1
|
Doodmani SM, Safari MH, Akbari M, Farahani N, Alimohammadi M, Aref AR, Tajik F, Maghsoodlou A, Daneshi S, Tabari T, Taheriazam A, Entezari M, Nabavi N, Hashemi M. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol Res Pract 2025; 267:155838. [PMID: 39954369 DOI: 10.1016/j.prp.2025.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Breast cancer remains one of the leading causes of mortality worldwide. While advancements in chemotherapy, immunotherapy, radiotherapy, and targeted therapies have significantly improved breast cancer treatment, many patients are diagnosed at advanced stages, where tumor cells exhibit aggressive behavior and therapy resistance. Understanding the mechanisms driving breast cancer progression is therefore critical. Metastasis is a major factor that drastically reduces patient prognosis and survival, accounting for most breast cancer-related deaths. ZEB proteins have emerged as key regulators of cancer metastasis. Beyond their role in metastasis, ZEB proteins also influence drug resistance. This review focuses on the role of ZEB1 and ZEB2 in regulating breast cancer metastasis. These proteins interact with components of the tumor microenvironment (TME) to drive cancer progression and metastasis. Additionally, ZEB proteins regulate angiogenesis through interactions with VEGF. Targeting ZEB proteins offers potential therapeutic benefits, particularly for aggressive breast cancer subtypes such as triple-negative breast cancer (TNBC), which often show poor therapeutic response. ZEB proteins also influence the sensitivity of breast cancer cells to chemotherapy, making them promising targets for enhancing treatment efficacy. Given their upregulation in breast cancer, ZEB proteins can serve as valuable diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Seyed Mohammad Doodmani
- Department of Pathobiology, Faculty of Specialized Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Fatemeh Tajik
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Amin Maghsoodlou
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Zou W, Yin Q, Guo W, Dong Z, Guo Y. BBOX1-AS1 promotes gastric cardia adenocarcinoma progression via interaction with CtBP2 to facilitate the epithelial-mesenchymal transition process. Cancer Sci 2024; 115:3875-3889. [PMID: 39318101 PMCID: PMC11611761 DOI: 10.1111/cas.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
It is recognized that lncRNA BBOX1-AS1 exerts a crucial oncogenic property in several cancer types. However, the functions and underlying mechanisms of BBOX1-AS1 in the epithelial-mesenchymal transition (EMT) process of gastric cardia adenocarcinoma (GCA) have remained unclarified. The findings of this study demonstrated that GCA tissues had elevated BBOX1-AS1 expression levels, which was associated with a worse prognosis in GCA patients. BBOX1-AS1 dramatically enhanced cell proliferation, invasion, and TGF-β1-induced the EMT process in vitro. Further mechanism analysis revealed that BBOX1-AS1 could combine with CtBP2 and strengthen the interaction of CtBP2 and ZEB1. BBOX1-AS1 might regulate the E-cadherin expression through CtBP2/ZEB1 transcriptional complex-mediated transcriptional repression, further affecting the activation of the Wnt/β-catenin pathway and the EMT process. Overall, our findings demonstrate that BBOX1-AS1 might act as an lncRNA associated with EMT for facilitating GCA advancement via interaction with CtBP2 to facilitate the activation of Wnt/β-catenin pathway and the EMT process, which indicated that it might function as an exploitable treatment target for GCA patients.
Collapse
Affiliation(s)
- Wenxu Zou
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Qing Yin
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Wei Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhiming Dong
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanli Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
3
|
Silva EFP, Gaia RC, Mulim HA, Pinto LFB, Iung LHS, Brito LF, Pedrosa VB. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals (Basel) 2024; 14:2472. [PMID: 39272257 PMCID: PMC11394126 DOI: 10.3390/ani14172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.
Collapse
Affiliation(s)
- Emanueli F P Silva
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Rita C Gaia
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Laiza H S Iung
- Neogen Corporation, Pindamonhangaba 12412-800, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Neogen Corporation, Biotechnology Research, Lincoln, NE 68504, USA
| |
Collapse
|
4
|
Menche C, Schuhwerk H, Armstark I, Gupta P, Fuchs K, van Roey R, Mosa MH, Hartebrodt A, Hajjaj Y, Clavel Ezquerra A, Selvaraju MK, Geppert CI, Bärthel S, Saur D, Greten FR, Brabletz S, Blumenthal DB, Weigert A, Brabletz T, Farin HF, Stemmler MP. ZEB1-mediated fibroblast polarization controls inflammation and sensitivity to immunotherapy in colorectal cancer. EMBO Rep 2024; 25:3406-3431. [PMID: 38937629 PMCID: PMC11315988 DOI: 10.1038/s44319-024-00186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.
Collapse
Affiliation(s)
- Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Clavel Ezquerra
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj K Selvaraju
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Kwak YT, Montalbano AP, Kelleher AM, Colon-Caraballo M, Kraus WL, Mahendroo M, Mendelson CR. Decline in corepressor CNOT1 in the pregnant myometrium near term impairs progesterone receptor function and increases contractile gene expression. J Biol Chem 2024; 300:107484. [PMID: 38897566 PMCID: PMC11301068 DOI: 10.1016/j.jbc.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Progesterone (P4), acting via its nuclear receptor (PR), is critical for pregnancy maintenance by suppressing proinflammatory and contraction-associated protein (CAP)/contractile genes in the myometrium. P4/PR partially exerts these effects by tethering to NF-κB bound to their promot-ers, thereby decreasing NF-κB transcriptional activity. However, the underlying mechanisms whereby P4/PR interaction blocks proinflammatory and CAP gene expression are not fully understood. Herein, we characterized CCR-NOT transcription complex subunit 1 (CNOT1) as a corepressor that also interacts within the same chromatin complex as PR-B. In mouse myome-trium increased expression of CAP genes Oxtr and Cx43 at term coincided with a marked decline in expression and binding of CNOT1 to NF-κB-response elements within the Oxtr and Cx43 promoters. Increased CAP gene expression was accompanied by a pronounced decrease in enrichment of repressive histone marks and increase in enrichment of active histone marks to this genomic region. These changes in histone modification were associated with changes in expression of corresponding histone modifying enzymes. Myometrial tissues from P4-treated 18.5 dpc pregnant mice manifested increased Cnot1 expression at 18.5 dpc, compared to vehicle-treated controls. P4 treatment of PR-expressing hTERT-HM cells enhanced CNOT1 expression and its recruitment to PR bound NF-κB-response elements within the CX43 and OXTR promoters. Furthermore, knockdown of CNOT1 significantly increased expression of contractile genes. These novel findings suggest that decreased expression and DNA-binding of the P4/PR-regulated transcriptional corepressor CNOT1 near term and associated changes in histone modifications at the OXTR and CX43 promoters contribute to the induction of myometrial contractility leading to parturition.
Collapse
Affiliation(s)
- Youn-Tae Kwak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew M Kelleher
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Mariano Colon-Caraballo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
St. Peter C, Hossain WA, Lovell S, Rafi SK, Butler MG. Mowat-Wilson Syndrome: Case Report and Review of ZEB2 Gene Variant Types, Protein Defects and Molecular Interactions. Int J Mol Sci 2024; 25:2838. [PMID: 38474085 PMCID: PMC10932183 DOI: 10.3390/ijms25052838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.
