1
|
Polati VR, Gattu S, Maturu VN, Prakasham PS, Maqsood M. Investigational antibiotic cefepime/zidebactam as a therapeutic option for the treatment of an unyielding empyema in a paediatric patient caused by extensively drug-resistant Pseudomonas aeruginosa: a case report. Eur J Clin Microbiol Infect Dis 2025; 44:1349-1355. [PMID: 40100511 DOI: 10.1007/s10096-025-05106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Treatment option for the infections caused by MBL-producing P. aeruginosa is severely limited. Cefepime/zidebactam (WCK 5222) is a novel β-lactam/ β-lactam-enhancer combination, currently in global Phase 3 clinical development. It is reported to show a broad-spectrum in vitro activity and translational efficacy in non-clinical PK/PD models against carbapenem-resistant Gram-negative bacteria including MBL-producing P. aeruginosa. We present a case of a 13-year-old girl, suffering from tuberculosis with a refractory lung empyema caused by NDM-producing, XDR P. aeruginosa who did not respond to several rounds of colistin or aztreonam plus ceftazidime/avibactam therapies albeit effective source control, over 4 months period. METHODS The infecting organism was found to be susceptible to cefepime/zidebactam. After obtaining informed consent and necessary approvals, the patient was treated under compassionate ground. RESULTS The patient was treated with adult dose regimen of cefepime/zidebactam (due to higher body weight) for 21 days that led to clinical and microbiological cure. CONCLUSION This case highlights both severity of the antimicrobial resistance and hope offered by an under-trial novel antibiotic.
Collapse
Affiliation(s)
- Vishnu Rao Polati
- Department of Infectious Diseases, Apollo Hospitals, Jubilee Hills, Hyderabad, Telangana, India.
| | - Santosh Gattu
- Department of Infectious Diseases, Apollo Hospitals, Jubilee Hills, Hyderabad, Telangana, India
| | | | - P Swati Prakasham
- Department of Microbiology, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Maryam Maqsood
- Department of Infectious Diseases, Apollo Hospitals, Jubilee Hills, Hyderabad, Telangana, India
- Department of Public and Ecosystem Health, Infectious Disease Epidemiology, Cornell University, New York, USA
| |
Collapse
|
2
|
Boattini M, Gaibani P, Comini S, Costa C, Cavallo R, Broccolo F, Bianco G. In vitro activity and resistance mechanisms of novel antimicrobial agents against metallo-β-lactamase producers. Eur J Clin Microbiol Infect Dis 2025; 44:1041-1068. [PMID: 40064744 PMCID: PMC12062158 DOI: 10.1007/s10096-025-05080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 05/09/2025]
Abstract
The carbapenemase-producing Gram-negative organisms represent an urgent clinical and public health concern, as they have been associated with increased mortality and high dissemination in healthcare settings. Although overall incidence rates of infections sustained by metallo-β-lactamase (MβL)-producers have remained lower than those sustained by other carbapenemase-producers, albeit with substantial geographic differences, a significant increase in the prevalence of MβL-producers has been observed over the last decade. The recent development of new antimicrobials expanded the armamentarium to counter the challenge of metallo-β-lactamase (MβL)-producers. Cefiderocol and aztreonam/avibactam are already clinically available and recommended by international guidelines. In addition, two new classes of β-lactam/ β-lactamase combinations are under clinical evaluation: (i) combination of β-lactam with novel boronic-derived inhibitors (e.g. taniborbactam and xeruborbactam), (ii) combination of β-lactam with last generation diazabicyclooctane β-lactamase inhibitors (e.g. zidebactam and nacubactam), active on most of serine-β-lactamases but also showing strong intrinsic activity on PBP-2. This review aims to provide up-to-date data on the characteristics, activity and emerging resistance mechanisms of the armamentarium of clinically available or soon-to-be introduced drugs for the treatment of MβL-producing Gram-negative organisms.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Paolo Gaibani
- Microbiology and Virology Unit, Department of Pathology, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Ancona, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Francesco Broccolo
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Gabriele Bianco
- Department of Experimental Medicine, University of Salento, Lecce, Italy.
| |
Collapse
|
3
|
Veeraraghavan B, Shin E, Bakthavatchalam YD, Manesh A, Dubey D, Tascini C, Taracila MA, Hujer AM, Jacobs MR, Bonomo RA. A microbiological and structural analysis of the interplay between sulbactam/durlobactam and imipenem against penicillin-binding proteins (PBPs) of Acinetobacter spp. Antimicrob Agents Chemother 2025; 69:e0162724. [PMID: 40035550 PMCID: PMC11963609 DOI: 10.1128/aac.01627-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/11/2025] [Indexed: 03/05/2025] Open
Abstract
In the ATTACK Phase 3 trial examining the efficacy of sulbactam (SUL)/durlobactam (DUR) to treat primarily Acinetobacter baumannii complex (ABC) infections, imipenem (IPM)/cilastatin was added as a common therapy to both the SUL/DUR and the comparator colistin arms. This raised the question of whether the use of IPM in the SUL/DUR arm of the study influenced the efficacy of SUL/DUR. To investigate this issue on a microbiological and molecular level, we performed static concentration time-kill studies and molecular modeling of binding of SUL to PBP1a and PBP3, IPM to PBP1a, PBP2, and PBP3, and DUR to OXA-23 and OXA-51. The time-kill studies performed using carbapenemase- and non-carbapenemase-producing isolates demonstrated synergy between SUL and IPM in the presence of DUR, supporting the notion that the efficacy of the SUL/DUR arm against Acinetobacter spp. in the ATTACK trial was enhanced by the addition of IPM. We also hypothesize that the protection of SUL and IPM from OXA carbapenemases by DUR enabled IPM and SUL to synergistically deactivate multiple PBPs ("target redundancy"). Docking simulations supported the favorable binding of SUL to PBP1a and PBP3, resulting in the formation of acyl-enzyme complexes. Molecular docking analysis of OXA carbapenemase enzymes with DUR also revealed favorable interactions. Although clinical trials are warranted, these analyses provide mechanistic support for the addition of IPM to SUL/DUR.
Collapse
Affiliation(s)
| | - Eunjeong Shin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Abi Manesh
- Department of Infectious Disease, Christian Medical College and Hospital Vellore, Vellore, India
| | - Dilip Dubey
- Institute of Critical Care Medicine, Medanta, Lucknow, India
| | - Carlo Tascini
- Department of Infectious Diseases, University of Udine, Udine, Italy
| | - Magdalena A. Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael R. Jacobs
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
4
|
Tellapragada C, Dunleavy C, Jonsson P, Giske CG. Decreased susceptibility to cefepime/zidebactam among carbapenemase-producing Escherichia coli from Stockholm, Sweden with alterations in PBP2. J Antimicrob Chemother 2025; 80:1137-1140. [PMID: 39960091 PMCID: PMC11962383 DOI: 10.1093/jac/dkaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 04/03/2025] Open
Abstract
OBJECTIVES We aimed to investigate the in vitro activity and genetic determinants of decreased susceptibility (DS; MIC > 4 mg/L) to cefepime/zidebactam of carbapenemase-producing Escherichia coli. METHODS Clinical isolates (N = 150) of carbapenemase-producing E. coli (CP-EC) belonging to seven distinct STs, isolated at a university clinical microbiology laboratory during 2019-2023 in Stockholm, Sweden were included. MICs for cefepime/zidebactam were determined using the broth microdilution method and interpreted using the tentative EUCAST clinical breakpoints (Susceptible; MIC < 4 mg/L; based on cefepime breakpoint). Whole genome sequences of the isolates were analysed with an emphasis on identifying alterations in PBPs 2 and 3. RESULTS Of the 150 isolates, 145 (96.6%) isolates had MICs <4 mg/L indicating susceptibility and 5 (3.3%) had MICs >4 mg/L. MICs for zidebactam alone among the five isolates with DS to cefepime/zidebactam were ≥8 mg/L. WGS analysis revealed that these five isolates were NDM-5 producers and belonged to ST405 (n = 1), ST410 (n = 2) and ST648 (n = 2). Presence of four-amino-acid inserts (YRIK/YRIN) in PBP3 was observed in 80/150 (53.3%) isolates, and mutations leading to alterations in PBP2 were observed in 41/150 (27.3%) isolates. Presence of other β-lactamases (CTX-M group) and/or cephalosporinases (blaCMY) did not have an impact on the susceptibility to cefepime/zidebactam. Three of the five isolates with DS had a V522I substitution in PBP2. CONCLUSIONS Our results indicate that DS to cefepime/zidebactam among clinical isolates of E. coli could arise due to targeted mutations in PBP2.
