1
|
Thomas A, Halliday A, Clapp G, Symonds R, Hopewell‐Kelly N, McGrath C, Wheeler L, Dacey A, Noel N, Turner A, Oliver I, Wood J, Moran E, Virgo P, Tiller J, Upton P, Mitchell A, Goenka A, Brooks‐Pollock E. High Mycobacterium bovis Exposure but Low IGRA Positivity in UK Farm Workers. Zoonoses Public Health 2025; 72:369-378. [PMID: 40007044 PMCID: PMC12016005 DOI: 10.1111/zph.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Between 1999 and 2021, 505 culture-confirmed cases of M. bovis disease in humans (zoonotic tuberculosis, TB) were diagnosed in England. We aimed to estimate the prevalence of M. bovis infection in persons exposed to TB-infected cattle in England and identify any risk factors associated with latent TB infection (LTBI) in this population. METHODS We co-developed a retrospective cohort study in Southwest England, a bovine TB high risk area, with members of the UK farming community. A questionnaire captured participant characteristics, behaviours and farming practices. Linkage with historical herd testing data was used to categorise participants as low, medium or high risk for TB exposure. Interferon gamma release assay (IGRA) positivity with Quantiferon was used to determine LTBI status and linked to questionnaire data. RESULTS We recruited 90 participants at agricultural shows and a standalone event. Participants were farmers/farm workers (76/90) and veterinary professionals (10/90). Median age was 45.5 years (IQR: 19-77); 63% were male; 67% reported BCG vaccination. M. bovis exposure was via direct contact with infected cattle and consumption of raw milk. One participant in the high-risk group was IGRA positive, all other participants were IGRA negative. Estimated IGRA positivity rate was 1.1% (95% CI 0.058%-7.0%) in all participants and 4.0% (95% CI 0.21%-22%) in participants with high exposure levels. CONCLUSIONS We found limited LTBI in individuals in contact with TB-infected cattle in England, despite high and prolonged exposure. We identified a high-risk group of farmers who should be prioritised for future engagement.
Collapse
Affiliation(s)
- Amy Thomas
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Alice Halliday
- Bristol Vaccine Centre, School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Genevieve Clapp
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Ross Symonds
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | | | - Carmel McGrath
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- The National Institute for Health and Care Research Applied Research Collaboration West (NIHR ARC West)University Hospitals Bristol and Weston NHS Foundation TrustBristolUK
- Faculty of Health and Applied Sciences, School of Health and Social WellbeingUniversity of West EnglandBristolUK
| | | | | | | | | | - Isabel Oliver
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- UK Health Security AgencyLondonUK
| | - James Wood
- Cambridge Veterinary SchoolUniversity of CambridgeCambridgeUK
| | - Ed Moran
- Department of Infectious DiseaseNorth Bristol NHS TrustBristolUK
| | | | | | - Paul Upton
- Animal and Plant Health AgencyAddlestoneUK
| | | | - Anu Goenka
- Bristol Vaccine Centre, School of Cellular and Molecular MedicineUniversity of BristolBristolUK
- Department of Paediatric Immunology and Infectious DiseasesBristol Royal Hospital for ChildrenBristolUK
| | - Ellen Brooks‐Pollock
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
2
|
Dallmann-Sauer M, Fava VM, Malherbe ST, MacDonald CE, Orlova M, Kroon EE, Cobat A, Boisson-Dupuis S, Hoal EG, Abel L, Möller M, Casanova JL, Walzl G, Du Plessis N, Schurr E. Mycobacterium tuberculosis resisters despite HIV exhibit activated T cells and macrophages in their pulmonary alveoli. J Clin Invest 2025; 135:e188016. [PMID: 39836471 PMCID: PMC11957701 DOI: 10.1172/jci188016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUNDNatural resistance to Mycobacterium tuberculosis (Mtb) infection in some people with HIV (PWH) is unexplained.METHODSWe performed single cell RNA-sequencing of bronchoalveolar lavage cells, unstimulated or ex vivo stimulated with Mtb, for 7 PWH who were tuberculin skin test (TST) and IFN-γ release assay (IGRA) positive (called LTBI) and 6 who were persistently TST and IGRA negative (called resisters).RESULTSAlveolar macrophages (AM) from resisters displayed a baseline M1 macrophage phenotype while AM from LTBI did not. Resisters displayed alveolar lymphocytosis, with enrichment of all T cell subpopulations including IFNG-expressing cells. In both groups, mycobactericidal granulysin was expressed almost exclusively by a T cell subtype that coexpressed granzyme B, perforin and NK cell receptors. These poly-cytotoxic T lymphocytes (poly-CTL) overexpressed activating NK cell receptors and were increased in resister BAL. Following challenge with Mtb, only intraepithelial lymphocyte-like cells from LTBI participants responded with increased transcription of IFNG. AM from resisters responded with a stronger TNF signature at 6 hours after infection while at 24 hours after infection, AM from LTBI displayed a stronger IFN-γ signature. Conversely, at 24 hours after infection, only AM from resisters displayed an upregulation of MHC class I polypeptide-related sequence A (MICA) transcripts, which encode an activating ligand for poly-CTL.CONCLUSIONThese results suggest that poly-CTL and M1-like pre-activated AM mediate the resister phenotype in PWH.FUNDINGNational Institutes of Health. Canadian Institutes of Health Research. Digital Research Alliance of Canada. French National Research Agency. French National Agency for Research on AIDS and Viral Hepatitis. St. Giles Foundation. General Atlantic Foundation. South African Medical Research Council Centre for Tuberculosis Research.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, and
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University, Montreal, Canada
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, and
| | - Stephanus T. Malherbe
- South African Medical Research Council Centre for Tuberculosis Research; Biomedical Research Institute, Division of Immunology, Department of Biomedical Sciences and
| | - Candice E. MacDonald
- South African Medical Research Council Centre for Tuberculosis Research; Biomedical Research Institute, Division of Immunology, Department of Biomedical Sciences and
