheless, the procedure for reporting the accuracy of a diagnostic test must be standardized.
Collapse
Affiliation(s)
- Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 10055, Taiwan; (W.-C.C.); (R.-C.T.)
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Wan-Chin Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 10055, Taiwan; (W.-C.C.); (R.-C.T.)
- Department of Family Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Rodger-Chen Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 10055, Taiwan; (W.-C.C.); (R.-C.T.)
| |
Collapse
|
4
|
Ghosh C, Leon A, Koshy S, Aloum O, Al-Jabawi Y, Ismail N, Weiss ZF, Koo S. Breath-Based Diagnosis of Infectious Diseases: A Review of the Current Landscape. Clin Lab Med 2021; 41:185-202. [PMID: 34020759 DOI: 10.1016/j.cll.2021.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Various analytical methods can be applied to concentrate, separate, and examine trace volatile organic metabolites in the breath, with the potential for noninvasive, rapid, real-time identification of various disease processes, including an array of microbial infections. Although biomarker discovery and validation in microbial infections can be technically challenging, it is an approach that has shown great promise, especially for infections that are particularly difficult to identify with standard culture and molecular amplification-based approaches. This article discusses the current state of breath analysis for the diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Chiranjit Ghosh
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Armando Leon
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Seena Koshy
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Obadah Aloum
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Yazan Al-Jabawi
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Nour Ismail
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Zoe Freeman Weiss
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophia Koo
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
6
|
de Jesús Beleño-Sáenz K, Cáceres-Tarazona JM, Nol P, Jaimes-Mogollón AL, Gualdrón-Guerrero OE, Durán-Acevedo CM, Barasona JA, Vicente J, Torres MJ, Welearegay TG, Österlund L, Rhyan J, Ionescu R. Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System. SENSORS 2021; 21:s21020584. [PMID: 33467480 PMCID: PMC7829825 DOI: 10.3390/s21020584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12-24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.
Collapse
Affiliation(s)
- Kelvin de Jesús Beleño-Sáenz
- Mechatronics Engineering Department, Universidad Autónoma del Caribe, Barranquilla 080020, Colombia;
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Juan Martín Cáceres-Tarazona
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Pauline Nol
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection, Service, United States Department of Agriculture, Fort Collins, CO 80526, USA; (P.N.); (J.R.)
| | - Aylen Lisset Jaimes-Mogollón
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Oscar Eduardo Gualdrón-Guerrero
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Cristhian Manuel Durán-Acevedo
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Jose Angel Barasona
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Joaquin Vicente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, ETSIA Ciudad Real, University of Castilla La Mancha & CSIC, 13003 Ciudad Real, Spain;
| | - María José Torres
- Biomedical Institute of Sevilla (IBiS), University of Seville, University Hospital Virgen del Rocío/CSIC, 41071 Seville, Spain;
| | - Tesfalem Geremariam Welearegay
- The Ångström Laboratory, Department of Materials Science and Engineering Sciences, Uppsala University, P.O. Box 35, 75103 Uppsala, Sweden; (T.G.W.); (L.Ö.)
| | - Lars Österlund
- The Ångström Laboratory, Department of Materials Science and Engineering Sciences, Uppsala University, P.O. Box 35, 75103 Uppsala, Sweden; (T.G.W.); (L.Ö.)
| | - Jack Rhyan
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection, Service, United States Department of Agriculture, Fort Collins, CO 80526, USA; (P.N.); (J.R.)
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Correspondence:
| |
Collapse
|
7
|
Assessment of Electronic Sensing Techniques for the Rapid Identification of Alveolar Echinococcosis through Exhaled Breath Analysis. SENSORS 2020; 20:s20092666. [PMID: 32392783 PMCID: PMC7249121 DOI: 10.3390/s20092666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 11/28/2022]
Abstract
Here we present a proof-of-concept study showing the potential of a chemical gas sensors system to identify the patients with alveolar echinococcosis disease through exhaled breath analysis. The sensors system employed comprised an array of three commercial gas sensors and a custom gas sensor based on WO3 nanowires doped with gold nanoparticles, optimized for the measurement of common breath volatile organic compounds. The measurement setup was designed for the concomitant measurement of both sensors DC resistance and AC fluctuations during breath samples exposure. Discriminant Function Analysis classification models were built with features extracted from sensors responses, and the discrimination of alveolar echinococcosis was estimated through bootstrap validation. The commercial sensor that detects gases such as alkane derivatives and ethanol, associated with lipid peroxidation and intestinal gut flora, provided the best classification (63.4% success rate, 66.3% sensitivity and 54.6% specificity) when sensors’ responses were individually analyzed, while the model built with the AC features extracted from the responses of the cross-reactive sensors array yielded 90.2% classification success rate, 93.6% sensitivity and 79.4% specificity. This result paves the way for the development of a noninvasive, easy to use, fast and inexpensive diagnostic test for alveolar echinococcosis diagnosis at an early stage, when curative treatment can be applied to the patients.
Collapse
|