Collapse
Affiliation(s)
- Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Chantel Dunleavy
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Patrik Jonsson
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Veeraraghavan B, Walia K, Egli A. Re: 'Potent in vitro activity of sulbactam-durlobactam against NDM-producing Escherichia coli including cefiderocol and aztreonam-avibactam-resistant isolates' by Poirel et al. Clin Microbiol Infect 2025; 31:660-661. [PMID: 39672465 DOI: 10.1016/j.cmi.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Affiliation(s)
- Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Kamini Walia
- Descriptive Research Division, Indian Council of Medical Research, New Delhi, India
| | - Adrian Egli
- Institute of Medical Microbiology, Universität Zürich, Zurich, Switzerland
| |
Collapse
|
6
|
Katsarou A, Stathopoulos P, Tzvetanova ID, Asimotou CM, Falagas ME. β-Lactam/β-Lactamase Inhibitor Combination Antibiotics Under Development. Pathogens 2025; 14:168. [PMID: 40005543 PMCID: PMC11858600 DOI: 10.3390/pathogens14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Antimicrobial resistance remains a public health problem of global concern with a great health and financial burden. Its recognition as a threat by political leadership has boosted the research and development of new antibiotics and particularly novel combinations of β-lactams/β-lactamase inhibitors against multidrug-resistant (MDR) Gram-negative pathogens, which remain the major concern in clinical practice. The incorporation of ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, and imipenem/cilastatin/relebactam has provided new therapeutic options in the treatment of patients with infections due to MDR pathogens. Cefiderocol along with cefepime/enmetazobactam, avibactam/aztreonam, and sulbactam/durlobactam have been recently added to these agents as therapeutic choices, particularly for metallo-β-lactamase producing Gram-negative bacteria. Currently, many combinations are being studied for their in vitro activity against both serine- and metallo-β-lactamases. However, only a few have advanced through phase 1, 2, and 3 clinical trials. Among them, in this article, we focus on the most promising combinations of cefepime/zidebactam, cefepime/taniborbactam, and imipenem/cilastatin/funobactam, which are currently under investigation in phase 3 trials.
Collapse
Affiliation(s)
- Angeliki Katsarou
- Alfa Institute of Biomedical Sciences (AIBS), 9 Neapoleos Street, 151 23 Athens, Greece; (A.K.); (P.S.); (C.-M.A.)
- Department of Medicine, Hygeia Hospital, 4 Erythrou Stavrou Street, 151 23 Athens, Greece
| | - Panagiotis Stathopoulos
- Alfa Institute of Biomedical Sciences (AIBS), 9 Neapoleos Street, 151 23 Athens, Greece; (A.K.); (P.S.); (C.-M.A.)
| | - Iva D. Tzvetanova
- School of Medicine, European University Cyprus, 6 Diogenous Street, 2404 Nicosia, Cyprus;
| | - Christina-Maria Asimotou
- Alfa Institute of Biomedical Sciences (AIBS), 9 Neapoleos Street, 151 23 Athens, Greece; (A.K.); (P.S.); (C.-M.A.)
| | - Matthew E. Falagas
- Alfa Institute of Biomedical Sciences (AIBS), 9 Neapoleos Street, 151 23 Athens, Greece; (A.K.); (P.S.); (C.-M.A.)
- School of Medicine, European University Cyprus, 6 Diogenous Street, 2404 Nicosia, Cyprus;
- Department of Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
7
|
Bakthavatchalam YD, Behera B, Shah A, Mathur P, Ray R, Fomda BA, Walia K, Veeraraghavan B. Tackling the unyielding: testing two novel approaches against NDM-producing Enterobacterales and Pseudomonas aeruginosa isolates collected in India. Microbiol Spectr 2025; 13:e0049724. [PMID: 39560385 PMCID: PMC11705784 DOI: 10.1128/spectrum.00497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024] Open
Abstract
The in vitro activity of two novel antibiotics with different modes of action, (i) siderophore cefiderocol and (ii) β-lactam-enhancer mechanism-based cefepime/zidebactam, was tested against New Delhi Metallo-β-lactamase (NDM)-producing Enterobacterales and Pseudomonas aeruginosa collected in India. Minimum inhibitory concentrations of antibiotics against multicentric NDM-producing Escherichia coli (n = 117), Klebsiella pneumoniae (n = 103), and P. aeruginosa (n = 72) were determined by the reference broth microdilution method. Among E. coli, 111 isolates were NDM-alone, and six were NDM + OXA-48-like producers. Among K. pneumoniae, 47 and 56 isolates were NDM-alone and NDM + OXA-48-like producers, respectively. All E. coli isolates harbored four amino acid inserts in their penicillin-binding protein 3. Using the highest susceptible breakpoint among CLSI, FDA, and EUCAST interpretive criteria, cefiderocol susceptibility was 39.3%, ≤80%, and 57%, for NDM ± OXA-48-like-producing E. coli, NDM ± OXA-48-like-producing K. pneumoniae, and NDM-producing P. aeruginosa, respectively. At a cefepime break point of ≤8 mg/L, 100% of Enterobacterales and ≥90% of P. aeruginosa isolates were cefepime/zidebactam-susceptible. NDM being a dominant carbapenemase among Enterobacterales and P. aeruginosa in India, the variable activity of cefiderocol against NDM producers is a concern. Post approval, cefepime/zidebactam could offer a promising treatment option against NDM producers. IMPORTANCE Metallo-β-lactamases are therapeutically challenging due to the limited treatment options. Against such isolates, currently approved newer β-lactam/β-lactamase inhibitor combinations are ineffective. In this study, we tested siderophore cephalosporin, cefiderocol, which utilizes an unconventional iron uptake pathway for efficient cellular penetration, and cefepime/zidebactam that utilizes novel β-lactam enhancer mechanisms for overcoming diverse carbapenemases. Cefiderocol showed limited activity against Escherichia coli isolates co-harboring New Delhi metallo-β-lactamase (NDM) with PBP3 insert, dual carbapenemase (NDM with OXA-48 like)-producing Klebsiella pneumoniae, and NDM-producing Pseudomonas aeruginosa isolates, while cefepime/zidebactam potently inhibited NDM-producing Enterobacterales and P. aeruginosa isolates. NDM being a dominant carbapenemase among Enterobacterales and P. aeruginosa in India, the variable activity of cefiderocol against NDM producers is a concern. Post approval, cefepime/zidebactam could offer a promising treatment option against NDM producers.