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, and
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University, Montreal, Canada
| | - Elouise E. Kroon
- South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Eileen G. Hoal
- South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Marlo Möller
- South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Gerhard Walzl
- South African Medical Research Council Centre for Tuberculosis Research; Biomedical Research Institute, Division of Immunology, Department of Biomedical Sciences and
| | - Nelita Du Plessis
- South African Medical Research Council Centre for Tuberculosis Research; Biomedical Research Institute, Division of Immunology, Department of Biomedical Sciences and
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, and
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Dill-McFarland KA, Simmons JD, Peterson GJ, Nguyen FK, Campo M, Benchek P, Stein CM, Vaisar T, Mayanja-Kizza H, Boom WH, Hawn TR. Epigenetic programming of host lipid metabolism associated with resistance to TST/IGRA conversion after exposure to Mycobacterium tuberculosis. mSystems 2024; 9:e0062824. [PMID: 39162406 PMCID: PMC11406990 DOI: 10.1128/msystems.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon-gamma (IFNγ) release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. By contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid- and cholesterol-associated pathways including the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived high-density lipoprotein from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.IMPORTANCETuberculosis (TB) remains an enduring global health challenge with millions of deaths and new cases each year. Despite recent advances in TB treatment, we lack an effective vaccine or a durable cure. While heavy exposure to Mycobacterium tuberculosis often results in latent TB latent infection (LTBI), subpopulations exist that are either resistant to infection or contain Mtb with interferon-gamma (IFNγ)-independent mechanisms not indicative of LTBI. These resisters provide an opportunity to investigate the mechanisms of TB disease and discover novel therapeutic targets. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. We identify methylation signatures in host lipid and cholesterol pathways with potential relevance to early TB clearance before the sustained IFN responses indicative of LTBI. This adds to a growing body of literature linking TB disease outcomes to host lipids.
Collapse
Affiliation(s)
| | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Glenna J. Peterson
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Felicia K. Nguyen
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Monica Campo
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Catherine M. Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Bæk O, Schaltz-Buchholzer F, Campbell A, Amenyogbe N, Campbell J, Aaby P, Benn CS, Kollmann TR. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Semin Immunopathol 2024; 46:13. [PMID: 39186134 PMCID: PMC11347488 DOI: 10.1007/s00281-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.
Collapse
Affiliation(s)
- Ole Bæk
- University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nelly Amenyogbe
- Telethon Kids Institute, Perth, Australia
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada
- Bandim Health Project, Bissau, Guinea-Bissau
| | | | - Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- University of Southern Denmark, Copenhagen, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Australia.
- Dalhousie University, 5980 University Ave #5850, 4th floor Goldbloom Pavilion, Halifax, NS, B3K 6R8, Canada.
- Bandim Health Project, Bissau, Guinea-Bissau.
| |
Collapse
|
5
|
Kayongo A, Ntayi ML, Olweny G, Kyalo E, Ndawula J, Ssengooba W, Kigozi E, Kalyesubula R, Munana R, Namaganda J, Caroline M, Sekibira R, Bagaya BS, Kateete DP, Joloba ML, Jjingo D, Sande OJ, Mayanja-Kizza H. Airway microbiome signature accurately discriminates Mycobacterium tuberculosis infection status. iScience 2024; 27:110142. [PMID: 38904070 PMCID: PMC11187240 DOI: 10.1016/j.isci.2024.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. Amidst efforts to control TB, long treatment duration, drug toxicity, and resistance underscore the need for novel therapeutic strategies. Despite advances in understanding the interplay between microbiome and disease in humans, the specific role of the microbiome in predicting disease susceptibility and discriminating infection status in tuberculosis still needs to be fully investigated. We investigated the impact of M.tb infection and M.tb-specific IFNγ immune responses on airway microbiome diversity by performing TB GeneXpert and QuantiFERON-GOLD assays during the follow-up phase of a longitudinal HIV-Lung Microbiome cohort of individuals recruited from two large independent cohorts in rural Uganda. M.tb rather than IFNγ immune response mainly drove a significant reduction in airway microbiome diversity. A microbiome signature comprising Streptococcus, Neisseria, Fusobacterium, Prevotella, Schaalia, Actinomyces, Cutibacterium, Brevibacillus, Microbacterium, and Beijerinckiacea accurately discriminated active TB from Latent TB and M.tb-uninfected individuals.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Moses Levi Ntayi
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Geoffrey Olweny
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Edward Kyalo
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Josephine Ndawula
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Willy Ssengooba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Robert Kalyesubula
- Department of Research, African Community Center for Social Sustainability (ACCESS), Nakaseke 256, Uganda
- Department of Medicine, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Richard Munana
- Department of Research, African Community Center for Social Sustainability (ACCESS), Nakaseke 256, Uganda
| | - Jesca Namaganda
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
- Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Musiime Caroline
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Rogers Sekibira
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Bernard Sentalo Bagaya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Moses Lutaakome Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Daudi Jjingo
