1
|
Feher K, Graus MS, Coelho S, Farrell MV, Goyette J, Gaus K. K-Neighbourhood Analysis: A Method for Understanding SMLM Images as Compositions of Local Neighbourhoods. FRONTIERS IN BIOINFORMATICS 2021; 1:724127. [PMID: 36303786 PMCID: PMC9581049 DOI: 10.3389/fbinf.2021.724127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Single molecule localisation microscopy (SMLM) is a powerful tool that has revealed the spatial arrangement of cell surface signalling proteins, producing data of enormous complexity. The complexity is partly driven by the convolution of technical and biological signal components, and partly by the challenge of pooling information across many distinct cells. To address these two particular challenges, we have devised a novel algorithm called K-neighbourhood analysis (KNA), which emphasises the fact that each image can also be viewed as a composition of local neighbourhoods. KNA is based on a novel transformation, spatial neighbourhood principal component analysis (SNPCA), which is defined by the PCA of the normalised K-nearest neighbour vectors of a spatially random point pattern. Here, we use KNA to define a novel visualisation of individual images, to compare within and between groups of images and to investigate the preferential patterns of phosphorylation. This methodology is also highly flexible and can be used to augment existing clustering methods by providing clustering diagnostics as well as revealing substructure within microclusters. In summary, we have presented a highly flexible analysis tool that presents new conceptual possibilities in the analysis of SMLM images.
Collapse
Affiliation(s)
- Kristen Feher
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Matthew S. Graus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Simao Coelho
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Megan V. Farrell
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Ponjavic A, McColl J, Carr AR, Santos AM, Kulenkampff K, Lippert A, Davis SJ, Klenerman D, Lee SF. Single-Molecule Light-Sheet Imaging of Suspended T Cells. Biophys J 2018; 114:2200-2211. [PMID: 29742413 PMCID: PMC5961759 DOI: 10.1016/j.bpj.2018.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/26/2022] Open
Abstract
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose.
Collapse
Affiliation(s)
- Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexander R Carr
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Klara Kulenkampff
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Anna Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Cong BB, Gao MH, Li B, Wang B, Zhang B, Wang LN, Zhang SC, Li HQ, Wang Z, Han SY. Overexpression of Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains induces cluster of differentiation 59-mediated apoptosis in Jurkat cells. Exp Ther Med 2018; 15:4139-4148. [PMID: 29725363 PMCID: PMC5920370 DOI: 10.3892/etm.2018.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains (CBP/PAG) is a membrane-bound adaptor protein that downregulates the activation of Src family kinases present in lipid rafts. To elucidate the role of CBP/PAG in human T cell activation, a cell line overexpressing CBP/PAG was constructed and the function of CBP/PAG in Jurkat cells was examined. The present study revealed that increased CBP/PAG expression in T cells significantly enhanced their apoptosis and reduced cellular activation and proliferation. Overexpression of CBP/PAG suppressed the growth of Jurkat cells by recruiting c-Src and its negative regulator, C-terminal Src kinase (CSK), to lipid rafts. The negative regulation of CBP/PAG was enhanced in the presence of anti-cluster of differentiation (CD)59 monoclonal antibodies. In addition, a significant association was revealed between the location of CBP/PAG and CD59, which were co-expressed in the same region of the cell membrane, implicating a potential overlap of the elicited signaling pathways. These results indicate that CBP/PAG functions as a negative regulator of cell signal transduction and suggest that CD59 may strengthen the role of negative feedback regulation.