Collapse
Affiliation(s)
- Caroline St. Peter
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Waheeda A. Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Syed K. Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| |
Collapse
|
7
|
Lee J, Shin DY, Jang Y, Han JP, Cho EM, Seo YR. Cadmium-induced Carcinogenesis in Respiratory Organs and the Prostate: Insights from Three Perspectives on Toxicogenomic Approach. J Cancer Prev 2023; 28:150-159. [PMID: 38205367 PMCID: PMC10774485 DOI: 10.15430/jcp.2023.28.4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) exposure primarily occurs through inhalation, either by smoking or occupational exposure to contaminated air. Upon inhalation, Cd ultimately reaches the prostate through the bloodstream. In this review, we investigate the carcinogenic potential of Cd in both respiratory organs and the prostate. Specifically, this review examines cellular metabolism, comprehensive toxicity, and carcinogenic mechanisms by exploring gene ontology, biological networks, and adverse outcome pathways. In the respiratory organs, Cd induces lung cancer by altering the expression of IL1B and FGF2, causing DNA damage, reducing cell junction integrity, and promoting apoptosis. In the prostate, Cd induces prostate cancer by modifying the expression of EDN1 and HMOX1, leading to abnormal protein activities and maturation, suppressing tumor suppressors, and inducing apoptosis. Collectively, this review provides a comprehensive understanding of the carcinogenic mechanisms of Cd in two different organs by adopting toxicogenomic approaches. These insights can serve as a foundation for further research on cadmium-induced cancer, contributing to the establishment of future cancer prevention strategies.
Collapse
Affiliation(s)
- Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Jun Pyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Eun-Min Cho
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
8
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
9
|
Rodriguez-Zas SL, Southey NL, Rund L, Antonson AM, Nowak RA, Johnson RW. Prenatal and postnatal challenges affect the hypothalamic molecular pathways that regulate hormonal levels. PLoS One 2023; 18:e0292952. [PMID: 37851674 PMCID: PMC10584192 DOI: 10.1371/journal.pone.0292952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
This study aimed to improve our understanding of how the hypothalamus mediates the effects of prenatal and postnatal challenges on behavior and sensitivity to stimuli. A pig model of virally initiated maternal immune activation (MIA) was used to investigate potential interactions of the prenatal challenge both with sex and with postnatal nursing withdrawal. The hypothalami of 72 females and males were profiled for the effects of MIA and nursing withdrawal using RNA-sequencing. Significant differential expression (FDR-adjusted p value < 0.05) was detected in the profile of 222 genes. Genes involved in the Gene Ontology biological process of regulation of hormone levels tended to be over-expressed in individuals exposed to both challenges relative to individuals exposed to either one challenge, and most of these genes were over-expressed in MIA females relative to males across nursing levels. Differentially expressed genes included Fshb, Ttr, Agrp, Gata3, Foxa2, Tfap2b, Gh1, En2, Cga, Msx1, and Npy. The study also found that prenatal and postnatal challenges, as well as sex, impacted the regulation of neurotransmitter activity and immune effector processes in the hypothalamus. In particular, the olfactory transduction pathway genes were over-expressed in weaned MIA males, and several transcription factors were potentially found to target the differentially expressed genes. Overall, these results highlight how multiple environmental challenges can interact and affect the molecular mechanisms of the hypothalamus, including hormonal, immune response, and neurotransmitter processes.
Collapse
Affiliation(s)
- Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicole L. Southey
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Adrienne M. Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
10
|
Parfenyev SE, Shabelnikov SV, Tolkunova EN, Barlev NA, Mittenberg AG. p53 Affects Zeb1 Interactome of Breast Cancer Stem Cells. Int J Mol Sci 2023; 24:9806. [PMID: 37372954 DOI: 10.3390/ijms24129806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
P53 is a critical tumor suppressor that protects the integrity of genome and prevents cells from malignant transformation, including metastases. One of the driving forces behind the onset of metastases is the epithelial to mesenchymal transition (EMT) program. Zeb1 is one of the key transcription factors that govern EMT (TF-EMT). Therefore, the interaction and mutual influence of p53 and Zeb1 plays a critical role in carcinogenesis. Another important feature of tumors is their heterogeneity mediated by the presence of so-called cancer stem cells (CSCs). To this end, we have developed a novel fluorescent reporter-based approach to enrich the population of CSCs in MCF7 cells with inducible expression of Zeb1. Using these engineered cell lines, we studied the effect of p53 on Zeb1 interactomes isolated from both CSCs and regular cancer cells. By employing co-immunoprecipitations followed by mass spectrometry, we found that the composition of Zeb1 interactome was affected not only by the p53 status but also by the level of Oct4/Sox2 expression, indicating that stemness likely affects the specificity of Zeb1 interactions. This study, together with other proteomic studies of TF-EMT interactomes, provides a framework for future molecular analyses of biological functions of Zeb1 at all stages of oncogenesis.
Collapse
Affiliation(s)
- Sergey E Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Sergey V Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena N Tolkunova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Nickolai A Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| | - Alexey G Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
11
|
Fratini L, Dalmolin MGS, Sinigaglia M, da Silveira Perla A, de Farias CB, Brunetto AL, Brunetto AT, da Cunha Jaeger M, Roesler R. ZEB1 is a Subgroup-Specific Marker of Prognosis and Potential Drug Target in Medulloblastoma. Neuromolecular Med 2023; 25:64-74. [PMID: 35716340 DOI: 10.1007/s12017-022-08716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.
Collapse
Affiliation(s)
- Livia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | - Matheus Gibeke Siqueira Dalmolin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Marialva Sinigaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Alexandre da Silveira Perla
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Neurology Service, São José Hospital, Santa Casa de Misericórdia Porto Alegre Hospital Complex, Porto Alegre, RS, 90020-090, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
12
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
13
|
Henn RE, Elzinga SE, Glass E, Parent R, Guo K, Allouch AM, Mendelson FE, Hayes J, Webber-Davis I, Murphy GG, Hur J, Feldman EL. Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice. Immun Ageing 2022; 19:67. [PMID: 36550567 PMCID: PMC9773607 DOI: 10.1186/s12979-022-00323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging (e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role of age in obesity-induced neuroinflammation and cognitive impairment is unclear. To further define this putative relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using a high-fat diet (HFD) mouse model of obesity. RESULTS First, HFD promoted age-related changes in hippocampal gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young adult and middle-aged mice to determine the effect of age on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, with a bi-directional regulation of hippocampal inflammatory gene expression. CONCLUSIONS Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.