- College of Computing and Information Sciences, Computer Science, Makerere University, Kampala 256, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Infectious Diseases Institute, Kampala 256, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, Kampala 256, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, Makerere University, College of Health Sciences, Kampala 256, Uganda
| |
Collapse
|
6
|
Shah D, Bhide S, Deshmukh R, Smith JP, Kaiplyawar S, Puri V, Yeldandi V, Date A, Nyendak M, Ho CS, Moonan PK. Test and treat approach for tuberculosis infection amongst household contacts of drug-susceptible pulmonary tuberculosis, Mumbai, India. FRONTIERS IN TUBERCULOSIS 2024; 2:10.3389/ftubr.2024.1454277. [PMID: 39421397 PMCID: PMC11485165 DOI: 10.3389/ftubr.2024.1454277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Mumbai is one of the most densely populated areas in the world and is a major contributor to the tuberculosis (TB) epidemic in India. A test and treat approach for TB infection (TBI) amongst household contacts (HHC) is part of the national policy for TB preventive treatment (TPT). However, in practice, the use of interferon-gamma release assay (IGRA) tests for infection are limited, and prevalence of TBI in Mumbai is not known. Methods We conducted a cross-sectional study among HHCs exposed to persons with microbiologically-confirmed, drug-susceptible pulmonary TB that were notified for antituberculosis treatment in Mumbai, India during September-December, 2021. Community-based field workers made home visits and offered IGRA (QuantiFERON-TB® Gold In-Tube Plus) tests to HHC aged 5 years and older. After ruling out active TB disease, HHC with IGRA-positive test results were referred for TPT. All HHC were monitored for at least 24 months for progression to active TB disease. Results Among 502 HHCs tested, 273 (54%) had IGRA-positive results. A total of 254 (93%) were classified as TBI and were eligible for TPT, of which 215 (85%) initiated TPT, and 194 (90%) completed TPT successfully. There was substantial variation in rates of TBI per household. In 32% of households, all HHC (100%) were IGRA positive and in 64% of households >50% of HHC were infected. In all, 22 HHCs (4%; 22/558) were diagnosed with TB disease; of these, five HHC were diagnosed during follow up, of which three were IGRA positive and had no evidence of disease at initial screening but chose not to initiate TPT. Conclusion A test and treat strategy for HHC resulted in the detection of a substantial proportion of TBI and secondary TB cases. Home-based IGRA testing led to high participation rates, clinical evaluations, TPT initiation, and early diagnoses of additional secondary cases. A community-focused, test and treat approach was feasible in this population and could be considered for broader implementation.
Collapse
Affiliation(s)
- Daksha Shah
- Brihanmumbai Municipal Corporation, Mumbai, India
| | - Sampada Bhide
- TB Department, Society for Health Allied Research and Education (SHARE) India, Hyderabad, India
| | - Rajesh Deshmukh
- Division of Global HIV and TB, Centers for Disease Control and Prevention, New Delhi, India
| | - Jonathan P. Smith
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Satish Kaiplyawar
- TB Department, Society for Health Allied Research and Education (SHARE) India, Hyderabad, India
| | - Varsha Puri
- Brihanmumbai Municipal Corporation, Mumbai, India
| | - Vijay Yeldandi
- TB Department, Society for Health Allied Research and Education (SHARE) India, Hyderabad, India
| | - Anand Date
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Melissa Nyendak
- Division of Global HIV and TB, Centers for Disease Control and Prevention, New Delhi, India
| | - Christine S. Ho
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Patrick K. Moonan
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
7
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
8
|
Pehrson I, Sayyab S, Das J, Idh N, Paues J, Méndez-Aranda M, Ugarte-Gil C, Lerm M. The spectrum of tuberculosis described as differential DNA methylation patterns in alveolar macrophages and alveolar T cells. Clin Epigenetics 2022; 14:175. [PMID: 36527066 PMCID: PMC9758029 DOI: 10.1186/s13148-022-01390-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Host innate immune cells have been identified as key players in the early eradication of Mycobacterium tuberculosis and in the maintenance of an anti-mycobacterial immune memory, which we and others have shown are induced through epigenetic reprogramming. Studies on human tuberculosis immunity are dominated by those using peripheral blood as surrogate markers for immunity. We aimed to investigate DNA methylation patterns in immune cells of the lung compartment by obtaining induced sputum from M. tuberculosis- exposed subjects including symptom-free subjects testing positively and negatively for latent tuberculosis as well as patients diagnosed with active tuberculosis. Alveolar macrophages and alveolar T cells were isolated from the collected sputum and DNA methylome analyses performed (Illumina Infinium Human Methylation 450 k). RESULTS Multidimensional scaling analysis revealed that DNA methylomes of cells from the tuberculosis-exposed subjects and controls appeared as separate clusters. The numerous genes that were differentially methylated between the groups were functionally connected and overlapped with previous findings of trained immunity and tuberculosis. In addition, analysis of the interferon-gamma release assay (IGRA) status of the subjects demonstrated that the IGRA status was reflected in the DNA methylome by a unique signature. CONCLUSIONS This pilot study suggests that M. tuberculosis induces epigenetic reprogramming in immune cells of the lung compartment, reflected as a specific DNA methylation pattern. The DNA methylation signature emerging from the comparison of IGRA-negative and IGRA-positive subjects revealed a spectrum of signature strength with the TB patients grouping together at one end of the spectrum, both in alveolar macrophages and T cells. DNA methylation-based biosignatures could be considered for further development towards a clinically useful tool for determining tuberculosis infection status and the level of tuberculosis exposure.