Collapse
Affiliation(s)
- Bei-Bei Cong
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mei-Hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Li
- Department of Genetics, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Li-Na Wang
- Department of Blood Transfusion, Shandong Qilu Hospital, Qingdao, Shandong 266071, P.R. China
| | - Shu-Chao Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hua-Qiao Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhong Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Shu-Yi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
4
|
Ohradanova-Repic A, Nogueira E, Hartl I, Gomes AC, Preto A, Steinhuber E, Mühlgrabner V, Repic M, Kuttke M, Zwirzitz A, Prouza M, Suchanek M, Wozniak-Knopp G, Horejsi V, Schabbauer G, Cavaco-Paulo A, Stockinger H. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:123-130. [PMID: 28939491 DOI: 10.1016/j.nano.2017.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
Liposomes functionalized with monoclonal antibodies or their antigen-binding fragments have attracted much attention as specific drug delivery devices for treatment of various diseases including cancer. The conjugation of antibodies to liposomes is usually achieved by covalent coupling using cross-linkers in a reaction that might adversely affect the characteristics of the final product. Here we present an alternative strategy for liposome functionalization: we created a recombinant Fab antibody fragment genetically fused on its C-terminus to the hydrophobic peptide derived from pulmonary surfactant protein D, which became inserted into the liposomal bilayer during liposomal preparation and anchored the Fab onto the liposome surface. The Fab-conjugated liposomes specifically recognized antigen-positive cells and efficiently delivered their cargo, the Alexa Fluor 647 dye, into target cells in vitro and in vivo. In conclusion, our approach offers the potential for straightforward development of nanomedicines functionalized with an antibody of choice without the need of harmful cross-linkers.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Eugénia Nogueira
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Ingrid Hartl
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Eva Steinhuber
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mühlgrabner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mario Kuttke
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Zwirzitz
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Vaclav Horejsi
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Gernot Schabbauer
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Multi-color single-molecule tracking and subtrajectory analysis for quantification of spatiotemporal dynamics and kinetics upon T cell activation. Sci Rep 2017; 7:6994. [PMID: 28765585 PMCID: PMC5539329 DOI: 10.1038/s41598-017-06960-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
The dynamic properties of molecules in living cells are attracting increasing interest. We propose a new method, moving subtrajectory analysis using single-molecule tracking, and demonstrate its utility in the spatiotemporal quantification of not only dynamics but also the kinetics of interactions using single-color images. Combining this technique with three-color simultaneous single-molecule imaging, we quantified the dynamics and kinetics of molecules in spatial relation to T cell receptor (TCR) microclusters, which trigger TCR signaling. CD3ε, a component of the TCR/CD3 complex, and CD45, a phosphatase positively and negatively regulating signaling, were each found in two mobility states: faster (associated) and slower (dissociated) states. Dynamics analysis suggests that the microclusters are loosely composed of heterogeneous nanoregions, possibly surrounded by a weak barrier. Kinetics analysis quantified the association and dissociation rates of interactions with the microclusters. The associations of both CD3ε and CD45 were single-step processes. In contrast, their dissociations were each composed of two components, indicating transient and stable associated states. Inside the microclusters, the association was accelerated, and the stable association was increased. Only CD45 showed acceleration of association at the microcluster boundary, suggesting specific affinity on the boundary. Thus, this method is an innovative and versatile tool for spatiotemporal quantification.
Collapse
|
6
|
Lee SA, Ponjavic A, Siv C, Lee SF, Biteen JS. Nanoscopic Cellular Imaging: Confinement Broadens Understanding. ACS NANO 2016; 10:8143-8153. [PMID: 27602688 DOI: 10.1021/acsnano.6b02863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, single-molecule fluorescence imaging has been reconciling a fundamental mismatch between optical microscopy and subcellular biophysics. However, the next step in nanoscale imaging in living cells can be accessed only by optical excitation confinement geometries. Here, we review three methods of confinement that can enable nanoscale imaging in living cells: excitation confinement by laser illumination with beam shaping; physical confinement by micron-scale geometries in bacterial cells; and nanoscale confinement by nanophotonics.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Aleks Ponjavic
- Department of Chemistry, Cambridge University , Cambridge CB2 1EW, United Kingdom
| | - Chanrith Siv
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Steven F Lee
- Department of Chemistry, Cambridge University , Cambridge CB2 1EW, United Kingdom
| | - Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S. Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell 2016; 164:128-140. [PMID: 26771488 DOI: 10.1016/j.cell.2015.11.048] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/07/2015] [Accepted: 11/14/2015] [Indexed: 01/12/2023]
Abstract
Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of particle engagement. We investigated how the major phosphatase CD45 is excluded from contact sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding integrin wave facilitates the zippering of Fcγ receptors onto the target and integrates the information from sparse receptor-ligand complexes, coordinating the progression and ultimate closure of the phagocytic cup.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wendy Furuya
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Elliot C Woods
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC 27599-7260, USA
| | - Boris Hinz
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | | - Raibatak Das
- Department of Integrative Biology, University of Colorado, Denver, CO 80217-3364, USA
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Keenan Research Centre, St. Michael's Hospital, Toronto, ON M5S 1T8, Canada.
