1
|
Vendomèle J, Khebizi Q, Fisson S. Cellular and Molecular Mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID): What We Have Learned from Knockout Mice. Front Immunol 2017; 8:1686. [PMID: 29250068 PMCID: PMC5714853 DOI: 10.3389/fimmu.2017.01686] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023] Open
Abstract
Anterior chamber-associated immune deviation (ACAID) is a well-known phenomenon that can occur after an antigen is introduced without any danger signal into the anterior chamber of a murine eye. It is reported to lead to an antigen-specific immune deviation throughout the body. Despite the relatively little evidence of this phenomenon in humans, it has been suggested as a potential prophylactic strategy in allograft rejections and in several autoimmune diseases. Cellular and molecular mechanisms of ACAID have been explored in different murine models mainly as proofs of concept, first by direct analyses of immune components in normal immunocompetent settings and by cell transfer experiments. Later, use of knockout (KO) mice has helped considerably to decipher ACAID mechanisms. However, several factors raise questions about the reliability and validity of studies using KO murine models. This mini-review summarizes results obtained with KO mice and discusses their advantages, their potential weaknesses, and their potential methods for further progress.
Collapse
Affiliation(s)
- Julie Vendomèle
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, Evry, France
| | - Quentin Khebizi
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sylvain Fisson
- INTEGRARE, Genethon, INSERM, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
2
|
Li X, Su Y, Hua X, Xie C, Liu J, Huang Y, Zhou L, Zhang M, Li X, Gao Z. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis. J Transl Med 2017; 15:75. [PMID: 28399886 PMCID: PMC5387242 DOI: 10.1186/s12967-017-1167-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background Liver fibrosis which mainly occurs upon chronic hepatitis virus infection potentially leads to portal hypertension, hepatic failure and hepatocellular carcinoma. However, the immune status of Th17 and Treg cells in liver fibrosis is controversial and the exact mechanisms remain largely elusive. Methods Liver tissues and peripheral blood were obtained simultaneously from 32 hepatitis B virus infected patients undergoing surgery for hepatocellular carcinoma at the medical center of Sun Yat-sen University. Liver tissues at least 3 cm away from the tumor site were used for the analyses. Levels of Th17 cells and regulatory T cells were detected by flow cytometry analysis and immunohistochemistry. In vitro experiment, we adopted magnetic cell sorting to investigate how hepatic stellate cells regulate the levels of Th17 cells and regulatory T cells. Results We found that hepatic Th17 cells and regulatory T cells were increased in patients with advanced stage HBV-related liver fibrosis. Hepatic stellate cells upregulated the levels of Th17 cells and regulatory T cells via PGE2/EP2 and EP4 pathway. Conclusions We found that the increased levels of Th17 cells and regulatory T cells were upregulated by hepatic stellate cells. These results may provide insight into the role of hepatic stellate cells and Th17 cells and regulatory T cells in the persistence of fibrosis and into the occurrence of hepatocellular carcinoma following cirrhosis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1167-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Yujie Su
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Xuefeng Hua
- Department of Transplant Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Jing Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.,Guangdong Province Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhou
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Min Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.,Guangdong Province Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, No 210 Jixi Road, Hefei, 230022, Anhui Province, China.
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China. .,Guangdong Province Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
3
|
ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases. Med Hypotheses 2016; 88:38-45. [PMID: 26880635 DOI: 10.1016/j.mehy.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
The progressive loss of neurons and inflammation characterizes neurodegenerative diseases. Although the etiology, progression and outcome of different neurodegenerative diseases are varied, they share chronic inflammation maintained largely by central nervous system (CNS)-derived antigens recognized by T cells. Inflammation can be beneficial by recruiting immune cells to kill pathogens or to clear cell debris resulting from the primary insult. However, chronic inflammation exacerbates and perpetuates tissue damage. An increasing number of therapies that attempt to modulate neuroinflammation have been developed. However, so far none has succeeded in decreasing the secondary damage associated with chronic inflammation. A potential strategy to modulate the immune system is related to the induction of tolerance to CNS antigens. In this line, it is our hypothesis that this could be accomplished by using anterior chamber associated immune deviation (ACAID) as a strategy. Thus, we review current knowledge regarding some neurodegenerative diseases and the associated immune response that causes inflammation. In addition, we discuss further our hypothesis of the possible usefulness of ACAID as a therapeutic strategy to ameliorate damage to the CNS.
Collapse
|
4
|
Abstract
The role of CD8+ T cells in the process of autoimmune pathology has been both understudied and controversial. Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system (CNS) with underlying T cell-mediated immunopathology. CD8+ T cells are the predominant T cells in human MS lesions, showing oligoclonal expansion at the site of pathology. It is still unclear whether these cells represent pathogenic immune responses or disease-regulating elements. Through studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), we have discovered two novel CD8+ T cell populations that play an essential immunoregulatory role in disease: (1) MHC class Ia-restricted neuroantigen-specific "autoregulatory" CD8+ T cells and (2) glatiramer acetate (GA/Copaxone(®)) therapy-induced Qa-1/HLA-E-restricted GA-specific CD8+ T cells. These CD8+ Tregs suppress proliferation of pathogenic CD4+ CD25- T cells when stimulated by their cognate antigens. Similarly, CD8+ Tregs significantly suppress EAE when transferred either pre-disease induction or during peak disease. The mechanism of disease inhibition depends, at least in part, on an antigen-specific, contact-dependent process and works through modulation of CD4+ T cell responses as well as antigen-presenting cells through a combination of cytotoxicity and cytokine-mediated modulation. This review provides an overview of our understanding of CD8+ T cells in immune-mediated disease, focusing particularly on our findings regarding regulatory CD8+ T cells both in MS and in EAE. Clinical relevance of these novel CD8-regulatory populations is discussed, providing insights into a potentially intriguing, novel therapeutic strategy for these diseases.