Collapse
Affiliation(s)
- Isabelle Pehrson
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Shumaila Sayyab
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Jyotirmoy Das
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden ,grid.5640.70000 0001 2162 9922Bioinformatics Unit (Core Facility), Linköping University, Linköping, Sweden ,grid.5640.70000 0001 2162 9922Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nina Idh
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Jakob Paues
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden ,grid.5640.70000 0001 2162 9922Division of Infectious Diseases, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Melissa Méndez-Aranda
- grid.11100.310000 0001 0673 9488Laboratorio de Investigación en Enfermedades Infecciosas, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - César Ugarte-Gil
- grid.11100.310000 0001 0673 9488School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru ,grid.11100.310000 0001 0673 9488Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Lerm
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| |
Collapse
|
9
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
10
|
McHenry ML, Benchek P, Malone L, Nsereko M, Mayanja-Kizza H, Boom WH, Williams SM, Hawn TR, Stein CM. Resistance to TST/IGRA conversion in Uganda: Heritability and Genome-Wide Association Study. EBioMedicine 2021; 74:103727. [PMID: 34871961 PMCID: PMC8652006 DOI: 10.1016/j.ebiom.2021.103727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
Background Pulmonary tuberculosis (TB) is one of the most deadly pathogens on earth. However, the majority of people have resistance to active disease. Further, some individuals, termed resisters (RSTRs), do not develop traditional latent tuberculosis (LTBI). The RSTR phenotype is important for understanding pathogenesis and preventing TB. The host genetic underpinnings of RSTR are largely understudied. Methods In a cohort of 908 Ugandan subjects with genome-wide data on single nucleotide polymorphisms, we assessed the heritability of the RSTR phenotype and other TB phenotypes using restricted maximum likelihood estimation (REML). We then used a subset of 263 RSTR and LTBI subjects with high quality phenotyping and long-term follow-up to identify DNA variants genome-wide associated with the RSTR phenotype relative to LTBI subjects in a case-control GWAS design and annotated and enriched these variants to better understand their role in TB pathogenesis. Results The heritability of the TB outcomes was very high, at 55% for TB vs. LTBI and 50.4% for RSTR vs. LTBI among HIV- subjects, controlling for age and sex. We identified 27 loci associated with the RSTR phenotype (P<5e-05) and our annotation and enrichment analyses suggest an important regulatory role for many of them. Interpretation The heritability results show that the genetic contribution to variation in TB outcomes is very high and our GWAS results highlight variants that may play an important role in resistance to infection as well as TB pathogenesis as a whole.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - LaShaunda Malone
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mary Nsereko
- Department of Medicine, School of Medicine, Makerere University, Kampala, Uganda
| | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Scott M Williams
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
A differential DNA methylome signature of pulmonary immune cells from individuals converting to latent tuberculosis infection. Sci Rep 2021; 11:19418. [PMID: 34593857 PMCID: PMC8484443 DOI: 10.1038/s41598-021-98542-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, spreads via aerosols and the first encounter with the immune system is with the pulmonary-resident immune cells. The role of epigenetic regulations in the immune cells is emerging and we have previously shown that macrophages capacity to kill M. tuberculosis is reflected in the DNA methylome. The aim of this study was to investigate epigenetic modifications in alveolar macrophages and T cells in a cohort of medical students with an increased risk of TB exposure, longitudinally. DNA methylome analysis revealed that a unique DNA methylation profile was present in healthy subjects who later developed latent TB during the study. The profile was reflected in a different overall DNA methylation distribution as well as a distinct set of differentially methylated genes (DMGs). The DMGs were over-represented in pathways related to metabolic reprogramming of macrophages and T cell migration and IFN-γ production, pathways previously reported important in TB control. In conclusion, we identified a unique DNA methylation signature in individuals, with no peripheral immune response to M. tuberculosis antigen who later developed latent TB. Together the study suggests that the DNA methylation status of pulmonary immune cells can reveal who will develop latent TB infection.
Collapse
|
12
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Barliana MI, Kusuma ASW, Insani WN, Alfian SD, Diantini A, Mutakin M, Rostinawati T, Herlambang H, Puspitasari IM, Suwantika AA, Abdulah R. Genetic variation of ABCB1 (rs1128503, rs1045642) and CYP2E1 rs3813867 with the duration of tuberculosis therapy: a pilot study among tuberculosis patients in Indonesia. BMC Res Notes 2021; 14:295. [PMID: 34332626 PMCID: PMC8325820 DOI: 10.1186/s13104-021-05711-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objective The risk of contracting tuberculosis (TB) and the efficacy of TB therapy are affected by several factors, including genetic variation among populations. In the Indonesian population, data on the genes involved in drug transport and metabolism of TB therapy are limited. The aim of this study was to identify the genetic profile of the ABCB1 gene (rs1128503 and rs1045642) and CYP2E1 gene (rs3813867) in Indonesians with TB. This study was a cross-sectional study of 50 TB outpatients in Jambi city, Indonesia. Sociodemographic characteristics were obtained from medical records. Whole blood was collected, and genomic DNA was isolated. Single nucleotide polymorphisms were determined using polymerase chain reaction-restriction fragment length polymorphism with HaeIII, MboI, and PstI for rs1128503, rs1045642 (ABCB1), and rs3813867 (CYP2E1), respectively. Result The frequency of alleles of each gene was analyzed by Hardy–Weinberg equilibrium. The genetic profiles of ABCB1 rs1128503 and rs1045642 were varied (CC, CT, TT), while CYP2E1 rs3813867 was present in CC (wild type). The genetic variations of ABCB1 and CYP2E1 may have no significant correlation with the duration of TB therapy. Nevertheless, this study may provide as preliminary results for the genetic profiles of ABCB1 (rs1128503, rs1045642) and CYP2E1 (rs3813867) in the Indonesia population. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05711-8.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia. .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.