| |
Collapse
|
8
|
McArdel SL, Terhorst C, Sharpe AH. Roles of CD48 in regulating immunity and tolerance. Clin Immunol 2016; 164:10-20. [PMID: 26794910 DOI: 10.1016/j.clim.2016.01.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/15/2022]
Abstract
CD48, a member of the signaling lymphocyte activation molecule family, participates in adhesion and activation of immune cells. Although constitutively expressed on most hematopoietic cells, CD48 is upregulated on subsets of activated cells. CD48 can have activating roles on T cells, antigen presenting cells and granulocytes, by binding to CD2 or bacterial FimH, and through cell intrinsic effects. Interactions between CD48 and its high affinity ligand CD244 are more complex, with both stimulatory and inhibitory outcomes. CD244:CD48 interactions regulate target cell lysis by NK cells and CTLs, which are important for viral clearance and regulation of effector/memory T cell generation and survival. Here we review roles of CD48 in infection, tolerance, autoimmunity, and allergy, as well as the tools used to investigate this receptor. We discuss stimulatory and regulatory roles for CD48, its potential as a therapeutic target in human disease, and current challenges to investigation of this immunoregulatory receptor.
Collapse
Affiliation(s)
- Shannon L McArdel
- Department of Microbiology and Immunobiology, Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Baumgart F, Schütz GJ. Detecting protein association at the T cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:791-801. [PMID: 25300585 DOI: 10.1016/j.bbamcr.2014.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Florian Baumgart
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Gerhard J Schütz
- Vienna University of Technology, Institute for Applied Physics, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.
| |
Collapse
|
10
|
Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells. PLoS One 2014; 9:e85934. [PMID: 24454946 PMCID: PMC3893272 DOI: 10.1371/journal.pone.0085934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/03/2013] [Indexed: 01/09/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.
Collapse
|
11
|
Leksa V, Pfisterer K, Ondrovičová G, Binder B, Lakatošová S, Donner C, Schiller HB, Zwirzitz A, Mrvová K, Pevala V, Kutejová E, Stockinger H. Dissecting mannose 6-phosphate-insulin-like growth factor 2 receptor complexes that control activation and uptake of plasminogen in cells. J Biol Chem 2012; 287:22450-62. [PMID: 22613725 DOI: 10.1074/jbc.m112.339663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18-36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates.
Collapse
Affiliation(s)
- Vladimir Leksa
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Illingworth JJ, Anton van der Merwe P. Dissecting T-cell activation with high-resolution live-cell microscopy. Immunology 2012; 135:198-206. [PMID: 22074058 DOI: 10.1111/j.1365-2567.2011.03537.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Results from live-cell microscopy suggest that the behaviour of isolated components of the T-cell activation machinery in vitro does not represent the reality inside cells. Understanding the cellular-scale dynamics of microcluster migration can only be accomplished by in situ observation. Developments in 'super-resolution' microscopy have permitted investigators to move beyond tracking the movements of individual molecules, allowing the recognition of protein islands and nanodomains present in quiescent and active T cells. Many high-resolution techniques have their own susceptibilities to artefacts, so it is important to take a multifaceted approach to confirm results. A major challenge for the future will be to integrate all the new information into a coherent model of antigen recognition and T-cell activation.