Collapse
Affiliation(s)
- Rosemary E Henn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emily Glass
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel Parent
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Adam M Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffery G Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
15
|
Zhang X, Kracht L, Lerario AM, Dubbelaar ML, Brouwer N, Wesseling EM, Boddeke EWGM, Eggen BJL, Kooistra SM. Epigenetic regulation of innate immune memory in microglia. J Neuroinflammation 2022; 19:111. [PMID: 35568856 PMCID: PMC9107649 DOI: 10.1186/s12974-022-02463-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Microglia are the tissue-resident macrophages of the CNS. They originate in the yolk sac, colonize the CNS during embryonic development and form a self-sustaining population with limited turnover. A consequence of their relative slow turnover is that microglia can serve as a long-term memory for inflammatory or neurodegenerative events. Methods Using ATAC-, ChIP- and RNA-sequencing, we characterized the epigenomes and transcriptomes of FACS-purified microglia from mice exposed to different stimuli. A repeated endotoxin challenge (LPS) was used to induce tolerance in microglia, while genotoxic stress (DNA repair deficiency-induced accelerated aging through Ercc1 deficiency) resulted in primed (hypersensitive) microglia. Results Whereas the enrichment of permissive epigenetic marks at enhancer regions could explain training (hyper-responsiveness) of primed microglia to an LPS challenge, the tolerized response of microglia seems to be regulated by loss of permissive epigenetic marks. We identify that inflammatory stimuli and accelerated aging as a result of genotoxic stress activate distinct gene networks. These gene networks and associated biological processes are partially overlapping, which is likely driven by specific transcription factor networks, resulting in altered epigenetic signatures and distinct functional (desensitized vs. primed) microglia phenotypes. Conclusion This study provides insight into epigenetic profiles and transcription factor networks associated with transcriptional signatures of tolerized and trained microglia in vivo, leading to a better understanding of innate immune memory of microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02463-5.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Evelyn M Wesseling
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
16
|
Ghanekar Y, Sadasivam S. RNA Editing-Associated Post-Transcriptional Gene Regulation in Rheumatoid Arthritis. Bioinform Biol Insights 2022; 16:11779322221088725. [PMID: 35462874 PMCID: PMC9021465 DOI: 10.1177/11779322221088725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune disease characterised by systemic inflammation of joints. The observed complexity of RA pathogenesis and studies that have been carried out so far indicate that RA pathogenesis is regulated at multiple levels. Given the role of RNA editing in autoimmune disease, we hypothesised that RNA editing could contribute to RA pathogenesis by regulating gene expression through post-transcriptional mechanisms. Methods: We identified RNA editing events in synovial tissues from early and established RA compared with normal subjects from an available transcriptome data set using REDItools. To investigate the potential effect of these RNA editing events on gene expression, we carried out an analysis of differential exon usage in the vicinity of the differentially edited sites using DEXSeq. We then used STRING to identify putative interactions between differentially edited genes identified from REDItools analysis. We also investigated the possible effects of these RNA editing events on miRNA-target mRNA interactions as predicted by miRanda. Results: Our analysis revealed that there is extensive RNA editing in RA, with 304 and 273 differentially edited events in early RA and established RA, respectively. Of these, 25 sites were within 11 genes in early RA, and 34 sites were within 7 genes in established RA. DEXSeq analysis revealed that RNA editing correlated with differential exon usage in 4 differentially edited genes that have previously also been associated with RA in some measure: ATM, ZEB1, ANXA4, and TIMP3. DEXSeq analysis also revealed enrichment of some non-functional isoforms of these genes, perhaps at the expense of their full-length counterparts. Network analysis using STRING showed that several edited genes were part of the p53 protein-protein interaction network. We also identified several putative miRNA binding sites in the differentially edited genes that were lost upon editing. Conclusions: Our results suggested that the expression of genes involved in DNA repair and cell cycle, including ATM and ZEB1 which are well-known functional regulators of the DNA damage response pathway, could be regulated by RNA editing in RA synovia. This may contribute to an impaired DNA damage response in synovial tissues.
Collapse
|
17
|
Hu F, Ma Y, Xu Z, Zhang S, Li J, Sun X, Wu J. Single-Cell RNA-Seq Reveals the Cellular Diversity and Developmental Characteristics of the Retinas of an Infant and a Young Child. Front Cell Dev Biol 2022; 10:803466. [PMID: 35386199 PMCID: PMC8979067 DOI: 10.3389/fcell.2022.803466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human retina, located in the innermost layer of the eye, plays a decisive role in visual perception. Dissecting the heterogeneity of retinal cells is essential for understanding the mechanism of visual development. Here, we performed single-cell RNA-seq to analyze 194,967 cells from the donors of infants and young children, resulting in 17 distinct clusters representing major cell types in the retina: rod photoreceptors (PRs), cone PRs, bipolar cells (BCs), horizontal cells (HCs), amacrine cells (ACs), retinal ganglion cells (RGCs), Müller glial cells (MGs), microglia, and astrocytes (ASTs). Through reclustering, we identified known subtypes of cone PRs as well as additional unreported subpopulations and corresponding markers in BCs. Additionally, we linked inherited retinal diseases (IRDs) to certain cell subtypes or subpopulations through enrichment analysis. We next constructed extensive intercellular communication networks and identified ligand-receptor interactions that play crucial roles in regulating neural cell development and immune homeostasis in the retina. Intriguingly, we found that the status and functions of PRs changed drastically between the young children and adult retina. Overall, our study offers the first retinal cell atlas in infants and young children dissecting the heterogeneity of the retina and identifying the key molecules in the developmental process, which provides an important resource that will pave the way for research on retinal development mechanisms and advancements in regenerative medicine concerning retinal biology.
Collapse
Affiliation(s)
- Fangyuan Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zaoxu Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | | | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
18
|
Inhibition of CtBP-Regulated Proinflammatory Gene Transcription Attenuates Psoriatic Skin Inflammation. J Invest Dermatol 2022; 142:390-401. [PMID: 34293351 PMCID: PMC8770725 DOI: 10.1016/j.jid.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.
Collapse
|
19
|
Li LY, Yang JF, Rong F, Luo ZP, Hu S, Fang H, Wu Y, Yao R, Kong WH, Feng XW, Chen BJ, Li J, Xu T. ZEB1 serves an oncogenic role in the tumourigenesis of HCC by promoting cell proliferation, migration, and inhibiting apoptosis via Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2021; 42:1676-1689. [PMID: 33514855 PMCID: PMC8463676 DOI: 10.1038/s41401-020-00575-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Zinc finger E-box-binding homeobox 1 (ZEB1), a functional protein of zinc finger family, was aberrant expressed in many kinds of liver disease including hepatic fibrosis and Hepatitis C virus. Bioinformatics results showed that ZEB1 was abnormally expressed in HCC tissues. However, to date, the potential regulatory role and molecular mechanisms of ZEB1 are still unclear in the occurrence and development of HCC. This study demonstrated that the expression level of ZEB1 was significantly elevated both in liver tissues of HCC patients and cell lines (HepG2 and SMMC-7721 cells). Moreover, ZEB1 could promote the proliferation, migration, and invasion of HCC cells. On the downstream regulation mechanism, ZEB1 could activate the Wnt/β-catenin signaling pathway by upregulating the protein expression levels of β-catenin, c-Myc, and cyclin D1. Novel studies showed that miR-708 particularly targeted ZEB1 3'-UTR regions and inhibited the HCC cell proliferation, migration, and invasion. Furthermore, results of nude mice experiments of HCC model indicated that miR-708 could inhibit tumor growth and xenograft metastasis model was established to validate that miR-708 could inhibit HCC cell metastasis through tail-vein injection in vivo. Together, the study suggested that ZEB1 modulated by miR-708 might be a potential therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Jun-Fa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Fan Rong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
- Lujiang County People's Hospital of Anhui Province, Hefei, 231500, China
| | - Zhi-Pan Luo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Hui Fang
- Department of Pharmocology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Ying Wu
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Rui Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Wei-Hao Kong
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiao-Wen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Bang-Jie Chen
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Parfenyev SE, Shabelnikov SV, Pozdnyakov DY, Gnedina OO, Adonin LS, Barlev NA, Mittenberg AG. Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells. Molecules 2021; 26:molecules26113143. [PMID: 34074001 PMCID: PMC8197395 DOI: 10.3390/molecules26113143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.
Collapse
Affiliation(s)
- Sergey E. Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Sergey V. Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Danila Y. Pozdnyakov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Olga O. Gnedina
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
| | - Leonid S. Adonin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia;
| | - Alexey G. Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.E.P.); (S.V.S.); (D.Y.P.); (O.O.G.); (N.A.B.)