| | - Arif Satria Wira Kusuma
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia
| | - Widya Norma Insani
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Sofa Dewi Alfian
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Tina Rostinawati
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia
| | | | - Irma Melyani Puspitasari
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Auliya Abdurrohim Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
14
|
Simmons JD, Van PT, Stein CM, Chihota V, Ntshiqa T, Maenetje P, Peterson GJ, Reynolds A, Benchek P, Velen K, Fielding KL, Grant AD, Graustein AD, Nguyen FK, Seshadri C, Gottardo R, Mayanja-Kizza H, Wallis RS, Churchyard G, Boom WH, Hawn TR. Monocyte metabolic transcriptional programs associate with resistance to tuberculin skin test/interferon-γ release assay conversion. J Clin Invest 2021; 131:e140073. [PMID: 34111032 DOI: 10.1172/jci140073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
After extensive exposure to Mycobacterium tuberculosis (Mtb), most individuals acquire latent Mtb infection (LTBI) defined by a positive tuberculin skin test (TST) or interferon-γ release assay (IGRA). To identify mechanisms of resistance to Mtb infection, we compared transcriptional profiles from highly exposed contacts who resist TST/IGRA conversion (resisters, RSTRs) and controls with LTBI using RNAseq. Gene sets related to carbon metabolism and free fatty acid (FFA) transcriptional responses enriched across 2 independent cohorts suggesting RSTR and LTBI monocytes have distinct activation states. We compared intracellular Mtb replication in macrophages treated with FFAs and found that palmitic acid (PA), but not oleic acid (OA), enhanced Mtb intracellular growth. This PA activity correlated with its inhibition of proinflammatory cytokines in Mtb-infected cells. Mtb growth restriction in PA-treated macrophages was restored by activation of AMP kinase (AMPK), a central host metabolic regulator known to be inhibited by PA. Finally, we genotyped AMPK variants and found 7 SNPs in PRKAG2, which encodes the AMPK-γ subunit, that strongly associated with RSTR status. Taken together, RSTR and LTBI phenotypes are distinguished by FFA transcriptional programs and by genetic variation in a central metabolic regulator, which suggests immunometabolic pathways regulate TST/IGRA conversion.
Collapse
Affiliation(s)
- Jason D Simmons
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Phu T Van
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences and.,Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Violet Chihota
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,The Aurum Institute, Parktown, South Africa
| | | | | | - Glenna J Peterson
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anthony Reynolds
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Katherine L Fielding
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,TB Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison D Grant
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa.,TB Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Africa Health Research Institute, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew D Graustein
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Felicia K Nguyen
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chetan Seshadri
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R Hawn
- TB Research and Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
16
|
Weiner J, Domaszewska T, Donkor S, Kaufmann SHE, Hill PC, Sutherland JS. Changes in Transcript, Metabolite, and Antibody Reactivity During the Early Protective Immune Response in Humans to Mycobacterium tuberculosis Infection. Clin Infect Dis 2021; 71:30-40. [PMID: 31412355 PMCID: PMC7312225 DOI: 10.1093/cid/ciz785] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background Strategies to prevent Mycobacterium tuberculosis (Mtb) infection are urgently required. In this study, we aimed to identify correlates of protection against Mtb infection. Methods Two groups of Mtb-exposed contacts of tuberculosis (TB) patients were recruited and classified according to their Mtb infection status using the tuberculin skin test (TST; cohort 1) or QuantiFERON (QFT; cohort 2). A negative reading at baseline with a positive reading at follow-up classified TST or QFT converters and a negative reading at both time points classified TST or QFT nonconverters. Ribonucleic acid sequencing, Mtb proteome arrays, and metabolic profiling were performed. Results Several genes were found to be differentially expressed at baseline between converters and nonconverters. Gene set enrichment analysis revealed a distinct B-cell gene signature in TST nonconverters compared to converters. When infection status was defined by QFT, enrichment of type I interferon was observed. A remarkable area under the curve (AUC) of 1.0 was observed for IgA reactivity to Rv0134 and an AUC of 0.98 for IgA reactivity to both Rv0629c and Rv2188c. IgG reactivity to Rv3223c resulted in an AUC of 0.96 and was markedly higher compared to TST nonconverters. We also identified several differences in metabolite profiles, including changes in biomarkers of inflammation, fatty acid metabolism, and bile acids. Pantothenate (vitamin B5) was significantly increased in TST nonconverters compared to converters at baseline (q = 0.0060). Conclusions These data provide new insights into the early protective response to Mtb infection and possible avenues to interfere with Mtb infection, including vitamin B5 supplementation. Analysis of blood from highly exposed household contacts from The Gambia who never develop latent Mycobacterium tuberculosis infection shows distinct transcriptomic, antibody, and metabolomic profiles compared to those who develop latent tuberculosis infection but prior to any signs of infection.
Collapse
Affiliation(s)
- January Weiner
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, USA
| | - Philip C Hill
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,Otago University, Otago, New Zealand
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
17
|
Morrison H, McShane H. Local Pulmonary Immunological Biomarkers in Tuberculosis. Front Immunol 2021; 12:640916. [PMID: 33746984 PMCID: PMC7973084 DOI: 10.3389/fimmu.2021.640916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Regardless of the eventual site of disease, the point of entry for Mycobacterium tuberculosis (M.tb) is via the respiratory tract and tuberculosis (TB) remains primarily a disease of the lungs. Immunological biomarkers detected from the respiratory compartment may be of particular interest in understanding the complex immune response to M.tb infection and may more accurately reflect disease activity than those seen in peripheral samples. Studies in humans and a variety of animal models have shown that biomarkers detected in response to mycobacterial challenge are highly localized, with signals seen in respiratory samples that are absent from the peripheral blood. Increased understanding of the role of pulmonary specific biomarkers may prove particularly valuable in the field of TB vaccines. Here, development of vaccine candidates is hampered by the lack of defined correlates of protection (COPs). Assessing vaccine immunogenicity in humans has primarily focussed on detecting these potential markers of protection in peripheral blood. However, further understanding of the importance of local pulmonary immune responses suggests alternative approaches may be necessary. For example, non-circulating tissue resident memory T cells (TRM) play a key role in host mycobacterial defenses and detecting their associated biomarkers can only be achieved by interrogating respiratory samples such as bronchoalveolar lavage fluid or tissue biopsies. Here, we review what is known about pulmonary specific immunological biomarkers and discuss potential applications and further research needs.