Collapse
|
13
|
Brameshuber M, Schütz GJ. Detection and quantification of biomolecular association in living cells using single-molecule microscopy. Methods Enzymol 2012; 505:159-86. [PMID: 22289453 DOI: 10.1016/b978-0-12-388448-0.00017-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During their random motion, biomolecules experience a manifold of interactions that transiently conjoin their paths. It is extremely difficult to measure such binding events directly in the context of a living cell: interactions may be short lived, they may affect only a minority fraction of molecules, or they may not lead to a macroscopically observable effect. We describe here a new single-molecule imaging method that allows for detecting and quantifying associations of mobile molecules. By "thinning out clusters while conserving the stoichiometry of labeling" (TOCCSL), we can virtually dilute the probe directly in the cell, without affecting the fluorescence labeling of single clusters. Essentially, an analysis region is created within the cell by photobleaching; this region is devoid of active probe. Brownian diffusion or other transport processes lead to reentry of active probe into the analysis region. At the onset of the recovery process, single spots can be resolved as well-separated, diffraction-limited signals. Standard single-molecule microscopy then allows for characterizing the spots in terms of their composition and mobility.
Collapse
Affiliation(s)
- Mario Brameshuber
- Biophysics Institute, Johannes Kepler University Linz, Altenbergerstr., Linz, Austria
| | | |
Collapse
|
14
|
Sako Y, Hiroshima M, Pack CG, Okamoto K, Hibino K, Yamamoto A. Live cell single-molecule detection in systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:183-92. [DOI: 10.1002/wsbm.161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Sinha SK, Gao N, Guo Y, Yuan D. Mechanism of induction of NK activation by 2B4 (CD244) via its cognate ligand. THE JOURNAL OF IMMUNOLOGY 2010; 185:5205-10. [PMID: 20881194 DOI: 10.4049/jimmunol.1002518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that coincubation of purified B cells with IL-2-propagated NK cells can result in the induction of IL-13 mRNA and that the induction requires the presence of CD48 on B cells and 2B4 on NK cells. Because both of these molecules are expressed on NK cells, it is surprising that very little IL-13 mRNA can be detected in the absence of B cells. We have now found that incubation of NK cells on plates containing immobilized anti-CD48 Abs results in the clustering of CD48 and colocalization with 2B4 on the same cell. This colocalization, together with the requirement for SAP, the signal transducer for 2B4, is necessary for the induction of IL-13 mRNA expression. Activation of NK cell via CD48 on another cell may require a similar ability to alter the configuration of 2B4 to activate downstream signaling. By the use of double CD2/2B4 knockout mice, we have also shown that the induction of NK cell activation by anti-CD48 or by B cells is not due to the release of inhibitory effects of 2B4.