Collapse
Affiliation(s)
| | - Bijayini Behera
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Anand Shah
- Department of Microbiology, Zydus Hospitals, Ahmedabad, Gujarat, India
| | - Purva Mathur
- Department of Clinical Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Raja Ray
- Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Bashir Ahmed Fomda
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Bakthavatchalam YD, Shankar C, Jeyaraj C, Neeravi A, Mathur P, Nagvekar V, Nithiyanandam S, Walia K, Veeraraghavan B. In vitro activity of zidebactam/cefepime (WCK 5222), a β-lactam enhancer/ β-lactam combination against carbapenem- and colistin-resistant Klebsiella pneumoniae isolates. Diagn Microbiol Infect Dis 2025; 111:116561. [PMID: 39432962 DOI: 10.1016/j.diagmicrobio.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVES In vitro activity of β-lactam enhancer/β-lactam combination zidebactam/cefepime was evaluated against carbapenem- and colistin-resistant Klebsiella pneumoniae isolates. METHODS Non duplicate K. pneumoniae (n=185), resistant to colistin as well as non-susceptible to carbapenems were collected (2018-2019) at two large tertiary care hospitals in India. Colistin resistance-conferring genes mcr1 and mcr3 were screened among 123 of 185 randomly-selected isolates. These isolates were also subjected to multi-locus sequence typing (MLST). Additionally, alterations in mgrB were screened in 109 of these 123 isolates. All the study isolates were screened for presence of carbapenemases genes. MICs of zidebactam/cefepime, colistin, carbapenems, ceftazidime/avibactam, imipenem/relebactam, amikacin and piperacillin/tazobactam were determined by reference CLSI broth dilution method. RESULTS Among the isolates, 65.4% (121/185) carried blaOXA-48-like gene and 27.6% isolates (51/185) carried dual carbapenemase genes; blaOXA-48-like and blaNDM. Of the remainder, 8 isolates carried blaNDM and 5 isolates lacked carbapenemases gene despite being carbapenem-resistant. None of the isolates showed presence of mcr1 and mcr3. Out of 109 isolates analysed for mgrB, 36 showed mutational changes. The MLST profile revealed at least 14 unique sequence types with ST231 being the dominant clone. All the isolates showed colistin MICs >2 mg/L and were non-susceptible to carbapenems. Zidebactam/cefepime demonstrated potent activity with MIC50 and MIC90 of 1 and 2 mg/L, respectively. MIC90s of amikacin, ceftazidime/avibactam and imipenem/relebactam were >32 mg/L. CONCLUSION Zidebactam/cefepime combination was highly active against multi-clonal, carbapenem-non-susceptible and colistin-resistant K. pneumoniae isolates producing OXA-48-like (Ambler class D) or/and NDM (Ambler class B) carbapenemases, thus potentially offering a valuable treatment options for infections caused by such pan-drug resistant resistotypes. Though, zidebactam is not an inhibitor of class B and D β-lactamases, potent activity of zidebactam/cefepime combination is attributable to β-lactam enhancer mechanism.
Collapse
Affiliation(s)
| | - Chaitra Shankar
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Christo Jeyaraj
- Department of Orthopaedics, Christian Medical College Hospital, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Purva Mathur
- Department of Clinical Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi
| | | |
Collapse
|
9
|
Hidalgo-Tenorio C, Bou G, Oliver A, Rodríguez-Aguirregabiria M, Salavert M, Martínez-Martínez L. The Challenge of Treating Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria: A Narrative Review. Drugs 2024; 84:1519-1539. [PMID: 39467989 PMCID: PMC11652570 DOI: 10.1007/s40265-024-02102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
Gram-negative multidrug-resistant (MDR) bacteria, including Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa, pose a significant challenge in clinical practice. Infections caused by metallo-β-lactamase (MBL)-producing Gram-negative organisms, in particular, require careful consideration due to their complexity and varied prevalence, given that the microbiological diagnosis of these pathogens is intricate and compounded by challenges in assessing the efficacy of anti-MBL antimicrobials. We discuss both established and new approaches in the treatment of MBL-producing Gram-negative infections, focusing on 3 strategies: colistin; the recently approved combination of aztreonam with avibactam (or with ceftazidime/avibactam); and cefiderocol. Despite its significant activity against various Gram-negative pathogens, the efficacy of colistin is limited by resistance mechanisms, while nephrotoxicity and acute renal injury call for careful dosing and monitoring in clinical practice. Aztreonam combined with avibactam (or with avibactam/ceftazidime if aztreonam plus avibactam is not available) exhibits potent activity against MBL-producing Gram-negative pathogens. Cefiderocol in monotherapy is effective against a wide range of multidrug-resistant organisms, including MBL producers, and favorable clinical outcomes have been observed in various clinical trials and case series. After examining scientific evidence in the management of infections caused by MBL-producing Gram-negative bacteria, we have developed a comprehensive clinical algorithm to guide therapeutic decision making. We recommend reserving colistin as a last-resort option for MDR Gram-negative infections. Cefiderocol and aztreonam/avibactam represent favorable options against MBL-producing pathogens. In the case of P. aeruginosa with MBL-producing enzymes and with difficult-to-treat resistance, cefiderocol is the preferred option. Further research is needed to optimize treatment strategies and minimize resistance.
Collapse
Affiliation(s)
- Carmen Hidalgo-Tenorio
- Hospital Universitario Virgen de las Nieves de Granada, Instituto de Investigación Biosanitario de Granada (IBS-Granada), Granada, Spain.
- Departamento de Medicina, Universidad de Granada, Granada, Spain.
| | - German Bou
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
- Department of Agricultural Chemistry, Soil Sciences and Microbiology, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Karthik M, Kacha S, Rajendran S, Bakthavatchalam YD, Lal B, Walia K, Veeraraghavan B. Genetic characteristics and diversity of PDC variants of Pseudomonas aeruginosa and its clinical relevance. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105701. [PMID: 39653106 DOI: 10.1016/j.meegid.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Pseudomonas aeruginosa exhibits significant antibiotic resistance facilitated by both intrinsic and acquired mechanisms, prominently through Pseudomonas-derived cephalosporinase (PDC), serine Ambler class C β-lactamases encoded by the AmpC. AmpC, involved in the peptidoglycan recycling pathway, is regulated by genes such as ampD, ampR, and ampG, leading to increased expression and resistance to various beta-lactams. PDCs are classified into three main types: classical class C β-lactamases, extended-spectrum class C β-lactamases (ESAC β-lactamases), and inhibitor-resistant class C β-lactamases. This study aimed to identify prevalent PDC variants and its genetic characteristics in Indian and global P. aeruginosa isolates, focusing on their role in β-lactam resistance. Analyzing PDC sequences from 111 P. aeruginosa isolates collected at Christian Medical College (CMC), Vellore, we found the ESAC allele PDC-447 to be the most widespread among Indian isolates, present in 18 % of carbapenem-resistant and 11 % of carbapenem-susceptible strains. Global and Indian isolates PDC variants were validated using the NCBI PathogenWatch database, and the sequenced PDC region compared to PDC-1. PDC-398 and PDC-397 followed in prevalence among carbapenem-resistant isolates, while PDC-5 (ESAC) and PDC-1 (classical class C) were common in carbapenem-susceptible strains. A global analysis of 19,478 genomes revealed significant prevalence of ESAC variants such as PDC-3 (17.28 %) and PDC-5 (12.91 %), alongside classical class C beta-lactamases like PDC-8 (10.65 %). Indian isolates exhibited distinct patterns with PDC-3 and PDC-5 prevailing at 19.84 % and 10 %, respectively. Mutations in the omega loop, H-helix, and R2 region of PDCs were linked to enhanced antibiotic resistance, particularly the T105A mutation in the H-helix region. These findings underscore the complexity of antimicrobial resistance mechanisms in P. aeruginosa and highlight the need for novel therapeutic strategies and continuous surveillance to manage infections by this versatile pathogen. Understanding the prevalence and genetic characteristics of PDC variants is crucial for effective treatment strategies against P. aeruginosa and combating antibiotic resistance.