Collapse
Affiliation(s)
- Hazel Morrison
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Genome-wide association study of resistance to Mycobacterium tuberculosis infection identifies a locus at 10q26.2 in three distinct populations. PLoS Genet 2021; 17:e1009392. [PMID: 33661925 PMCID: PMC7963100 DOI: 10.1371/journal.pgen.1009392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/16/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The natural history of tuberculosis (TB) is characterized by a large inter-individual outcome variability after exposure to Mycobacterium tuberculosis. Specifically, some highly exposed individuals remain resistant to M. tuberculosis infection, as inferred by tuberculin skin test (TST) or interferon-gamma release assays (IGRAs). We performed a genome-wide association study of resistance to M. tuberculosis infection in an endemic region of Southern Vietnam. We enrolled household contacts (HHC) of pulmonary TB cases and compared subjects who were negative for both TST and IGRA (n = 185) with infected individuals (n = 353) who were either positive for both TST and IGRA or had a diagnosis of TB. We found a genome-wide significant locus on chromosome 10q26.2 with a cluster of variants associated with strong protection against M. tuberculosis infection (OR = 0.42, 95%CI 0.35–0.49, P = 3.71×10−8, for the genotyped variant rs17155120). The locus was replicated in a French multi-ethnic HHC cohort and a familial admixed cohort from a hyper-endemic area of South Africa, with an overall OR for rs17155120 estimated at 0.50 (95%CI 0.45–0.55, P = 1.26×10−9). The variants are located in intronic regions and upstream of C10orf90, a tumor suppressor gene which encodes an ubiquitin ligase activating the transcription factor p53. In silico analysis showed that the protective alleles were associated with a decreased expression in monocytes of the nearby gene ADAM12 which could lead to an enhanced response of Th17 lymphocytes. Our results reveal a novel locus controlling resistance to M. tuberculosis infection across different populations. There is strong epidemiological evidence that a proportion of highly exposed individuals remain resistant to M. tuberculosis infection, as shown by a negative result for Tuberculin Skin Test (TST) or IFN-γ Release Assays (IGRAs). We performed a genome-wide association study between resistant and infected individuals, which were carefully selected employing a household contact design to maximize exposure by infectious index patients. We employed stringently defined concordant results for both TST and IGRA assays to avoid misclassifications. We discovered a locus at 10q26.2 associated with resistance to M. tuberculosis infection in a Vietnamese discovery cohort. This locus could be replicated in two independent cohorts from different epidemiological settings and of diverse ancestries enrolled in France and South Africa.
Collapse
|
19
|
Gutierrez J, Kroon EE, Möller M, Stein CM. Phenotype Definition for "Resisters" to Mycobacterium tuberculosis Infection in the Literature-A Review and Recommendations. Front Immunol 2021; 12:619988. [PMID: 33717116 PMCID: PMC7946835 DOI: 10.3389/fimmu.2021.619988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis (TB) remains a worldwide problem. Despite the high disease rate, not all who are infected with Mycobacterium Tuberculosis (Mtb) develop disease. Interferon-γ (IFN-γ) specific T cell immune assays such as Quantiferon and Elispot, as well as a skin hypersensitivity test, known as a tuberculin skin test, are widely used to infer infection. These assays measure immune conversion in response to Mtb. Some individuals measure persistently negative to immune conversion, despite high and prolonged exposure to Mtb. Increasing interest into this phenotype has led to multiple publications describing various aspects of these responses. However, there is a lack of a unified "resister" definition. A universal definition will improve cross study data comparisons and assist with future study design and planning. We review the current literature describing this phenotype and make recommendations for future studies.
Collapse
Affiliation(s)
- Jesús Gutierrez
- Department of Population and Quantitative Health Science, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elouise E. Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Catherine M. Stein
- Department of Population and Quantitative Health Science, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
20
|
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2020; 21:83-100. [PMID: 33353987 PMCID: PMC7754704 DOI: 10.1038/s41577-020-00479-7] [Citation(s) in RCA: 805] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Immunization is a cornerstone of public health policy and is demonstrably highly cost-effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, it is clear that there are major challenges ahead to develop new vaccines for difficult-to-target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts. This Review, aimed at a broad scientific audience, provides an introductory guide to the history, development and immunological basis of vaccines, immunization and related issues to provide insight into the challenges facing immunologists who are designing the next generation of vaccines.
Collapse
Affiliation(s)
- Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
| | - Else M Bijker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
21
|
Stein CM, Mayanja-Kizza H, Hawn TR, Boom WH. Importance of Study Design and Phenotype Definition in Ongoing Studies of Resistance to Latent Mycobacterium tuberculosis Infection. J Infect Dis 2020; 221:1025-1026. [PMID: 31665355 DOI: 10.1093/infdis/jiz539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 01/19/2023] Open
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Divisinon of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine, School of Medicine, Makerere University and Mulago Hospital, Kampala, Uganda
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - W Henry Boom
- Divisinon of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
22
|
BCG Vaccine Protection against TB Infection among Children Older than 5 Years in Close Contact with an Infectious Adult TB Case. J Clin Med 2020; 9:jcm9103224. [PMID: 33050061 PMCID: PMC7601378 DOI: 10.3390/jcm9103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
The Bacille Calmette–Guérin (BCG) vaccine has been shown to provide considerable protection against miliary or meningeal tuberculosis (TB), but whether it prevents other forms of disease remains controversial. Recent evidence has shown that the BCG vaccine also provides protection against latent TB infection (LTBI). The aim of the current study was to examine whether BCG has a protective role against LTBI among children in close contact with an adult index case in a low TB endemicity setting with the use of the QuantiFERON-TB Gold In-Tube test (QFT-GIT). A cross-sectional study was conducted over a 10-year period among children referred to our outpatient TB clinic with a history of close contact with an adult with pulmonary TB. All subjects had a QFT-GIT performed. In total, 207 children > 5 to 16 years of age with known recent exposure were enrolled. BCG-vaccinated subjects had a 59% lower risk of presenting with LTBI after close contact with an adult index case compared with unvaccinated subjects (OR = 0.41, 95% CI: 0.23–0.73, p = 0.002). After adjustment for possible confounders, the protective effect of prior BCG immunization was estimated at 68% (OR = 0.32, 95% CI: 0.15–0.66, p = 0.002). Other risk factors for LTBI included a history of migration (OR = 2.27, 95% CI: 1.13–4.53, p = 0.021) and transmission of infection to other exposed child contacts (OR = 4.62, 95% CI: 2.27–9.39, p = 0.001). We were able to determine a strong protective role of BCG vaccination among children older than 5 years, immunized at school entry, who had close contact with an adult infectious TB case.