Collapse
Affiliation(s)
- Suwan Kumar Sinha
- Department of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
16
|
Rafts and the battleships of defense: The multifaceted microdomains for positive and negative signals in immune cells. Immunol Lett 2010; 130:2-12. [DOI: 10.1016/j.imlet.2009.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/13/2009] [Accepted: 12/13/2009] [Indexed: 11/20/2022]
|
17
|
Lin SL, Chien CW, Han CL, Chen ESW, Kao SH, Chen YJ, Liao F. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. J Proteome Res 2010; 9:283-97. [PMID: 19928914 DOI: 10.1021/pr9006156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemokines orchestrate leukocyte migration toward sites of inflammation and infection and target leukocytes via chemokine receptors such as CCR6, a subfamily of the seven-transmembrane G-protein-coupled receptors. Lipid rafts are cholesterol and sphingolipid-enriched liquid-ordered membrane microdomains thought to serve as scaffolding platforms for signal transduction. To globally understand the dynamic changes of proteins within lipid rafts upon CCR6 activation in T cells, we quantitatively analyzed the time-dependent changes of lipid raft proteome using our recently reported membrane proteomics strategy combining gel-assisted digestion, iTRAQ labeling and LC-MS/MS. To our knowledge, the error-free identification of 852 proteins represents the first data set of the raft proteome in T cells upon chemokine receptor activation, including 354 previously annotated raft proteins and 85 dynamically recruited proteins that are potential raft-associated proteins. The temporal profiles revealed that many proteins involved in the actin cytoskeleton rearrangement are actively recruited into lipid rafts upon CCR6 activation. We further confirmed the proteomics results by Western blotting and used small interfering RNA-mediated knockdown to evaluate their roles upon CCR6 activation. In sum, we employed quantitative proteomic strategy to analyze raft proteome and identified many molecules actively involved in the control of actin assembly and disassembly regulating CCR6 activation-induced cell migration.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Cairo CW, Das R, Albohy A, Baca QJ, Pradhan D, Morrow JS, Coombs D, Golan DE. Dynamic regulation of CD45 lateral mobility by the spectrin-ankyrin cytoskeleton of T cells. J Biol Chem 2010; 285:11392-401. [PMID: 20164196 DOI: 10.1074/jbc.m109.075648] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The leukocyte common antigen, CD45, is a critical immune regulator whose activity is modulated by cytoskeletal interactions. Components of the spectrin-ankyrin cytoskeleton have been implicated in the trafficking and signaling of CD45. We have examined the lateral mobility of CD45 in resting and activated T lymphocytes using single-particle tracking and found that the receptor has decreased mobility caused by increased cytoskeletal contacts in activated cells. Experiments with cells that have disrupted betaI spectrin interactions show decreased cytoskeletal contacts in resting cells and attenuation of receptor immobilization in activated cells. Applying two types of population analyses to single-particle tracking trajectories, we find good agreement between the diffusion coefficients obtained using either a mean squared displacement analysis or a hidden Markov model analysis. Hidden Markov model analysis also reveals the rate of association and dissociation of CD45-cytoskeleton contacts, demonstrating the importance of this analysis for measuring cytoskeleton binding events in live cells. Our findings are consistent with a model in which multiple cytoskeletal contacts, including those with spectrin and ankyrin, participate in the regulation of CD45 lateral mobility. These interactions are a major factor in CD45 immobilization in activated cells. Furthermore, cellular activation leads to CD45 immobilization by reduction of the CD45-cytoskeleton dissociation rate. Short peptides that mimic spectrin repeat domains alter the association rate of CD45 to the cytoskeleton and cause an apparent decrease in dissociation rates. We propose a model for CD45-cytoskeleton interactions and conclude that the spectrin-ankyrin-actin network is an essential determinant of immunoreceptor mobility.
Collapse
Affiliation(s)
- Christopher W Cairo
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cell membranes display a tremendous complexity of lipids and proteins designed to perform the functions cells require. To coordinate these functions, the membrane is able to laterally segregate its constituents. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. Lipid rafts are fluctuating nanoscale assemblies of sphingolipid, cholesterol, and proteins that can be stabilized to coalesce, forming platforms that function in membrane signaling and trafficking. Here we review the evidence for how this principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to selectively focus membrane bioactivity.