Collapse
Affiliation(s)
- Maruthan Karthik
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | - Srujal Kacha
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | | | | | - Binesh Lal
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India.
| |
Collapse
|
11
|
Bassetti M, Vena A, Larosa B, Giacobbe DR. New antibiotics in clinical pipeline for treating infections caused by metallo-β-lactamases producing Gram-negative bacteria. Curr Opin Infect Dis 2024; 37:582-588. [PMID: 39106036 PMCID: PMC11556884 DOI: 10.1097/qco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE OF REVIEW To discuss novel antibiotics under clinical development, focusing on agents showing in-vitro activity against metallo-β-lactamases (MBL)-producing carbapenem-resistant Gram-negative bacteria (CR-GNB). RECENT FINDINGS Currently, only a few approved agents show activity, alone or in synergistic combinations, against MBL-producing CR-GNB. If approved by regulatory agencies in case of favorable results from ongoing (and, for some agents, already completed) phase-3 studies, some novel β-lactam/β-lactamase inhibitor (BL/BLI) combinations could become available in the next few years as additional important options for treating MBL-producing CR-GNB infections. Additional interesting agents that belong both to BL/BLI combinations and to antibiotic classes other than BL and BL/BLI combinations have also shown activity against MBL-producing CR-GNB, with most of them being in early phases of clinical development. SUMMARY Improving the use of these novel agents through virtuous antimicrobial stewardship frameworks able to guarantee both the efficacious treatment of infections requiring their use and the avoidance of their use whenever not necessary remains a challenge of utmost importance that should not be overlooked.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Bassetti M, Larosa B, Vena A, Giacobbe DR. Novel agents in development for the treatment of resistant Gram-negative infections. Expert Rev Anti Infect Ther 2024; 22:965-976. [PMID: 39292619 DOI: 10.1080/14787210.2024.2407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Several novel agents are in advanced stages of clinical development, potentially expanding our treatment options against third- and fourth-generation cephalosporin-resistant and carbapenem-resistant Gram-negative bacteria (GNB), including those pathogens for which the current number of effective treatments is limited. AREAS COVERED This review focuses on agents that have completed or ongoing phase-3 studies. A PubMed search was conducted up to 31 May 2024. EXPERT OPINION Novel agents in late-stage clinical development belong to the β-lactam or β-lactam/β-lactamase inhibitor combinations class and display variable antimicrobial activity depending on the specific β-lactamases expressed by GNB, particularly carbapenemases. While many of these novel agents demonstrate in vitro activity against carbapenem-resistant GNB, their efficacy has mainly been evaluated in phase-3 randomized controlled trials (RCT) for infections caused by carbapenem-susceptible GNB. Although evidence from real-world observational studies is generally less robust than that from RCT, it could be crucial for updating clinical guidelines on treating carbapenem-resistant GNB with these new agents in the absence of dedicated RCT.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
Nantongo M, Nguyen DC, Bethel CR, Taracila MA, Li Q, Dousa KM, Shin E, Kurz SG, Nguyen L, Kreiswirth BN, Boom WH, Plummer MS, Bonomo RA. Durlobactam, a Diazabicyclooctane β-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:1767-1779. [PMID: 38619138 DOI: 10.1021/acsinfecdis.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb β-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 μM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 μM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 μg/mL, similar to the ranges for meropenem (1-32 μg/mL) and imipenem (0.5-64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.
Collapse
Affiliation(s)
- Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - David C Nguyen
- Division of Infectious Diseases, Department of Pediatrics and Division of Infectious Diseases, and Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Christopher R Bethel
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Qing Li
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Khalid M Dousa
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
| | - Eunjeong Shin
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Sebastian G Kurz
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tübingen, 72076 Tübingen, Germany
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack, New Jersey 07110, United States
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Mark S Plummer
- Biopharmaworks, Groton, Connecticut 06340, United States
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antibiotic Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
- Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, CWRU, Cleveland, Ohio 44106, United States
- Cleveland Geriatrics Research Education and Clinical Center (GRECC), VANEOHS, Cleveland, Ohio 44106, United States
| |
Collapse
|
14
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Soman R, Sirsat R, Sunavala A, Punatar N, Mehta J, Rodrigues C, Veeraraghavan B. Successful treatment of sino-pulmonary infection & skull base osteomyelitis caused by New Delhi metallo-β-lactamase-producing Pseudomonas aeruginosa in a renal transplant recipient by using an investigational antibiotic cefepime/zidebactam (WCK 5222). Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04791-1. [PMID: 38416290 DOI: 10.1007/s10096-024-04791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
A case of sino-pulmonary infection with skull base osteomyelitis due to XDR-Pseudomonas aeruginosa in renal transplant recipient was successfully treated with investigational antibiotic, cefepime/zidebactam (WCK 5222). This case highlights challenges in managing XDR-pseudomonal infection where source control was infeasible, antibiotic options were extremely limited and individualized dose adjustments were needed.
Collapse
Affiliation(s)
- Rajeev Soman
- Department of Infectious Diseases, Jupiter Hospital, Pune, India
- Courtesy Visiting Consultant, P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Rasika Sirsat
- Department of Nephrology, P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Ayesha Sunavala
- Department of Infectious Diseases, P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Neha Punatar
- Department of Nephrology, P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India.
| | - Jugal Mehta
- Department of Nephrology, P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | | |
Collapse
|
16
|
Hujer AM, Marshall SH, Mack AR, Hujer KM, Bakthavatchalam YD, Umarkar K, Palwe SR, Takalkar S, Joshi PR, Shrivastava R, Periasamy H, Bhagwat SS, Patel MV, Veeraraghavan B, Bonomo RA. Transcending the challenge of evolving resistance mechanisms in Pseudomonas aeruginosa through β-lactam-enhancer-mechanism-based cefepime/zidebactam. mBio 2023; 14:e0111823. [PMID: 37889005 PMCID: PMC10746216 DOI: 10.1128/mbio.01118-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
Compared to other genera of Gram-negative pathogens, Pseudomonas is adept in acquiring complex non-enzymatic and enzymatic resistance mechanisms thus remaining a challenge to even novel antibiotics including recently developed β-lactam and β-lactamase inhibitor combinations. This study shows that the novel β-lactam enhancer approach enables cefepime/zidebactam to overcome both non-enzymatic and enzymatic resistance mechanisms associated with a challenging panel of P. aeruginosa. This study highlights that the β-lactam enhancer mechanism is a promising alternative to the conventional β-lactam/β-lactamase inhibitor approach in combating ever-evolving MDR P. aeruginosa.