Collapse
|
23
|
Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development. Cells 2020; 9:cells9092109. [PMID: 32948003 PMCID: PMC7564904 DOI: 10.3390/cells9092109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined.
Collapse
|
24
|
Kamat S, Kumari M. BCG Against SARS-CoV-2: Second Youth of an Old Age Vaccine? Front Pharmacol 2020; 11:1050. [PMID: 32754036 PMCID: PMC7381314 DOI: 10.3389/fphar.2020.01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
The sudden outbreak of the COVID-19 pandemic, caused by SARS-CoV-2, has put the whole world into a difficult situation, asking for the immediate development of therapeutics and vaccines against the disease. Bacillus Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, has been administered for decades in many countries against tuberculosis. Today, when a solution against SARS-CoV-2 is urgently needed, the BCG vaccine has again come into the limelight owing to its earlier prevention of non-specific diseases. Data suggest a higher mortality rate of COVID-19 in non-BCG vaccinated countries, whereas the nations opting for BCG immunization have a comparatively lower mortality rate. The BCG vaccine is known to induce ‘trained immunity’ and generate ‘non-specific’ heterologous immune responses. It can confer anti-viral immunity by eliciting the production of pro-inflammatory cytokines, IL-6, TNF-α, IFN-γ, and IL-1β. Though the initial results look promising, a long trail still needs to be followed to avoid false promises. The accuracy of nationwide data, the role of an already activated immune system against ‘cytokine storms’, optimization and timing of vaccine dosage, and balancing demand-supply are some of the relevant issues that must be resolved before reaching a final conclusion.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
25
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
26
|
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104204. [PMID: 31981609 PMCID: PMC7192760 DOI: 10.1016/j.meegid.2020.104204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis is the most lethal infectious disease globally, but the vast majority of people who are exposed to the primary causative pathogen, Mycobacterium tuberculosis (MTB), do not develop active disease. Most people do, however, show signs of infection that remain throughout their lifetimes. In this review, we develop a framework that describes several possible transitions from pathogen exposure to TB disease and reflect on the genetics studies to address many of these. The evidence strongly supports a human genetic component for both infection and active disease, but many of the existing studies, including some of our own, do not clearly delineate what transition(s) is being explicitly examined. This can make interpretation difficult in terms of why only some people develop active disease. Nonetheless, both linkage peaks and associations with either active disease or latent infection have been identified. For transition to active disease, pathways defined as active TB altered T and B cell signaling in rheumatoid arthritis and T helper cell differentiation are significantly associated. Pathways that affect transition from exposure to infection are less clear-cut, as studies of this phenotype are less common, and a primary response, if it exists, is not yet well defined. Lastly, we discuss the role that interaction between the MTB lineage and human genetics can play in TB disease, especially severity. Severity of TB is at present the only way to study putative co-evolution between MTB and humans as it is impossible in the absence of disease to know the MTB lineage(s) to which an individual has been exposed. In addition, even though severity has been defined in multiple heterogeneous ways, it appears that MTB-human co-evolution may shape pathogenicity. Further analysis of co-evolution, requiring careful analysis of paired samples, may be the best way to completely assess the genetic basis of TB.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
27
|
Koeken VACM, van der Pasch ES, Leijte GP, Mourits VP, de Bree LCJ, Moorlag SJCFM, Budnick I, Idh N, Lerm M, Kox M, van Laarhoven A, Netea MG, van Crevel R. The effect of BCG vaccination on alveolar macrophages obtained from induced sputum from healthy volunteers. Cytokine 2020; 133:155135. [PMID: 32534356 DOI: 10.1016/j.cyto.2020.155135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The anti-tuberculosis vaccine Bacillus Calmette-Guérin (BCG) is able to boost innate immune responses through a process called 'trained immunity'. It is hypothesized that BCG-induced trained immunity contributes to protection against Mycobacterium tuberculosis infection. Since alveolar macrophages are the first cell type to encounter M. tuberculosis upon infection, we aimed to investigate the immunomodulatory effects of BCG vaccination on alveolar macrophages. Searching for a less-invasive method than bronchoalveolar lavage, we optimized the isolation of alveolar macrophages from induced sputum of healthy volunteers. Viable alveolar macrophages could be successfully isolated from induced sputum and showed signs of activation already upon retrieval. Further flow cytometric analyses revealed that at baseline, higher expression levels of activation markers were observed on the alveolar macrophages of smokers compared to non-smokers. In addition, BCG vaccination resulted in decreased expression of the activation markers CD11b and HLA-DR on alveolar macrophages. Future studies should evaluate the functional consequences of this reduced activation of alveolar macrophages after BCG vaccination.