- Correspondence: or
| |
Collapse
|
21
|
Munro SK, Balakrishnan B, Lissaman AC, Gujral P, Ponnampalam AP. Cytokines and pregnancy: Potential regulation by histone deacetylases. Mol Reprod Dev 2021; 88:321-337. [PMID: 33904218 DOI: 10.1002/mrd.23430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Cytokines are important regulators of pregnancy and parturition. Aberrant expression of proinflammatory cytokines during pregnancy contributes towards preterm labor, pre-eclampsia, and gestational diabetes mellitus. The regulation of cytokine expression in human cells is highly complex, involving interactions between environment, transcription factors, and feedback mechanisms. Recent developments in epigenetic research have made tremendous advancements in exploring histone modifications as a key epigenetic regulator of cytokine expression and the effect of their signaling molecules on various organ systems in the human body. Histone acetylation and subsequent deacetylation by histone deacetylases (HDACs) are major epigenetic regulators of protein expression in the human body. The expression of various proinflammatory cytokines, their role in normal and abnormal pregnancy, and their epigenetic regulation via HDACs will be discussed in this review.
Collapse
Affiliation(s)
- Sheryl K Munro
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Biju Balakrishnan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Ohsaka F, Karatsu Y, Kadota Y, Tochio T, Takemura N, Sonoyama K. Gut commensals suppress interleukin-2 production through microRNA-200/BCL11B and microRNA-200/ETS-1 axes in lamina propria leukocytes of murine large intestine. Biochem Biophys Res Commun 2021; 534:808-814. [PMID: 33162030 DOI: 10.1016/j.bbrc.2020.10.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022]
Abstract
The role of microRNAs (miRNAs) in how microbiota influence the host intestinal immune system is not fully understood. We compared the expression profiles of miRNAs and mRNAs in lamina propria leukocytes (LPL) in the large intestines of germ-free (GF) and specific pathogen-free (SPF) mice. Microarray analysis revealed different expression profiles of miRNAs and mRNAs between GF and SPF mice. Quantitative real time-PCR (qRT-PCR) showed that the level of miR-200 family members was significantly higher in SPF mice than in GF mice. In silico prediction followed by qRT-PCR suggested that Bcl11b, Ets1, Gbp7, Stat5b, and Zeb1 genes were downregulated by the miR-200 family. Western blotting revealed that the expression of BCL11B and ETS-1, but not ZEB1, in large intestinal LPL was significantly lower in SPF mice than in GF mice. Interleukin (IL)-2 production in cultured LPL upon stimulation with phorbol 12-myristate 13-acetate and ionomycin for 24 h was significantly lower in SPF mice than in GF mice. Conventionalization of GF mice substantially recapitulated SPF mice in terms of the expression of miR-200 family members and their target genes and IL-2 production in large intestinal LPL. Considering that BCL11B and ETS-1 reportedly function as transcription factors to activate the Il2 gene, we propose that the presence of gut commensals suppresses IL-2 production in large intestinal LPL, at least in part through post-transcriptional downregulation of Bcl11b and Ets1 genes by miR-200 family members.
Collapse
Affiliation(s)
- Fumina Ohsaka
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yugo Karatsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | | | | | - Naoki Takemura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kei Sonoyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
23
|
Li H, Zou J, Yu XH, Ou X, Tang CK. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol 2020; 236:4216-4230. [PMID: 33275290 DOI: 10.1002/jcp.30177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor belonging to the ZEB family, plays a crucial role in regulating gene expression required for both normal physiological and pathological processes. Accumulating evidence has shown that ZEB1 participates in the initiation and progression of atherosclerotic cardiovascular disease. Recent studies suggest that ZEB1 protects against atherosclerosis by regulation of endothelial cell angiogenesis, endothelial dysfunction, monocyte-endothelial cell interaction, macrophage lipid accumulation, macrophage polarization, monocyte-vascular smooth muscle cell (VSMC) interaction, VSMC proliferation and migration, and T cell proliferation. In this review, we summarize the recent progress of ZEB1 in the pathogenesis of atherosclerosis and provide insights into the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
24
|
Niu L, Zheng Z, Xue Q, Cheng H, Liu Y, Wang H, Hu X, Zhang A, Liu B, Xu X. Two coupled mutations abolished the binding of CEBPB to the promoter of CXCL14 that displayed an antiviral effect on PRRSV by activating IFN signaling. FASEB J 2020; 34:11257-11271. [PMID: 32648265 DOI: 10.1096/fj.202000477r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/11/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease of pigs worldwide. Our previous study revealed that Tongcheng (TC) pigs display higher resistance to PRRS than Largewhite (LW) pigs, but the genetic mechanism remains unknown. Here, we first confirmed that CXCL14 was downregulated in lungs and porcine alveolar macrophages (PAMs) responding to PRRS virus (PRRSV) infection, but the decline in LW pigs was more obvious than that in TC pigs. Then, we found that the overexpression of CXCL14 activated type-I interferon (IFN-I) signaling by upregulating interferon beta (IFNB), which plays a major role in the antiviral effect. To further decipher the mechanism underlying its differential expression, we characterized the core promoter of CXCL14 as being located from -145 to 276 bp of the transcription start site (TSS) and identified two main haplotypes that displayed significant differential transcriptional activities. We further identified two coupled point mutations that altered the binding status of CEBPB and were responsible for the differential expression in TC and LW pigs. The regulatory effect of CEBPB on CXCL14 was further confirmed by RNA interference (RNAi) and chromatin immunoprecipitation (ChIP), providing crucial clues for deciphering the mechanism of CXCL14 downregulation in unusual conditions. The present study revealed the potential antiviral effect of CXCL14, occurring via activation of interferon signaling, and suggested that CXCL14 contributes to the PRRS resistance of TC pigs.
Collapse
Affiliation(s)
- Lizhu Niu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Freshwater Animal Breeding, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qianjing Xue
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huijun Cheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanling Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Lab of Freshwater Animal Breeding, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Anding Zhang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bang Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xuewen Xu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
25
|
Fang Y, Tu J, Han D, Guo Y, Hong W, Wei W. The effects of long non-coding ribonucleic acids on various cellular components in rheumatoid arthritis. Rheumatology (Oxford) 2020; 59:46-56. [PMID: 31605483 PMCID: PMC6909907 DOI: 10.1093/rheumatology/kez472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/07/2019] [Indexed: 01/13/2023] Open
Abstract
RA is a chronic, autoimmune-mediated inflammatory pathology. Long non-coding RNAs (lncRNAs) are a novel group of non-coding RNAs with a length of >200 nucleotides. There are reports emerging that suggest that lncRNAs participate in establishing and sustaining autoimmune diseases, including RA. In this review article, we highlight the functions of lncRNAs in different cell types in RA. Our review indicates that lncRNAs affect various cellular components and are novel candidates that could constitute promising targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Yilong Fang
- Institute of Clinical Pharmacology, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yawei Guo
- Institute of Clinical Pharmacology, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Hefei, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
27
|
During mitosis ZEB1 "switches" from being a chromatin-bound epithelial gene repressor, to become a microtubule-associated protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118673. [PMID: 32057919 DOI: 10.1016/j.bbamcr.2020.118673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022]
Abstract
Microtubules are polymers of α/β-tubulin, with microtubule organization being regulated by microtubule-associated proteins (MAPs). Herein, we describe a novel role for the epithelial gene repressor, zinc finger E-box-binding homeobox 1 (ZEB1), that "switches" from a chromatin-associated protein during interphase, to a MAP that associates with α-, β- and γ-tubulin during mitosis. Additionally, ZEB1 was also demonstrated to associate with γ-tubulin at the microtubule organizing center (MTOC). Using confocal microscopy, ZEB1 localization was predominantly nuclear during interphase, with α/β-tubulin being primarily cytoplasmic and the association between these proteins being minimal. However, during the stages of mitosis, ZEB1 co-localization with α-, β-, and γ-tubulin was significantly increased, with the association commonly peaking during metaphase in multiple tumor cell-types. ZEB1 was also observed to accumulate in the cleavage furrow during cytokinesis. The increased interaction between ZEB1 and α-tubulin during mitosis was also confirmed using the proximity ligation assay. In contrast to ZEB1, its paralog ZEB2, was mainly perinuclear and cytoplasmic during interphase, showing some co-localization with α-tubulin during mitosis. Considering the association between ZEB1 with α/β/γ-tubulin during mitosis, studies investigated ZEB1's role in the cell cycle. Silencing ZEB1 resulted in a G2-M arrest, which could be mediated by the up-regulation of p21Waf1/Cip1 and p27Kip1 that are known downstream targets repressed by ZEB1. However, it cannot be excluded the G2/M arrest observed after ZEB1 silencing is not due to its roles as a MAP. Collectively, ZEB1 plays a role as a MAP during mitosis and could be functionally involved in this process.