Collapse
Affiliation(s)
- Andrea M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Andrew R. Mack
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M. Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Kushal Umarkar
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | | | | | | | | | | | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, and the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
17
|
Fouad A, Nicolau DP, Gill CM. In vitro synergy of the combination of sulbactam-durlobactam and cefepime at clinically relevant concentrations against A. baumannii, P. aeruginosa and Enterobacterales. J Antimicrob Chemother 2023; 78:2801-2809. [PMID: 37839896 PMCID: PMC10689914 DOI: 10.1093/jac/dkad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Sulbactam-durlobactam is a potent combination active against Acinetobacter baumannii; however, it lacks activity against other nosocomial pathogens. Cefepime is a common first-line therapy for hospital/ventilator-associated pneumonia caused by Gram-negative pathogens including Pseudomonas aeruginosa and Enterobacterales. With increasing resistance to cefepime, and the significant proportion of polymicrobial nosocomial infections, effective therapy for infections caused by Acinetobacter baumannii, P. aeruginosa and Enterobacterales is needed. This study investigated the in vitro synergy of sulbactam-durlobactam plus cefepime against relevant pathogens. METHODS Static time-kills assays were performed in duplicate against 14 cefepime-resistant isolates (A. baumannii, n = 4; P. aeruginosa, n = 4; Escherichia coli, n = 3; Klebsiella pneumoniae, n = 3). One WT K. pneumoniae isolate was included. Antibiotic concentrations simulated the free-steady state average concentration of clinically administered doses in patients. RESULTS Sulbactam-durlobactam alone showed significant activity against A. baumannii consistent with the MIC values. Sulbactam-durlobactam plus cefepime showed synergy against one A. baumannii isolate with an elevated MIC to sulbactam-durlobactam (32 mg/L). Against all P. aeruginosa isolates, synergy was observed with sulbactam-durlobactam plus cefepime. For the Enterobacterales, one E. coli isolate demonstrated synergy while the others were indifferent due to significant kill from sulbactam-durlobactam alone. The combination of sulbactam-durlobactam plus cefepime showed synergy against one of the K. pneumoniae and additive effects against the other two K. pneumoniae tested. No antagonism was observed in any isolates including the WT strain. CONCLUSIONS Synergy and no antagonism was observed with a combination of sulbactam-durlobactam and cefepime; further in vivo pharmacokinetic/pharmacodynamics data and clinical correlation are necessary to support our findings.
Collapse
Affiliation(s)
- Aliaa Fouad
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
18
|
Tirlangi PK, Wanve BS, Dubbudu RR, Yadav BS, Kumar LS, Gupta A, Sree RA, Challa HPR, Reddy PN. Successful Use of Cefepime-Zidebactam (WCK 5222) as a Salvage Therapy for the Treatment of Disseminated Extensively Drug-Resistant New Delhi Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Infection in an Adult Patient with Acute T-Cell Leukemia. Antimicrob Agents Chemother 2023; 67:e0050023. [PMID: 37314343 PMCID: PMC10433839 DOI: 10.1128/aac.00500-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
With limited and often toxic treatment options, carbapenem-resistant Gram-negative infections are associated with significant mortality. Cefepime-zidebactam is a promising antibiotic option undergoing a phase 3 trial that has activity against diverse antibiotic-resistant mechanisms in Gram-negative pathogens due to its β-lactam enhancer mechanism, mediating multiple PBP binding. We report a case of disseminated infection caused by a New Delhi metallo-β-lactamase-producing, extensively drug-resistant Pseudomonas aeruginosa isolate in a patient with acute T-cell leukemia, successfully managed with cefepime-zidebactam as a salvage therapy.
Collapse
Affiliation(s)
- Praveen Kumar Tirlangi
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bala Saheb Wanve
- Department of Hematology, AIG Hospitals, Hyderabad, Telangana, India
| | | | | | - L. Siva Kumar
- Department of Critical Care Medicine, AIG Hospitals, Hyderabad, Telangana, India
| | - Anand Gupta
- Department of Critical Care Medicine, AIG Hospitals, Hyderabad, Telangana, India
| | | | | | - P. Naveen Reddy
- Department of Medicine, AIG Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Dubey D, Roy M, Shah TH, Bano N, Kulshrestha V, Mitra S, Sangwan P, Dubey M, Imran A, Jain B, Velmurugan A, Bakthavatchalam YD, Veeraraghavan B. Compassionate use of a novel β-lactam enhancer-based investigational antibiotic cefepime/zidebactam (WCK 5222) for the treatment of extensively-drug-resistant NDM-expressing Pseudomonas aeruginosa infection in an intra-abdominal infection-induced sepsis patient: a case report. Ann Clin Microbiol Antimicrob 2023; 22:55. [PMID: 37408075 DOI: 10.1186/s12941-023-00606-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Infections in critically-ill patients caused by extensively-drug-resistant (XDR)-Pseudomonas aeruginosa are challenging to manage due to paucity of effective treatment options. Cefepime/zidebactam, which is currently in global Phase 3 clinical development (Clinical Trials Identifier: NCT04979806, registered on July 28, 2021) is a novel mechanism of action based β-lactam/ β-lactam-enhancer combination with a promising activity against a broad-range of Gram-negative pathogens including XDR P. aeruginosa. We present a case report of an intra-abdominal infection-induced sepsis patient infected with XDR P. aeruginosa and successfully treated with cefepime/zidebactam under compassionate use. The 50 year old female patient with past-history of bariatric surgery and recent elective abdominoplasty and liposuction developed secondary pneumonia and failed a prolonged course of polymyxins. The organism repeatedly isolated from the patient was a New-Delhi metallo β-lactamase-producing XDR P. aeruginosa resistant to ceftazidime/avibactam, imipenem/relebactam and ceftolozane/tazobactam, susceptible only to cefepime/zidebactam. As polymyxins failed to rescue the patient, cefepime/zidebactam was administered under compassionate grounds leading to discharge of patient in stable condition. The present case highlights the prevailing precarious scenario of antimicrobial resistance and the need for novel antibiotics to tackle infections caused by XDR phenotype pathogens.
Collapse
Affiliation(s)
- Dilip Dubey
- Institute of Critical Care medicine, Medanta, Lucknow, India.
| | - Manish Roy
- Institute of Critical Care medicine, Medanta, Lucknow, India
| | - Tajamul H Shah
- Department of Pulmonary Medicine, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, India
| | - Noor Bano
- Institute of Critical Care medicine, Medanta, Lucknow, India
| | | | - Sandeep Mitra
- Institute of Critical Care medicine, Medanta, Lucknow, India
| | | | - Madhulika Dubey
- Department of Critical Care Medicine, ERA's Lucknow Medical College and Hospital, Lucknow, India
| | - Ali Imran
- Institute of Critical Care medicine, Medanta, Lucknow, India
| | - Bhawna Jain
- Department of Microbiology, Medanta, Lucknow, India
| | - Aravind Velmurugan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India.