Collapse
Affiliation(s)
- Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Eva S van der Pasch
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Guus P Leijte
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isadore Budnick
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nina Idh
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Wang MS, Liu XJ. Heterogenous Immune Response to TB is Not a False Negative. Am J Trop Med Hyg 2020; 102:699. [PMID: 32519645 PMCID: PMC7056440 DOI: 10.4269/ajtmh.19-0896b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Xing Z, Afkhami S, Bavananthasivam J, Fritz DK, D'Agostino MR, Vaseghi-Shanjani M, Yao Y, Jeyanathan M. Innate immune memory of tissue-resident macrophages and trained innate immunity: Re-vamping vaccine concept and strategies. J Leukoc Biol 2020; 108:825-834. [PMID: 32125045 DOI: 10.1002/jlb.4mr0220-446r] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
In the past few years, our understanding of immunological memory has evolved remarkably due to a growing body of new knowledge in innate immune memory and immunity. Immunological memory now encompasses both innate and adaptive immune memory. The hypo-reactive and hyper-reactive types of innate immune memory lead to a suppressed and enhanced innate immune protective outcome, respectively. The latter is also named trained innate immunity (TII). The emerging information on innate immune memory has not only shed new light on the mechanisms of host defense but is also revolutionizing our long-held view of vaccination and vaccine strategies. Our current review will examine recent progress and knowledge gaps in innate immune memory with a focus on tissue-resident Mϕs, particularly lung Mϕs, and their relationship to local antimicrobial innate immunity. We will also discuss the impact of innate immune memory and TII on our understanding of vaccine concept and strategies and the significance of respiratory mucosal route of vaccination against respiratory pathogens.
Collapse
Affiliation(s)
- Zhou Xing
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dominik K Fritz
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Current affiliation: Department of Immunology, Zhejiang University, Zhejiang, China
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Hamilton, Ontario, Canada.,M. G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada.,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Human global and population-specific genetic susceptibility to Mycobacterium tuberculosis infection and disease. Curr Opin Pulm Med 2020; 26:302-310. [PMID: 32101905 DOI: 10.1097/mcp.0000000000000672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Multiple lines of evidence support a role of the host genetic component in Mycobacterium tuberculosis infection and disease progression. However, genomic studies of tuberculosis susceptibility have been disappointing compared with that of other complex disorders. Recently the field has explored alternative strategies to facilitate locus discovery. Results emanating from these efforts during the last 18 months are addressed in this review. RECENT FINDINGS There has been a renewed focus on the refinement of phenotypic definitions of infection and disease as well as on age-related, sex-specific and population-specific effects. Genome-wide association studies have yielded candidate genes but the findings have not always been transferable to all population groups. Candidate gene association studies remain popular as it is used for GWAS replication and is affordable, particularly in lower and middle-income countries. Pharmacogenetic studies involving tuberculosis drugs may locate variants that can be cost-effectively genotyped to identify individuals at risk of developing adverse events during treatment. SUMMARY Additional GWAS and candidate gene association studies of crudely defined study participants are unlikely to make further important contributions to the TB susceptibility field. Instead refined phenotyping will allow the elucidation of genetic mechanisms contributing to infection and disease in distinct populations and the calculation of polygenic risk scores.
Collapse
|
31
|
Choreño-Parra JA, Weinstein LI, Yunis EJ, Zúñiga J, Hernández-Pando R. Thinking Outside the Box: Innate- and B Cell-Memory Responses as Novel Protective Mechanisms Against Tuberculosis. Front Immunol 2020; 11:226. [PMID: 32117325 PMCID: PMC7034257 DOI: 10.3389/fimmu.2020.00226] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is currently the deadliest infectious disease worldwide. Failure to create a highly effective vaccine has limited the control of the TB epidemic. Historically, the vaccine field has relied on the paradigm that IFN-γ-mediated CD4+ T cell memory responses are the principal correlate of protection in TB. Nonetheless, the demonstration that other cellular subsets offer protective memory responses against Mycobacterium tuberculosis (Mtb) is emerging. Among these are memory-like features of macrophages, myeloid cell precursors, natural killer (NK) cells, and innate lymphoid cells (ILCs). Additionally, the dynamics of B cell memory responses have been recently characterized at different stages of the clinical spectrum of Mtb infection, suggesting a role for B cells in human TB. A better understanding of the immune mechanisms underlying such responses is crucial to better comprehend protective immunity in TB. Furthermore, targeting immune compartments other than CD4+ T cells in TB vaccine strategies may benefit a significant proportion of patients co-infected with Mtb and the human immunodeficiency virus (HIV). Here, we summarize the memory responses of innate immune cells and B cells against Mtb and propose them as novel correlates of protection that could be harnessed in future vaccine development programs.
Collapse
Affiliation(s)
- José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - León Islas Weinstein
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Edmond J Yunis
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
32
|
Abstract
Tuberculosis (TB) is the leading killer among all infectious diseases worldwide despite extensive use of the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine. A safer and more effective vaccine than BCG is urgently required. More than a dozen TB vaccine candidates are under active evaluation in clinical trials aimed to prevent infection, disease, and recurrence. After decades of extensive research, renewed promise of an effective vaccine against this ancient airborne disease has recently emerged. In two innovative phase 2b vaccine clinical trials, one for the prevention of Mycobacterium tuberculosis infection in healthy adolescents and another for the prevention of TB disease in M. tuberculosis-infected adults, efficacy signals were observed. These breakthroughs, based on the greatly expanded knowledge of the M. tuberculosis infection spectrum, immunology of TB, and vaccine platforms, have reinvigorated the TB vaccine field. Here, we review our current understanding of natural immunity to TB, limitations in BCG immunity that are guiding vaccinologists to design novel TB vaccine candidates and concepts, and the desired attributes of a modern TB vaccine. We provide an overview of the progress of TB vaccine candidates in clinical evaluation, perspectives on the challenges faced by current vaccine concepts, and potential avenues to build on recent successes and accelerate the TB vaccine research-and-development trajectory.
Collapse
|