Collapse
|
28
|
Li LY, Yang CC, Yang JF, Li HD, Zhang BY, Zhou H, Hu S, Wang K, Huang C, Meng XM, Zhou H, Zhang L, Li J, Xu T. ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol 2019; 865:172787. [DOI: 10.1016/j.ejphar.2019.172787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|
29
|
Singh K, Sinha M, Pal D, Tabasum S, Gnyawali SC, Khona D, Sarkar S, Mohanty SK, Soto-Gonzalez F, Khanna S, Roy S, Sen CK. Cutaneous Epithelial to Mesenchymal Transition Activator ZEB1 Regulates Wound Angiogenesis and Closure in a Glycemic Status-Dependent Manner. Diabetes 2019; 68:2175-2190. [PMID: 31439646 PMCID: PMC6804631 DOI: 10.2337/db19-0202] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Epithelial to mesenchymal transition (EMT) and wound vascularization are two critical interrelated processes that enable cutaneous wound healing. Zinc finger E-box binding homeobox 1 (ZEB1), primarily studied in the context of tumor biology, is a potent EMT activator. ZEB1 is also known to contribute to endothelial cell survival as well as stimulate tumor angiogenesis. The role of ZEB1 in cutaneous wounds was assessed using Zeb1+/- mice, as Zeb1-/- mice are not viable. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics was used to elucidate the effect of elevated ZEB1, as noted during hyperglycemia. Under different glycemic conditions, ZEB1 binding to E-cadherin promoter was investigated using chromatin immunoprecipitation. Cutaneous wounding resulted in loss of epithelial marker E-cadherin with concomitant gain of ZEB1. The dominant proteins downregulated after ZEB1 overexpression functionally represented adherens junction pathway. Zeb1+/- mice exhibited compromised wound closure complicated by defective EMT and poor wound angiogenesis. Under hyperglycemic conditions, ZEB1 lost its ability to bind E-cadherin promoter. Keratinocyte E-cadherin, thus upregulated, resisted EMT required for wound healing. Diabetic wound healing was improved in ZEB+/- as well as in db/db mice subjected to ZEB1 knockdown. This work recognizes ZEB1 as a key regulator of cutaneous wound healing that is of particular relevance to diabetic wound complication.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mithun Sinha
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Durba Pal
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Saba Tabasum
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Surya C Gnyawali
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Dolly Khona
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Subendu Sarkar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sujit K Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Fidel Soto-Gonzalez
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
30
|
Jiao Y, Zhu G, Yu J, Li Y, Wu M, Zhao J, Tian X. miR-1271 inhibits growth, invasion and epithelial-mesenchymal transition by targeting ZEB1 in ovarian cancer cells. Onco Targets Ther 2019; 12:6973-6980. [PMID: 31695412 PMCID: PMC6717842 DOI: 10.2147/ott.s219018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Objective MicroRNA-1271 (miR-1271) has a role in suppressing cell growth, cell cycle and promoting cell apoptosis in many cancers. This research was to explore the great role of miR-1271 in ovarian cancer (OC). Patients and Methods RT-qPCR was utilized to evaluate the mRNA levels of miR-1271 and its target gene. The proliferative and invasive abilities were measured using Cell Counting Kit-8 and transwell assays. The overall survival rate of OC patients was assessed by Kaplan–Meier method. Results miR-1271 was downregulated in OC tissues, and downregulation of miR-1271 predicted a poor outcome of the OC patients. Zinc finger E-box binding homeobox 1 (ZEB1) was a target gene of miR-1271 and its expression was regulated by miR-1271 in OC. The expression of miR-1271 had a negative connection with the expression of ZEB1 in OC tissues. miR-1271 inhibited cell viability and invasion-mediated epithelial–mesenchymal transition in SKOV3 cells. ZEB1 reversed partial roles of miR-1271 on viability and invasion in OC. Conclusion miR-1271 inhibited cell proliferation and invasion-mediated EMT in OC. The newly identified miR-1271/ZEB1 axis provides novel insight into the pathogenesis of OC.
Collapse
Affiliation(s)
- Yanni Jiao
- Department of Obstetrics and Gynecology, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| | - Guiping Zhu
- Department of Obstetrics and Gynecology, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| | - Jiang Yu
- Department of Obstetrics and Gynecology, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| | - Ying Li
- Department of Obstetrics and Gynecology, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| | - Man Wu
- Department of Pediatrics, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| | - Xiangwen Tian
- Department of Obstetrics and Gynecology, Central Hospital of Shengli Oil Field, Dongying 257000, People's Republic of China
| |
Collapse
|
31
|
ZEB2 in T-cells and T-ALL. Adv Biol Regul 2019; 74:100639. [PMID: 31383581 DOI: 10.1016/j.jbior.2019.100639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
The identification of the rare but recurrent t(2; 14)(q22; q32) translocation involving the ZEB2 locus in T-cell acute lymphoblastic leukemia, suggested that ZEB2 is an oncogenic driver of this high-risk subtype of leukemia. ZEB2, a zinc finger E-box homeobox binding transcription factor, is a master regulator of cellular plasticity and its expression is correlated with poor overall survival of cancer patients. Recent loss- and gain-of-function in the mouse revealed important roles of ZEB2 during different stages of hematopoiesis, including the T-cell lineage. Here, we summarize the roles of ZEB2 in T-cells, their development, and malignant transformation to T-ALL.
Collapse
|
32
|
Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2019; 2019:5810465. [PMID: 31275381 PMCID: PMC6582791 DOI: 10.1155/2019/5810465] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the first step in the development of the invasive and migratory properties of cancer metastasis. Since the transcriptional reprogramming of a number of genes occurs in EMT, the regulation of EMT transcription factors has been intensively investigated. EMT transcriptional factors are commonly classified by the direct or indirect repression of E-cadherin because one of hallmarks of EMT is the loss of E-cadherin. This facilitates the expression of genes for EMT, tumor invasion, and metastasis. The posttranslational modification of EMT transcriptional factors, such as Snail and Slug, directly regulates their functions, including their stability, nuclear localization, protein-protein interaction, and ubiquitination for the promotion or termination of EMT at the specific points. Here, we discuss how posttranslational modifications regulate gene expression in a dynamic and reversible manner by modifying upstream signaling pathways, focusing in particular on the posttranslational modifications of Snail, Slug, ZEB1, ZEB2, and TWIST1. This review demonstrates that EMT transcription factors regulate metastasis through their posttranslational modifications and that the flexibility and reversibility of EMT can be modified by phosphorylation.