| |
Collapse
|
20
|
López-Argüello S, Montaner M, Sayed ARM, Oliver A, Bulitta JB, Moya B. Penicillin-Binding Protein 5/6 Acting as a Decoy Target in Pseudomonas aeruginosa Identified by Whole-Cell Receptor Binding and Quantitative Systems Pharmacology. Antimicrob Agents Chemother 2023; 67:e0160322. [PMID: 37199612 PMCID: PMC10269149 DOI: 10.1128/aac.01603-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
The β-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for β-lactams and β-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P. aeruginosa PAO1. All β-lactams (at 2 × MIC) considerably bound PBPs 1 to 4 in lysed bacteria. However, PBP binding in intact bacteria was substantially attenuated for slow but not for rapid penetrating β-lactams. Imipenem yielded 1.5 ± 0.11 log10 killing at 1h compared to <0.5 log10 killing for all other drugs. Relative to imipenem, the rate of net influx and PBP access was ~ 2-fold slower for doripenem and meropenem, 7.6-fold for avibactam, 14-fold for ceftazidime, 45-fold for cefepime, 50-fold for sulbactam, 72-fold for ertapenem, ~ 249-fold for piperacillin and aztreonam, 358-fold for tazobactam, ~547-fold for carbenicillin and ticarcillin, and 1,019-fold for cefoxitin. At 2 × MIC, the extent of PBP5/6 binding was highly correlated (r2 = 0.96) with the rate of net influx and PBP access, suggesting that PBP5/6 acted as a decoy target that should be avoided by slowly penetrating, future β-lactams. This first comprehensive assessment of the time course of PBP binding in intact and lysed P. aeruginosa explained why only imipenem killed rapidly. The developed novel covalent binding assay in intact bacteria accounts for all expressed resistance mechanisms.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa RM. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
21
|
López-Argüello S, Montaner M, Mármol-Salvador A, Velázquez-Escudero A, Docobo-Pérez F, Oliver A, Moya B. Penicillin-Binding Protein Occupancy Dataset for 18 β-Lactams and 4 β-Lactamase Inhibitors in Neisseria gonorrhoeae. Microbiol Spectr 2023; 11:e0069223. [PMID: 37093051 PMCID: PMC10269775 DOI: 10.1128/spectrum.00692-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
The lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. β-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies. In the present work, we generated the first PBP-binding data set on 18 currently available and clinically relevant β-lactams and 4 β-lactamase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226 (PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential PBP IC50s were identified and were mostly consistent across both strains, but with quantitative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L). Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime, and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin, ceftaroline, and ceftolozane required higher concentrations (0.04 to >2 mg/L). Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01 to >2 mg/L). Preferential PBP2 binding was observed by β-lactam-based β-lactamase inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooctane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L). This data set will set the bar for future studies that will help the rational use and translational development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae. IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set for 22 chemically different drugs in two type strains with different genetic background. We have identified three clusters of drugs according to their PBP binding IC50s and highlighted the binding differences across the two strains studied. With the currently available genomic information and the PBP-binding data, we have been able to correlate the target attainment differences and the mutations that affect the drug uptake with the MIC changes. The results of the current work will allow us to develop molecular tools of great practical use for the study and the design of new rationally designed therapies capable of combating the growing MDR gonococci threat.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Amanda Mármol-Salvador
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana Velázquez-Escudero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
22
|
Bakthavatchalam YD, Elangovan D, Jaganathan SV, Subburaju N, Shankar A, Manokaran Y, J. S, Devi R, Baveja S, Devi S, S. J, Bhattacharya S, S. M. R, Yesudhason B, Shetty V, Mutreja A, Manesh A, Varghese GM, Marwick CA, Parcell BJ, Gilbert IH, Veeraraghavan B. In Vitro Activity of Two Cefepime-Based Novel Combinations, Cefepime/Taniborbactam and Cefepime/Zidebactam, against Carbapenemase-Expressing Enterobacterales Collected in India. Microbiol Spectr 2023; 11:e0492522. [PMID: 36847537 PMCID: PMC10100882 DOI: 10.1128/spectrum.04925-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
In recent times, discovery efforts for novel antibiotics have mostly targeted carbapenemase-producing Gram-negative organisms. Two different combination approaches are pertinent: β-lactam-β-lactamase inhibitor (BL/BLI) or β-lactam-β-lactam enhancer (BL/BLE). Cefepime combined with a BLI, taniborbactam, or with a BLE, zidebactam, has been shown to be promising. In this study, we determined the in vitro activity of both these agents along with comparators against multicentric carbapenemase-producing Enterobacterales (CPE). Nonduplicate CPE isolates of Escherichia coli (n = 270) and Klebsiella pneumoniae (n = 300), collected from nine different tertiary-care hospitals across India during 2019 to 2021, were included in the study. Carbapenemases in these isolates were detected by PCR. E. coli isolates were also screened for the presence of the 4-amino-acid insert in penicillin binding protein 3 (PBP3). MICs were determined by reference broth microdilution. Higher MICs of cefepime/taniborbactam (>8 mg/L) were linked to NDM, both in K. pneumoniae and in E. coli. In particular, such higher MICs were observed in 88 to 90% of E. coli isolates producing NDM and OXA-48-like or NDM alone. On the other hand, OXA-48-like-producing E. coli or K. pneumoniae isolates were nearly 100% susceptible to cefepime/taniborbactam. Regardless of the carbapenemase types and the pathogens, cefepime/zidebactam showed potent activity (>99% inhibited at ≤8 mg/L). It seems that the 4-amino-acid insert in PBP3 (present universally in the study E. coli isolates) along with NDM adversely impact the activity of cefepime/taniborbactam. Thus, the limitations of the BL/BLI approach in tackling the complex interplay of enzymatic and nonenzymatic resistance mechanisms were better revealed in whole-cell studies where the activity observed was a net effect of β-lactamase inhibition, cellular uptake, and target affinity of the combination. IMPORTANCE The study revealed the differential ability of cefepime/taniborbactam and cefepime/zidebactam in tackling carbapenemase-producing Indian clinical isolates that also harbored additional mechanisms of resistance. NDM-expressing E. coli with 4-amino-acid insert in PBP3 are predominately resistant to cefepime/taniborbactam, while the β-lactam enhancer mechanism-based cefepime/zidebactam showed consistent activity against single- or dual-carbapenemase-producing isolates including E. coli with PBP3 inserts.
Collapse
Affiliation(s)
| | - Divyaa Elangovan
- Department of Microbiology, Panimalar Medical College Hospital and Research Institute, Chennai, India
| | | | - Nivedhana Subburaju
- Department of Microbiology, Rainbow Children’s Hospital and Perinatal Care, Hyderabad, India
| | - Abirami Shankar
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Yuvasri Manokaran
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Sudarsana J.
- Department of Microbiology, Baby Memorial Hospital, Kozhikode, India
| | - Rema Devi
- Department of Microbiology, Dr. Somervell Memorial CSI Medical College and Hospital, Thiruvananthapuram, India
| | - Sujata Baveja
- Department of Microbiology, Lokmanya Tilak Municipal General Hospital and Medical College (Sion Hospital), Mumbai, India
| | - Sheela Devi
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Kalapet, India
| | - Jayakumar S.
- Department of Microbiology, Saveetha Medical College and Hospital, Chennai, India
| | | | - Rudresh S. M.