Collapse
Affiliation(s)
- Daniel Lingwood
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
20
|
Measuring Colocalization by Dual Color Single Molecule Imaging. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-381266-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Cholesterol interaction with proteins that partition into membrane domains: an overview. Subcell Biochem 2010; 51:253-78. [PMID: 20213547 DOI: 10.1007/978-90-481-8622-8_9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological membranes are complex structures composed largely of proteins and lipids. These components have very different structural and physical properties and consequently they do not form a single homogeneous mixture. Rather components of the mixture are more enriched in some regions than in others. This can be demonstrated with simple lipid mixtures that spontaneously segregate components so as to form different lipid phases that are immiscible with one another. The segregation of molecular components of biological membranes also involves proteins. One driving force that would promote the segregation of membrane components is the preferential interaction between a protein and certain lipid components. Among the varied lipid components of mammalian membranes, the structure and physical properties of cholesterol is quite different from that of other major membrane lipids. It would therefore be expected that in many cases proteins would have very different energies of interaction with cholesterol vs. those of other membrane lipids. This would be sufficient to cause segregation of components in membranes. The factors that facilitate the interaction of proteins with cholesterol are varied and are not yet completely understood. However, there are certain groups that are present in some proteins that facilitate interaction of the protein with cholesterol. These groups include saturated acyl chains of lipidated proteins, as well as certain amino acid sequences. Although there is some understanding as to why these particular groups favour interaction with cholesterol, our knowledge of these molecular features is not sufficiently developed to allow for the design of agents that will modify such binding.
Collapse
|
22
|
Abstract
Biological membranes are not structurally passive solvents of amphipathic proteins and lipids. Rather, it appears their constituents have evolved intrinsic characteristics that make homogeneous distribution of components unlikely. As a case in point, the concept of lipid rafts has received considerable attention from biologists and biophysicists since the formalization of the hypothesis more than 10 years ago. Today, it is clear that sphingolipid and cholesterol can self-associate into micron-scaled phases in model membranes and that these lipids are involved in the formation of highly dynamic nanoscale heterogeneity in the plasma membrane of living cells. However, it remains unclear whether these entities are manifestations of the same principle. A powerful means by which the molecular organization of rafts can be assessed is through analysis of their functionalized condition. Raft heterogeneity can be activated to coalesce and laterally reorganize/stabilize bioactivity in cell membranes. Evaluation of this property suggests that functional raft heterogeneity arises through principles of lipid-driven phase segregation coupled to additional chemical specificities, probably involving proteins.
Collapse
|
23
|
Muhammad A, Schiller HB, Forster F, Eckerstorfer P, Geyeregger R, Leksa V, Zlabinger GJ, Sibilia M, Sonnleitner A, Paster W, Stockinger H. Sequential cooperation of CD2 and CD48 in the buildup of the early TCR signalosome. THE JOURNAL OF IMMUNOLOGY 2009; 182:7672-80. [PMID: 19494291 DOI: 10.4049/jimmunol.0800691] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The buildup of TCR signaling microclusters containing adaptor proteins and kinases is prerequisite for T cell activation. One hallmark in this process is association of the TCR with lipid raft microdomains enriched in GPI-proteins that have potential to act as accessory molecules for TCR signaling. In this study, we show that GPI-anchored CD48 but not CD59 was recruited to the immobilized TCR/CD3 complex upon activation of T cells. CD48 reorganization was vital for T cell IL-2 production by mediating lateral association of the early signaling component linker for activated T cells (LAT) to the TCR/CD3 complex. Furthermore, we identified CD2 as an adaptor linking the Src protein tyrosine kinase Lck and the CD48/LAT complex to TCR/CD3: CD2 associated with TCR/CD3 upon T cell activation irrespective of CD48 expression, while association of CD48 and LAT with the TCR/CD3 complex depended on CD2. Consequently, our data indicate that CD2 and CD48 cooperate hierarchically in the buildup of the early TCR signalosome; CD2 functions as the master switch recruiting CD48 and Lck. CD48 in turn shuttles the transmembrane adapter molecule LAT.