Collapse
|
33
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
34
|
Osakabe M, Fukagawa D, Sato C, Sugimoto R, Uesugi N, Ishida K, Itamochi H, Sugiyama T, Sugai T. Immunohistochemical analysis of the epithelial to mesenchymal transition in uterine carcinosarcoma. Int J Gynecol Cancer 2019; 29:277-281. [PMID: 30636710 DOI: 10.1136/ijgc-2018-000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Uterine carcinosarcoma (UCS) is a highly aggressive neoplasm that is composed of an intricate admixture of carcinomatous and sarcomatous elements. The relationship between UCS and the epithelial to mesenchymal transition (EMT) has been reported. In this study, we examined how expression of E-cadherin was associated with the expression of EMT-related proteins in UCS. METHODS UCS samples were histologically divided into three components: carcinomatous, transitional, and sarcomatous regions. Next, we examined the expression of E-cadherin and EMT-related proteins, including SNAI2, ZEB1, and TWIST1, in each component of the UCS using immunohistochemistry. The expression score was determined by combining the staining intensity and staining area of the target cells. RESULTS The expression score of E-cadherin was significantly lower in transitional and sarcomatous components than in the carcinomatous component. In addition, a significant difference in the low expression score of E-cadherin between transitional and sarcomatous components (transitional > sarcomatous components) was found. There were significant differences between the expression scores of ZEB1 in the three components (sarcomatous > transitional > carcinomatous components). However, no difference in the expression of TWIST1 between the components was found. Conversely, the expression level of SNAI2 was higher in sarcomatous or transitional components than in the carcinomatous component. However, a significant difference between the transitional and sarcomatous components was not detected. CONCLUSION These results suggest that the EMT plays an essential role in the pathogenesis of UCS.
Collapse
Affiliation(s)
- Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daisuke Fukagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Chie Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hiroaki Itamochi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
35
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
36
|
Loss of the candidate tumor suppressor ZEB1 (TCF8, ZFHX1A) in Sézary syndrome. Cell Death Dis 2018; 9:1178. [PMID: 30518749 PMCID: PMC6281581 DOI: 10.1038/s41419-018-1212-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Cutaneous T-cell lymphoma is a group of incurable extranodal non-Hodgkin lymphomas that develop from the skin-homing CD4+ T cell. Mycosis fungoides and Sézary syndrome are the most common histological subtypes. Although next-generation sequencing data provided significant advances in the comprehension of the genetic basis of this lymphoma, there is not uniform consensus on the identity and prevalence of putative driver genes for this heterogeneous group of tumors. Additional studies may increase the knowledge about the complex genetic etiology characterizing this lymphoma. We used SNP6 arrays and GISTIC algorithm to prioritize a list of focal somatic copy-number alterations in a dataset of multiple sequential samples from 21 Sézary syndrome patients. Our results confirmed a prevalence of significant focal deletions over amplifications: single well-known tumor suppressors, such as TP53, PTEN, and RB1, are targeted by these aberrations. In our cohort, ZEB1 (TCF8, ZFHX1A) spans a deletion having the highest level of significance. In a larger group of 43 patients, we found that ZEB1 is affected by deletions and somatic inactivating mutations in 46.5% of cases; also, we found potentially relevant ZEB1 germline variants. The survival analysis shows a worse clinical course for patients with ZEB1 biallelic inactivation. Multiple abnormal expression signatures were found associated with ZEB1 depletion in Sézary patients we verified that ZEB1 exerts a role in oxidative response of Sézary cells. Our data confirm the importance of deletions in the pathogenesis of cutaneous T-cell lymphoma. The characterization of ZEB1 abnormalities in Sézary syndrome fulfils the criteria of a canonical tumor suppressor gene. Although additional confirmations are needed, our findings suggest, for the first time, that ZEB1 germline variants might contribute to the risk of developing this disease. Also, we provide evidence that ZEB1 activity in Sézary cells, influencing the reactive oxygen species production, affects cell viability and apoptosis.
Collapse
|
37
|
Smita S, Ahad A, Ghosh A, Biswas VK, Koga MM, Gupta B, Acha-Orbea H, Raghav SK. Importance of EMT Factor ZEB1 in cDC1 "MutuDC Line" Mediated Induction of Th1 Immune Response. Front Immunol 2018; 9:2604. [PMID: 30483264 PMCID: PMC6243008 DOI: 10.3389/fimmu.2018.02604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The role of Epithelial to Mesenchymal Transition (EMT) factor Zeb1 is well defined in metastasis and cancer progression but it's importance in dendritic cells (DCs) is unexplored until now. For the first time we report here that Zeb1 controls immunogenic responses of CD8α+ conventional Type-I (cDC1) DCs. We found that ZEB1 expression increases significantly after TLR9 stimulation and its depletion impairs activation, co-stimulation and secretion of important cytokines like IL-6, IL-10 and IL-12 in cDC1 MutuDC line. We further confirmed our findings in primary cDC1 DCs derived from bone marrow. Co-culture of these Zeb1 knock down (KD) DCs with OT-II CD4+ T helper cells skewed their differentiation toward Th2 subtype. Moreover, adoptive transfer of activated Zeb1 KD DCs cleared intestinal worms in helminth infected mice by increasing Th2 responses in vivo. Integrative genomic analysis showed Zeb1 as an activator of immune response genes in cDC1 MutuDCs as compared to other pathway genes. In addition, differentially regulated genes in Zeb1 KD RNA-seq showed significant enrichment of Th2 activation pathways supporting our in vitro findings. Mechanistically, we showed that decreased IL-12 secreted by Zeb1 KD DCs is the plausible mechanism for increased Th2 differentiation. Collectively our data demonstrate that Zeb1 could be targeted in DCs to modulate T-cell mediated adaptive immune responses.
Collapse
Affiliation(s)
- Shuchi Smita
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Abdul Ahad
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Arup Ghosh
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Viplov K Biswas
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Marianna M Koga
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil K Raghav
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
38
|
Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol 2018; 835:61-74. [DOI: 10.1016/j.ejphar.2018.07.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
39
|
Yang CA, Bauer S, Ho YC, Sotzny F, Chang JG, Scheibenbogen C. The expression signature of very long non-coding RNA in myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med 2018; 16:231. [PMID: 30119681 PMCID: PMC6098652 DOI: 10.1186/s12967-018-1600-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease with huge social-economic impact. It has been suggested that immune dysregulation, nitrooxidative stress, and metabolic impairment might contribute to disease pathogenesis. However, the etiology of ME/CFS remains largely unclear, and diagnostic/prognostic disease markers are lacking. Several long noncoding RNAs (lncRNA, > 200 bp) have been reported to play roles in immunological diseases or in stress responses. METHODS In our study, we examined the expression signature of 10 very long lncRNAs (> 5 kb, CR933609, His-RNA, AK124742, GNAS1-AS, EmX2OS, MIAT, TUG1, NEAT1, MALAT1, NTT) in the peripheral blood mononuclear cells of 44 ME/CFS patients. RESULTS LncRNAs NTT, MIAT and EmX2OS levels were found to be significantly elevated in ME/CFS patients as compared with healthy controls. Furthermore, NTT and EmX2OS levels increased with disease severity. Stimulation of human monocytic cell line THP-1 and glioma cell line KALS1 with H2O2 (oxidative stress) and poly (I:C) (double strand RNA, representing viral activation) increased the expression levels of NTT and MIAT. CONCLUSIONS Our study revealed a ME/CFS-associated very long lncRNA expression signature, which might reflect the regulatory response in ME/CFS patients to oxidative stress, chronic viral infection and hypoxemia. Further investigations need to be done to uncover the functions and potential diagnostic value of these lncRNAs in ME/CFS.