- Department of Microbiology, ESI Post Graduate Institute of Medical Science and Research, Bengaluru, India
| | - Bineshlal Yesudhason
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Vignesh Shetty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Ankur Mutreja
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Abi Manesh
- Department of Infectious Disease, Christian Medical College and Hospital, Vellore, India
| | - George M. Varghese
- Department of Infectious Disease, Christian Medical College and Hospital, Vellore, India
| | - Charis A. Marwick
- Population Health and Genomics, University of Dundee, Dundee, United Kingdom
| | | | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
23
|
Montaner M, Lopez-Argüello S, Oliver A, Moya B. PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability. Microbiol Spectr 2023; 11:e0303822. [PMID: 36475840 PMCID: PMC9927461 DOI: 10.1128/spectrum.03038-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The lack of effective treatment options against Pseudomonas aeruginosa is one of the main contributors to the silent pandemic. Many antibiotics are ineffective against resistant isolates due to poor target site penetration, efflux, or β-lactamase hydrolysis. Critical insights to design optimized antimicrobial therapies and support translational drug development are needed. In the present work, we analyzed the periplasmic drug uptake and binding to PBPs of 11 structurally different β-lactams and 4 β-lactamase inhibitors (BLIs) in P. aeruginosa PAO1. The contribution of the most prevalent β-lactam resistance mechanisms to MIC and periplasmic target attainment was also assessed. Bacterial cultures (6.5 log10 CFU/mL) were exposed to 1/2× PAO1 MIC of each antibiotic for 30 min. Unbound PBPs were labeled with Bocillin FL and analyzed using a FluorImager. Imipenem extensively inactivated all targets. Cephalosporins preferentially targeted PBP1a and PBP3. Aztreonam and amdinocillin bound exclusively to PBP3 and to PBP2 and PBP4, respectively. Penicillins bound preferentially to PBP1a, PBP1b, and PBP3. BLIs displayed poor PBP occupancy. Inactivation of oprD elicited a notable reduction of imipenem target attainment, and it was to a lesser extent in the other carbapenems. Improved PBP occupancy was observed for the main targets of the widely used antipseudomonal penicillins, cephalosporins, meropenem, aztreonam, and amdinocillin upon oprM inactivation, in line with MIC changes. AmpC constitutive hyperexpression caused a substantial PBP occupancy reduction for the penicillins, cephalosporins, and aztreonam. Data obtained in this work will support the rational design of optimized β-lactam-based combination therapies against resistant P. aeruginosa infections. IMPORTANCE The growing problem of antibiotic resistance in Gram-negative pathogens is linked to three key aspects, (i) the progressive worldwide epidemic spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Gram-negative strains, (ii) a decrease in the number of effective new antibiotics against multiresistant isolates, and (iii) the lack of mechanistically informed combinations and dosing strategies. Our combined efforts should focus not only on the development of new antimicrobial agents but the adequate administration of these in combination with other agents currently available in the clinic. Our work determined the effectiveness of these compounds in the clinically relevant bacteria Pseudomonas aeruginosa at the molecular level, assessing the net influx rate and their ability to access their targets and achieve bacterial killing without generating resistance. The data generated in this work will be helpful for translational drug development.
Collapse
Affiliation(s)
- Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Silvia Lopez-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
24
|
Muller AE, Attwood M, Van den Berg S, Chavan R, Periasamy H, Noel A, MacGowan A. Cefepime pharmacodynamic targets against Enterobacterales employing neutropenic murine lung infection and in vitro pharmacokinetic models. J Antimicrob Chemother 2022; 77:3504-3509. [PMID: 36253951 DOI: 10.1093/jac/dkac349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Very limited studies, so far, have been conducted to identify the pharmacodynamic targets of cefepime, a well-established fourth-generation cephalosporin. As a result, conventional targets representing the cephalosporin class are used for cefepime target attainment analysis. OBJECTIVES We employed both a neutropenic murine lung infection model and an in vitro pharmacokinetic model (IVPM) to determine cefepime's pharmacodynamic target [percentage of the dosing interval during which unbound drug concentrations remain higher than the MIC (%fT>MIC)] for bacteriostatic and 1 log10 kill effects. METHODS Ten strains with cefepime MICs ranging from 0.03 to 16 mg/L were studied in the lung infection. In the IVPM, five cefepime-resistant strains with cefepime/tazobactam (fixed 8 mg/L) MICs ranging from 0.25 to 8 mg/L were included. Through 24 h dose fractionation, both in lung infection and IVPM (in the latter case, tazobactam 8 mg/L continuous infusion was used to protect cefepime), varying cefepime exposures and corresponding pharmacodynamic effect scenarios were generated to identify the pharmacodynamic targets. RESULTS Using a non-linear sigmoidal maximum-effect (Emax) model, the cefepime's plasma fT>MIC for 1 log10 kill in lung infection ranged from 17% to 53.7% and a combined exposure-response plot yielded 30%. In the case of IVPM, T>MIC ranged from 6.9% to 75.4% with a mean value of 34.2% for 1 log10 kill. CONCLUSIONS Both in vivo and in vitro studies showed that cefepime's pharmacodynamic requirements are lower than generally reported for cephalosporins (50%-70% fT>MIC). The lower requirement for cefepime could be linked with factors such as cefepime's better permeation properties and multiple PBP affinity-driven enhanced bactericidal action.
Collapse
Affiliation(s)
- Anouk E Muller
- Department of Medical Microbiology, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Marie Attwood
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Infection Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Sanne Van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rajesh Chavan
- Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | | | - Alan Noel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Alasdair MacGowan
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Pan X, Zhao X, Song Y, Ren H, Tian Z, Liang Q, Jin Y, Bai F, Cheng Z, Feng J, Wu W. Molecular Characterization of WCK 5222 (Cefepime/Zidebactam)-Resistant Mutants Developed from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate. Microbiol Spectr 2022; 10:e0267821. [PMID: 35196805 PMCID: PMC8865557 DOI: 10.1128/spectrum.02678-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
WCK 5222 (cefepime/zidebactam) is a β-lactam/β-lactamase inhibitor combination that is effective against a broad range of highly drug-resistant bacterial pathogens, including those producing metallo-β-lactamase. In this study, we isolated a multidrug-resistant Pseudomonas aeruginosa clinical strain that is resistant to a variety of β-lactam antibiotics and the ceftazidime-avibactam combination. A metallo-β-lactamase gene blaDIM-2 was identified on a self-transmissible megaplasmid in the strain, which confers the resistance to β-lactam antibiotics, leaving WCK 5222 potentially one of the last treatment resorts. In vitro passaging assay combined with whole-genome sequencing revealed mutations in the pbpA gene (encoding the zidebactam target protein PBP2) in the evolved resistant mutants. Among the mutations, a V516M mutation increased the bacterial virulence in a murine acute pneumonia model. Reconstitution of the mutations in the reference strain PAO1 verified their roles in the resistance to zidebactam and revealed their influences on cell morphology in the absence and presence of zidebactam. Microscale thermophoresis (MST) assays demonstrated that the mutations reduced the affinity between PBP2 and zidebactam to various extents. Overall, our results revealed that mutations in the pbpA gene might be a major cause of evolved resistance to WCK 5222 in clinical settings. IMPORTANCE Antibiotic resistance imposes a severe threat on human health. WCK 5222 is a β-lactam/β-lactamase inhibitor combination that is composed of cefepime and zidebactam. It is one of the few antibiotics in clinical trials that are effective against multidrug-resistant Pseudomonas aeruginosa, including those producing metallo-β-lactamases. Understanding the mechanisms and development of bacterial resistance to WCK 5222 may provide clues for the development of strategies to suppress resistant evolvement. In this study, we performed an in vitro passaging assay by using a multidrug-resistant P. aeruginosa clinical isolate. Our results revealed that mutations in the zidebactam target protein PBP2 play a major role in the bacterial resistance to WCK 5222. We further demonstrated that the mutations reduced the affinities between PBP2 and zidebactam and resulted in functional resistance of PBP2 to zidebactam.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenyang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qi’an Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
26
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|
27
|
Moorey AR, Cabanillas A, Batt SM, Ghidelli-Disse S, Urones B, Sanz O, Lelievre J, Bantscheff M, Cox LR, Besra GS. The multi-target aspect of an MmpL3 inhibitor: The BM212 series of compounds bind EthR2, a transcriptional regulator of ethionamide activation. Cell Surf 2021; 7:100068. [PMID: 34888432 PMCID: PMC8634040 DOI: 10.1016/j.tcsw.2021.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of TB research. There are multiple different experimental approaches that can be employed in the discovery of anti-TB agents. Notably, inhibitors of MmpL3 are numerous and structurally diverse in Mtb and have been discovered through the generation of spontaneous resistant mutants and subsequent whole genome sequencing studies. However, this approach is not always reliable and can lead to incorrect target assignment and requires orthogonal confirmatory approaches. In fact, many of these inhibitors have also been shown to act as multi-target agents, with secondary targets in Mtb, as well as in other non-MmpL3-containing pathogens. Herein, we have investigated further the cellular targets of the MmpL3-inhibitor BM212 and a number of BM212 analogues. To determine the alternative targets of BM212, which may have been masked by MmpL3 mutations, we have applied a combination of chemo-proteomic profiling using bead-immobilised BM212 derivatives and protein extracts, along with whole-cell and biochemical assays. The study identified EthR2 (Rv0078) as a protein that binds BM212 analogues. We further demonstrated binding of BM212 to EthR2 through an in vitro tryptophan fluorescence assay, which showed significant quenching of tryptophan fluorescence upon addition of BM212. Our studies have demonstrated the value of revisiting drugs with ambiguous targets, such as MmpL3, in an attempt to find alternative targets and the study of off-target effects to understand more precisely target engagement of new hits emerging from drug screening campaigns.