Collapse
|
5
|
Pratheek BM, Nayak TK, Sahoo SS, Mohanty PK, Chattopadhyay S, Chakraborty NG, Chattopadhyay S. Mammalian non-classical major histocompatibility complex I and its receptors: Important contexts of gene, evolution, and immunity. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:129-41. [PMID: 25400340 PMCID: PMC4228563 DOI: 10.4103/0971-6866.142855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The evolutionary conserved, less-polymorphic, nonclassical major histocompatibility complex (MHC) class I molecules: Qa-1 and its human homologue human leukocyte antigen-E (HLA-E) along with HLA-F, G and H cross-talk with the T-cell receptors and also interact with natural killer T-cells and other lymphocytes. Moreover, these nonclassical MHC molecules are known to interact with CD94/NKG2 heterodimeric receptors to induce immune responses and immune regulations. This dual role of Qa-1/HLA-E in terms of innate and adaptive immunity makes them more interesting. This review highlights the new updates of the mammalian nonclassical MHC-I molecules in terms of their gene organization, evolutionary perspective and their role in immunity.
Collapse
Affiliation(s)
- B M Pratheek
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | | | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ntiya G Chakraborty
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Amedei A, Munari F, Bella CD, Niccolai E, Benagiano M, Bencini L, Cianchi F, Farsi M, Emmi G, Zanotti G, de Bernard M, Kundu M, D'Elios MM. Helicobacter pylori secreted peptidyl prolyl cis, trans-isomerase drives Th17 inflammation in gastric adenocarcinoma. Intern Emerg Med 2014; 9:303-309. [PMID: 23054412 DOI: 10.1007/s11739-012-0867-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/22/2012] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is characterized by an inflammatory infiltrate, consisting mainly of neutrophils and T cells. This study was undertaken to evaluate the type of gastric T cell response elicited by the secreted peptidyl prolyl cis, trans-isomerase of H. pylori (HP0175) in patients with distal gastric adenocarcinoma. The cytokine profile and the effector functions of gastric tumor-infiltrating lymphocytes (TILs) specific for HP0175 was investigated in 20 patients with distal gastric adenocarcinoma and H. pylori infection. The helper function of HP0175-specific TILs for monocyte MMP-2, MMP-9, and VEGF production was also investigated. TILs cells from H. pylori infected patients with distal gastric adenocarcinoma produced Interleukin (IL)-17 and IL-21 in response to HP0175. HP0175-specific TILs showed poor cytolytic activity while expressing helper activity for monocyte MMP-2, MMP-9 and VEGF production. These findings indicate that HP0175 is able to drive gastric Th17 response. Thus, HP0175, by promoting pro-inflammatory low cytotoxic TIL response, matrix degradation and pro-angiogenic pathways, may provide a link between H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
McKenna KC, Previte DM. Influence of CD8+ T regulatory cells on intraocular tumor development. Front Immunol 2012; 3:303. [PMID: 23060881 PMCID: PMC3460369 DOI: 10.3389/fimmu.2012.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/10/2012] [Indexed: 11/13/2022] Open
Abstract
The interior of the eye, or uvea, is a site of immune privilege where certain immune responses are attenuated or completely excluded to protect non-regenerating tissues essential for vision. One consequence of this immunoregulation is compromised immune mediated elimination of intraocular tumors. For example, certain murine tumor cell lines which are rejected by host immune responses when transplanted in the skin grow progressively when placed in the anterior chamber (a.c.) of the eye. Progressive ocular tumor growth occurs despite induction of tumor-specific CD8+ T cell responses capable of eliminating a subsequent tumor challenge in the skin or opposite eye. Why these CD8+ T effectors fail to eliminate established ocular tumors is not known. It is well appreciated that growth of tumors in the a.c. induces the generation of immunosuppressive CD8+ T regulatory (Treg) cells. However, the contribution of CD8+ Treg in ocular tumor progression remains unclear. Several studies indicate that these CD8+ Treg target responding CD4+ T cells to inhibit their induction of macrophage-dependent delayed type hypersensitivity (DTH) responses to tumor antigens (Ags). However, induction of tumor-specific CD4+ T cell responses does not assure intraocular tumor elimination. This review is focused on how CD8+ Treg could influence the tumoricidal activity of ocular tumor-specific CD8+ T effector cells.