Collapse
Affiliation(s)
- Chin-An Yang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Division of General Pediatrics, Children's Hospital of China Medical University, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sandra Bauer
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Yu-Chen Ho
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Franziska Sotzny
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
40
|
Wu C, Li J, Tian C, Shi W, Jiang H, Zhang Z, Wang H, Zhang Q, Sun W, Sun P, Xiang R, Yang S. Epigenetic dysregulation of ZEB1 is involved in LMO2-promoted T-cell acute lymphoblastic leukaemia leukaemogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2511-2525. [PMID: 29778661 DOI: 10.1016/j.bbadis.2018.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/02/2023]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a hematological malignancy caused by the accumulation of genomic lesions that affect the development of T-cells. ZEB1, a member of zinc finger-homeodomain family transcription factor, exhibits crucial function in promoting T-cell differentiation and potentially acts as a tumor suppressor in T-ALL. However, the molecular mechanism by which ZEB1 regulates T-ALL leukaemogenesis remains obscure. Here, we showed that oncogenic LIM only 2 (LMO2) could recruit Sap18 and HDAC1 to assemble an epigenetic regulatory complex, thus inducing histone deacetylation in ZEB1 promoter and chromatin remodeling to achieve transcriptional repression. Furthermore, downregulation of ZEB1 by LMO2 complex results in an increased leukaemia stem cell (LSC) phenotype as well as unsensitivity in response to methotrexate (MTX) chemotherapy in T-ALL cells. Importantly, we demonstrated that Trichostatin A (TSA, a HDAC inhibitor) addition significantly attenuates MTX unsensitivity caused by dysfunction of LMO2/ZEB1 signaling. In conclusion, these findings have identified a molecular mechanism underlying LMO2/ZEB1-mediated leukaemogenesis, paving a way for treating T-ALL with a new strategy of epigenetic inhibitors.
Collapse
Affiliation(s)
- Chao Wu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Jianjun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Chenchen Tian
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Wen Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Rong Xiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China.
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China.
| |
Collapse
|
41
|
ZEB Proteins in Leukemia: Friends, Foes, or Friendly Foes? Hemasphere 2018; 2:e43. [PMID: 31723771 PMCID: PMC6745990 DOI: 10.1097/hs9.0000000000000043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
ZEB1 and ZEB2 play pivotal roles in solid cancer metastasis by allowing cancer cells to invade and disseminate through the transcriptional regulation of epithelial-to-mesenchymal transition. ZEB expression is also associated with the acquisition of cancer stem cell properties and therapy resistance. Consequently, expression levels of ZEB1/2 and of their direct target genes are widely seen as reliable prognostic markers for solid tumor aggressiveness and cancer patient outcome. Recent loss-of-function mouse models demonstrated that both ZEBs are also essential hematopoietic transcription factors governing blood lineage commitment and fidelity. Interestingly, both gain- and loss-of-function mutations have been reported in multiple hematological malignancies. Combined with emerging functional studies, these data suggest that ZEB1 and ZEB2 can act as tumor suppressors and/or oncogenes in blood borne malignancies, depending on the cellular context. Here, we review these novel insights and discuss how balanced expression of ZEB proteins may be essential to safeguard the functionality of the immune system and prevent leukemia.
Collapse
|
42
|
Abstract
Killer cell lectin-like receptor subfamily G member 1 (KLRG1) has been found on human memory T lymphocytes. However, the roles of KLRG1 on human T cells especially in tumor microenvironment have not been fully understood. Our results showed KLRG1 expression on T cells significantly increased in tumor microenvironment. KLRG1+ T cells exhibited poor proliferative capacity with decreased effector cytokine production. Meanwhile, KLRG1+ T cells expressed abundant pro-inflammatory cytokines and demonstrated high level of Foxp3 expression. KLRG1+ T cells showed decreased expression of miRNA-101 and higher expression of CtBP2. Our results indicated KLRG1 might contribute to the impaired antitumor immunity of memory T cells in tumor microenvironment. Thus, repressing KLRG1 on human memory T cells might be a novel therapeutics against cancer.
Collapse
|
43
|
Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, Williams A, Flavell RA, Lu J, Kaech SM. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8 + T cell fates. J Exp Med 2018; 215:1153-1168. [PMID: 29449309 PMCID: PMC5881466 DOI: 10.1084/jem.20171352] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
Guan et al. identify genetic cooperativity between the transcription factor ZEB1 and the miR-200 family in memory CD8+ T cell development, which contrasts with that observed in the EMT. This study also shows that ZEB1 and its closely related homologue, ZEB2, play functionally distinct roles in CD8+ T cell differentiation. Long-term immunity depends partly on the establishment of memory CD8+ T cells. We identified a counterregulatory network between the homologous transcription factors ZEB1 and ZEB2 and the miR-200 microRNA family, which modulates effector CD8+ T cell fates. Unexpectedly, Zeb1 and Zeb2 had reciprocal expression patterns and were functionally uncoupled in CD8+ T cells. ZEB2 promoted terminal differentiation, whereas ZEB1 was critical for memory T cell survival and function. Interestingly, the transforming growth factor β (TGF-β) and miR-200 family members, which counterregulate the coordinated expression of Zeb1 and Zeb2 during the epithelial-to-mesenchymal transition, inversely regulated Zeb1 and Zeb2 expression in CD8+ T cells. TGF-β induced and sustained Zeb1 expression in maturing memory CD8+ T cells. Meanwhile, both TGF-β and miR-200 family members selectively inhibited Zeb2. Additionally, the miR-200 family was necessary for optimal memory CD8+ T cell formation. These data outline a previously unknown genetic pathway in CD8+ T cells that controls effector and memory cell fate decisions.
Collapse
Affiliation(s)
- Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Claudia X Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jijun Cheng
- Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Adam Williams
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Yale University, New Haven, CT
| | - Jun Lu
- Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
44
|
Houtman M, Shchetynsky K, Chemin K, Hensvold AH, Ramsköld D, Tandre K, Eloranta ML, Rönnblom L, Uebe S, Catrina AI, Malmström V, Padyukov L. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus. J Autoimmun 2018; 90:28-38. [PMID: 29398253 DOI: 10.1016/j.jaut.2018.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4+ T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus.
Collapse
Affiliation(s)
- Miranda Houtman
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Klementy Shchetynsky
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karine Chemin
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Aase Haj Hensvold
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Ramsköld
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Tandre
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Steffen Uebe
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anca Irinel Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Kreiner E, Waage J, Standl M, Brix S, Pers TH, Couto Alves A, Warrington NM, Tiesler CMT, Fuertes E, Franke L, Hirschhorn JN, James A, Simpson A, Tung JY, Koppelman GH, Postma DS, Pennell CE, Jarvelin MR, Custovic A, Timpson N, Ferreira MA, Strachan DP, Henderson J, Hinds D, Bisgaard H, Bønnelykke K. Shared genetic variants suggest common pathways in allergy and autoimmune diseases. J Allergy Clin Immunol 2017; 140:771-781. [PMID: 28188724 DOI: 10.1016/j.jaci.2016.10.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The relationship between allergy and autoimmune disorders is complex and poorly understood. OBJECTIVE We sought to investigate commonalities in genetic loci and pathways between allergy and autoimmune diseases to elucidate shared disease mechanisms. METHODS We meta-analyzed 2 genome-wide association studies on self-reported allergy and sensitization comprising a total of 62,330 subjects. These results were used to calculate enrichment for single nucleotide polymorphisms (SNPs) previously associated with autoimmune diseases. Furthermore, we probed for enrichment within genetic pathways and of transcription factor binding sites and characterized commonalities in variant burden on tissue-specific regulatory sites by calculating the enrichment of allergy SNPs falling in gene regulatory regions in various cells using Encode Roadmap DNase-hypersensitive site data. Finally, we compared the allergy data with those of all known diseases. RESULTS Among 290 loci previously associated with 16 autoimmune diseases, we found a significant enrichment of loci also associated with allergy (P = 1.4e-17) encompassing 29 loci at a false discovery rate of less than 0.05. Such enrichment seemed to be a general characteristic for autoimmune diseases. Among the common loci, 48% had the same direction of effect for allergy and autoimmune diseases. Additionally, we observed an enrichment of allergy SNPs falling within immune pathways and regions of chromatin accessible in immune cells that was also represented in patients with autoimmune diseases but not those with other diseases. CONCLUSION We identified shared susceptibility loci and commonalities in pathways between allergy and autoimmune diseases, suggesting shared disease mechanisms. Further studies of these shared genetic mechanisms might help in understanding the complex relationship between these diseases, including the parallel increase in disease prevalence.