Collapse
Affiliation(s)
- Arshad Muhammad
- Department of Molecular Immunology, Centre for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Epand RM, Epand RF. Domains in bacterial membranes and the action of antimicrobial agents. MOLECULAR BIOSYSTEMS 2009; 5:580-7. [PMID: 19462015 DOI: 10.1039/b900278m] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major advance in the concept of the fluid mosaic model of biological membranes in recent years has been the appreciation of the domain structure of membranes. This concept is now well developed with mammalian plasma membranes but is an emerging focus with regard to bacterial membranes. In addition to bacterial domains that form spontaneously, it is possible to induce the separation of anionic and zwitterionic lipids with certain cationic antimicrobial agents. As a consequence, the bacterial species for which these agents will be toxic can be predicted on the basis of the lipid composition of the bacterial membrane.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
25
|
|
26
|
Micropatterning for quantitative analysis of protein-protein interactions in living cells. Nat Methods 2008; 5:1053-60. [PMID: 18997782 DOI: 10.1038/nmeth.1268] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/07/2008] [Indexed: 01/08/2023]
Abstract
We present a method to identify and characterize interactions between a fluorophore-labeled protein ('prey') and a membrane protein ('bait') in live mammalian cells. Cells are plated on micropatterned surfaces functionalized with antibodies to the bait extracellular domain. Bait-prey interactions are assayed through the redistribution of the fluorescent prey. We used the method to characterize the interaction between human CD4, the major co-receptor in T-cell activation, and human Lck, the protein tyrosine kinase essential for early T-cell signaling. We measured equilibrium associations by quantifying Lck redistribution to CD4 micropatterns and studied interaction dynamics by photobleaching experiments and single-molecule imaging. In addition to the known zinc clasp structure, the Lck membrane anchor in particular had a major impact on the Lck-CD4 interaction, mediating direct binding and further stabilizing the interaction of other Lck domains. In total, membrane anchorage increased the interaction lifetime by two orders of magnitude.
Collapse
|
27
|
Wieser S, Schütz GJ. Tracking single molecules in the live cell plasma membrane—Do’s and Don’t’s. Methods 2008; 46:131-40. [DOI: 10.1016/j.ymeth.2008.06.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022] Open
|
28
|
Morales-García MG, Fournié JJ, Moreno-Altamirano MMB, Rodríguez-Luna G, Flores RM, Sánchez-García FJ. A flow-cytometry method for analyzing the composition of membrane rafts. Cytometry A 2008; 73:918-25. [DOI: 10.1002/cyto.a.20630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Kiss E, Nagy P, Balogh A, Szöllosi J, Matkó J. Cytometry of raft and caveola membrane microdomains: from flow and imaging techniques to high throughput screening assays. Cytometry A 2008; 73:599-614. [PMID: 18473380 DOI: 10.1002/cyto.a.20572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolutionarily developed microdomain structure of biological membranes has gained more and more attention in the past decade. The caveolin-free "membrane rafts," the caveolin-expressing rafts (caveolae), as well as other membrane microdomains seem to play an essential role in controlling and coordinating cell-surface molecular recognition, internalization/endocytosis of the bound molecules or pathogenic organisms and in regulation of transmembrane signal transduction processes. Therefore, in many research fields (e.g. neurobiology and immunology), there is an ongoing need to understand the nature of these microdomains and to quantitatively characterize their lipid and protein composition under various physiological and pathological conditions. Flow and image cytometry offer many sophisticated and routine tools to study these questions. In this review, we give an overview of the past efforts to detect and characterize these membrane microdomains by the use of classical cytometric technologies, and finally we will discuss the results and perspectives of a new line of raft cytometry, the "high throughput screening assays of membrane microdomains," based on "lipidomic" and "proteomic" approaches.
Collapse
Affiliation(s)
- Endre Kiss
- Immunology Research Group of the Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
30
|
Duggan J, Jamal G, Tilley M, Davis B, McKenzie G, Vere K, Somekh MG, O'Shea P, Harris H. Functional imaging of microdomains in cell membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1279-89. [PMID: 18654769 DOI: 10.1007/s00249-008-0349-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different 'types' of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.
Collapse
Affiliation(s)
- James Duggan
- Cell Biophysics Group, School of Biology, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|