Collapse
Affiliation(s)
- Kyle C McKenna
- Departments of Ophthalmology and Immunology/Medicine, University of Pittsburgh, University of Pittsburgh Cancer Institute Pittsburgh, PA, USA
| | | |
Collapse
|
8
|
Sharafieh R, Lemire Y, Powell S, O'Rourke J, Cone RE. Immune amplification of murine CD8 suppressor T cells induced via an immune-privileged site: quantifying suppressor T cells functionally. PLoS One 2011; 6:e22496. [PMID: 21829628 PMCID: PMC3149055 DOI: 10.1371/journal.pone.0022496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 06/24/2011] [Indexed: 11/26/2022] Open
Abstract
Background CD8+ suppressor T cells exert antigen-specific suppression of the expression of hypersensitivity by activated T cells. Therefore, CD8+ suppressor T cells serve a major regulatory role for the control of active immunity. Accordingly, the number and/or activity of CD8+ suppressor T cells should be influenced by an immune response to the antigen. To test this hypothesis we used an adoptive transfer assay that measures the suppression of the expression of delayed-type hypersensitivity (DTH) by CD8+ suppressor T cells to quantify the antigen-specific suppression of DTH by these suppressor T cells. Methods Suppressor T cells were induced in the spleens of mice by the injection of antigen into the anterior chamber of an eye. Following this injection, the mice were immunized by the same antigen injected into the anterior chamber. Spleen cells recovered from these mice (AC-SPL cells) were titrated in an adoptive transfer assay to determine the number of AC-SPL cells required to effect a 50% reduction of antigen-induced swelling (Sw50) in the footpad of immunized mice challenged by antigen. Results Suppression of the expression of DTH is proportional to the number of AC-SPL cells injected into the site challenged by antigen. The number of AC-SPL cells required for a 50% reduction in DTH-induced swelling is reduced by injecting a cell population enriched for CD8+ AC-SPL cells. Immunizing the mice receiving intracameral antigen to the same antigen decreases the RSw50 of AC-SPL cells required to inhibit the expression of DTH. Conclusions The results provide the first quantitative demonstration that the numbers of antigen-specific splenic CD8+ suppressor T cells are specifically amplified by antigen during an immune response.
Collapse
Affiliation(s)
- Roshanak Sharafieh
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yen Lemire
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sabrina Powell
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - James O'Rourke
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Robert E. Cone
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
9
|
Bhowmick S, Clark RB, Brocke S, Cone RE. Antigen-specific splenic CD4+ and CD8+ regulatory T cells generated via the eye, suppress experimental autoimmune encephalomyelitis either at the priming or at the effector phase. Int Immunol 2011; 23:119-28. [PMID: 21273399 DOI: 10.1093/intimm/dxq461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The injection of antigen into the ocular anterior chamber (AC) induces the generation of splenic CD4(+) and CD8(+) regulatory T (Treg) cells, specific for the antigen injected into the AC. These Treg cells inhibit the induction (CD4(+)) and also the expression (CD8(+)) of a delayed-type hypersensitivity response. The ability of AC-induced self-antigen-specific Treg cells in modulating autoimmunity is not well defined. Here we show that an injection of encephalitogenic myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide into the anterior chamber of the eye (AC-MOG), before the induction of or during established experimental autoimmune encephalomyelitis (EAE) induced by MOG(35-55), suppresses the induction or progression of EAE, respectively. CD4(+) or CD8(+) splenic Treg cells induced by an injection of AC-MOG prevent EAE either at the inductive (priming) or at the progressive (effector) phase, respectively. This suppression of EAE by an AC-MOG injection or by intravenous transfer of splenic regulatory cells induced by an AC-MOG injection is specific for the antigen injected into the AC. Additionally, our data suggest that splenic CD8(+) Treg cells that suppress active EAE may use a transforming growth factor (TGF)-β-dependent suppression mechanism while the suppression of the induction of EAE by the AC-induced CD4(+) Treg cells is independent of TGF-β. Thus, we show for the first time that regulation of EAE at the priming or the chronic phase requires different phenotypes of Treg cells. Hence, it is important to consider the phenotype of Treg cells while designing effective cell-based therapies against autoimmune disorders.
Collapse
Affiliation(s)
- Sourojit Bhowmick
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06032-3105, USA
| | | | | | | |
Collapse
|
10
|
Adams CO, Housley WJ, Bhowmick S, Cone RE, Rajan TV, Forouhar F, Clark RB. Cbl-b−/− T Cells Demonstrate In Vivo Resistance to Regulatory T Cells but a Context-Dependent Resistance to TGF-β. THE JOURNAL OF IMMUNOLOGY 2010; 185:2051-8. [DOI: 10.4049/jimmunol.1001171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Cone RE, Pais R. Anterior Chamber-Associated Immune Deviation (ACAID): An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage? OPHTHALMOLOGY AND EYE DISEASES 2009; 1:33-40. [PMID: 23861608 PMCID: PMC3661314 DOI: 10.4137/oed.s2858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID)a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80+ monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.
Collapse
Affiliation(s)
- Robert E Cone
- Department of Immunology, Connecticut Lions Vascular Vision Center, Farmington Connecticut, USA.
| | | |
Collapse
|