Collapse
Affiliation(s)
- Eskil Kreiner
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Brix
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Mass; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Mass; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; School of Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - Carla M T Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Ludwig-Maximilians-Universität of Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Elaine Fuertes
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Joel N Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Mass; Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Mass; Department of Genetics, Harvard Medical School, Boston, Mass
| | - Alan James
- Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Perth, Australia; School of Medicine and Pharmacology, University of West Australia, Nedlands, Australia; Department of Pulmonary Physiology, West Australian Sleep Disorders Research Institute, Nedlands, Australia
| | - Angela Simpson
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | | | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, GRIAC Research Institute, Groningen, The Netherlands
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department Pulmonary Medicine and Tuberculosis, GRIAC Research Institute, Groningen, The Netherlands
| | - Craig E Pennell
- School of Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Unit of Primary Care, Oulu University Hospital, Oulu, Finland; Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | - Adnan Custovic
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom
| | - Nicholas Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | | | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, United Kingdom
| | - John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Hashemi S, Fernandez Martinez JL, Saligan L, Sonis S. Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients. J Pain Symptom Manage 2017; 54:326-339. [PMID: 28797855 DOI: 10.1016/j.jpainsymman.2017.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
CONTEXT Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. OBJECTIVES To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. METHODS The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. RESULTS The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. CONCLUSION The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology.
Collapse
Affiliation(s)
- Sepehr Hashemi
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Leorey Saligan
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland, USA
| | - Stephen Sonis
- Harvard School of Dental Medicine, Boston, Massachusetts, USA; Biomodels LLC, Watertown, Massachusetts, USA; Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
47
|
Katsuyama E, Yan M, Watanabe KS, Matsushima S, Yamamura Y, Hiramatsu S, Ohashi K, Watanabe H, Katsuyama T, Zeggar S, Yoshida N, Moulton VR, Tsokos GC, Sada KE, Wada J. Downregulation of miR-200a-3p, Targeting CtBP2 Complex, Is Involved in the Hypoproduction of IL-2 in Systemic Lupus Erythematosus–Derived T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4268-4276. [DOI: 10.4049/jimmunol.1601705] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
|
48
|
Targeting Chromatin Remodeling in Inflammation and Fibrosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:1-36. [PMID: 28215221 DOI: 10.1016/bs.apcsb.2016.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mucosal surfaces of the human body are lined by a contiguous epithelial cell surface that forms a barrier to aerosolized pathogens. Specialized pattern recognition receptors detect the presence of viral pathogens and initiate protective host responses by triggering activation of the nuclear factor κB (NFκB)/RelA transcription factor and formation of a complex with the positive transcription elongation factor (P-TEFb)/cyclin-dependent kinase (CDK)9 and Bromodomain-containing protein 4 (BRD4) epigenetic reader. The RelA·BRD4·P-TEFb complex produces acute inflammation by regulating transcriptional elongation, which produces a rapid genomic response by inactive genes maintained in an open chromatin configuration engaged with hypophosphorylated RNA polymerase II. We describe recent studies that have linked prolonged activation of the RelA-BRD4 pathway with the epithelial-mesenchymal transition (EMT) by inducing a core of EMT corepressors, stimulating secretion of growth factors promoting airway fibrosis. The mesenchymal state produces rewiring of the kinome and reprogramming of innate responses toward inflammation. In addition, the core regulator Zinc finger E-box homeodomain 1 (ZEB1) silences the expression of the interferon response factor 1 (IRF1), required for type III IFN expression. This epigenetic silencing is mediated by the Enhancer of Zeste 2 (EZH2) histone methyltransferase. Because of their potential applications in cancer and inflammation, small-molecule inhibitors of NFκB/RelA, CDK9, BRD4, and EZH2 have been the targets of medicinal chemistry efforts. We suggest that disruption of the RelA·BRD4·P-TEFb pathway and EZH2 methyltransferase has important implications for reversing fibrosis and restoring normal mucosal immunity in chronic inflammatory diseases.
Collapse
|
49
|
Zhu X, Yan M, Luo W, Liu W, Ren Y, Bei C, Tang G, Chen R, Tan S. Expression and clinical significance of PcG-associated protein RYBP in hepatocellular carcinoma. Oncol Lett 2016; 13:141-150. [PMID: 28123534 PMCID: PMC5244986 DOI: 10.3892/ol.2016.5380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ring1 and YY1 binding protein (RYBP), a member of the polycomb group proteins, has been implicated in transcription repression and tumor cell-specific apoptosis. Previously, RYBP has been reported as a putative tumor suppressor in cancer tissues by regulating mouse double minute 2 homolog-p53 signaling. However, the exact role and underlying mechanisms of RYBP in cancer remain to be fully elucidated. The present study investigated the expression profile of RYBP in hepatocellular carcinoma (HCC) and examined the association between the expression of RYBP and metastasis of HCC. It was found that RYBP was downregulated in HCC tissues, compared with matched adjacent non-tumor tissues, as detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. In addition, Kaplan-Meier survival analysis showed that the negative expression of RYBP was associated with decreased overall survival rates in patients with HCC. It was also found that RYBP was associated with zinc finger E-box binding homeobox 1 and zinc finger E-box binding homeobox 2, which were overexpressed in HCC and correlated with epithelial-mesenchymal transition. The results of the present study suggested the importance of RYBP in HCC and its possible mechanism in the metastasis of HCC.
Collapse
Affiliation(s)
- Xiaonian Zhu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Meng Yan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China; Department of General Surgery, First Central Hospital of Baoding, Baoding, Hebei 071000, P.R. China
| | - Wei Luo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Yuan Ren
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Chunhua Bei
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Guifang Tang
- Department of Hepatology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541000, P.R. China
| | - Ruiling Chen
- Department of Hepatology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541000, P.R. China
| | - Shengkui Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541000, P.R. China; Department of Hepatobiliary Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| |
Collapse
|
50
|
Weed J, Gibson J, Lewis J, Carlson K, Foss F, Choi J, Li P, Girardi M. FISH Panel for Leukemic CTCL. J Invest Dermatol 2016; 137:751-753. [PMID: 27836797 DOI: 10.1016/j.jid.2016.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/22/2016] [Accepted: 10/02/2016] [Indexed: 12/14/2022]
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Neoplasm/analysis
- Humans
- In Situ Hybridization, Fluorescence/methods
- Lymphoma, T-Cell, Cutaneous/diagnosis
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/metabolism
- Mutation
- Skin Neoplasms/diagnosis
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
Collapse
Affiliation(s)
- Jason Weed
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Juliet Gibson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julia Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kacie Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francine Foss
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jaehyuk Choi
- Department of Dermatology, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peining Li
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|