Collapse
Affiliation(s)
- Alice R Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Alejandro Cabanillas
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Beatriz Urones
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Olalla Sanz
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joel Lelievre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Marcus Bantscheff
- Cellzome - a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
28
|
In-Vitro Selection of Ceftazidime/Avibactam Resistance in OXA-48-Like-Expressing Klebsiella pneumoniae: In-Vitro and In-Vivo Fitness, Genetic Basis and Activities of β-Lactam Plus Novel β-Lactamase Inhibitor or β-Lactam Enhancer Combinations. Antibiotics (Basel) 2021; 10:antibiotics10111318. [PMID: 34827256 PMCID: PMC8614831 DOI: 10.3390/antibiotics10111318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ceftazidime/avibactam uniquely demonstrates activity against both KPC and OXA-48-like carbapenemase-expressing Enterobacterales. Clinical resistance to ceftazidime/avibactam in KPC-producers was foreseen in in-vitro resistance studies. Herein, we assessed the resistance selection propensity of ceftazidime/avibactam in K. pneumoniae expressing OXA-48-like β-lactamases (n = 10), employing serial transfer approach. Ceftazidime/avibactam MICs (0.25–4 mg/L) increased to 16–256 mg/L after 15 daily-sequential transfers. The whole genome sequence analysis of terminal mutants showed modifications in proteins linked to efflux (AcrB/AcrD/EmrA/Mdt), outer membrane permeability (OmpK36) and/or stress response pathways (CpxA/EnvZ/RpoE). In-vitro growth properties of all the ceftazidime/avibactam-selected mutants were comparable to their respective parents and they retained the ability to cause pulmonary infection in neutropenic mice. Against these mutants, we explored the activities of various combinations of β-lactams (ceftazidime or cefepime) with structurally diverse β-lactamase inhibitors or a β-lactam enhancer, zidebactam. Zidebactam, in combination with either cefepime or ceftazidime, overcame ceftazidime/avibactam resistance (MIC range 0.5–8 mg/L), while cefepime/avibactam was the second best (MIC: 0.5–16 mg/L) in yielding lower MICs. The present work revealed the possibility of ceftazidime/avibactam resistance in OXA-48-like K. pneumoniae through mutations in proteins involved in efflux and/or porins without concomitant fitness cost mandating astute monitoring of ceftazidime/avibactam resistance among OXA-48 genotypes.
Collapse
|
29
|
Joshi P, Shrivastava R, Bhagwat S, Patel M. Activity of β-lactam plus β-lactam-enhancer combination cefepime/zidebactam against Klebsiella pneumoniae harbouring defective OmpK35/36 porins and carbapenemases. Diagn Microbiol Infect Dis 2021; 101:115481. [PMID: 34332307 DOI: 10.1016/j.diagmicrobio.2021.115481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Cefepime/zidebactam is a β-lactam/β-lactam-enhancer based novel antibiotic which is in clinical development for treating infections caused by multidrug-resistant Gram-negative bacteria. Here, in vitro activity of cefepime/zidebactam was determined against multicentre Klebsiella pneumoniae clinical isolates co-expressing serine and/or metallo-carbapenemases and defective OmpK35 and OmpK36 porins. The MICs were determined using the reference broth microdilution method. Outer membrane protein expression was assessed using SDS-PAGE and mutations in the genes encoding OmpK35 and OmpK36 were identified by DNA sequencing. Among 34 isolates studied, carbapenemase genes, blaKPC and blaOXA-48-like, were present in 18 and 11 isolates, respectively; 5 isolates harboured both blaOXA-48-like and blaNDM. Point mutations, insertions, and duplications in OmpK35 and OmpK36, which are known to impact the activity of carbapenems, were detected. Against these isolates, cefepime/zidebactam (1:1) showed a consistent activity (MICs ≤4 mg/L). In conclusion, cefepime/zidebactam overcomes enzymatic, and non-enzymatic carbapenem-impacting resistance mechanisms concurrently expressed in K. pneumoniae.
Collapse
Affiliation(s)
- Prashant Joshi
- Drug Discovery Research, Wockhardt Research Center, Aurangabad, Maharashtra, India
| | - Rahul Shrivastava
- Drug Discovery Research, Wockhardt Research Center, Aurangabad, Maharashtra, India
| | - Sachin Bhagwat
- Drug Discovery Research, Wockhardt Research Center, Aurangabad, Maharashtra, India.
| | - Mahesh Patel
- Drug Discovery Research, Wockhardt Research Center, Aurangabad, Maharashtra, India
| |
Collapse
|
30
|
Barceló I, Cabot G, Palwe S, Joshi P, Takalkar S, Periasamy H, Cortés-Lara S, Zamorano L, Sánchez-Diener I, Moya B, Bhagwat S, Patel M, Oliver A. In vitro evolution of cefepime/zidebactam (WCK 5222) resistance in Pseudomonas aeruginosa: dynamics, mechanisms, fitness trade-off and impact on in vivo efficacy. J Antimicrob Chemother 2021; 76:2546-2557. [PMID: 34219168 DOI: 10.1093/jac/dkab213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To study the dynamics, mechanisms and fitness cost of resistance selection to cefepime, zidebactam and cefepime/zidebactam in Pseudomonas aeruginosa. METHODS WT P. aeruginosa PAO1 and its ΔmutS derivative (PAOMS) were exposed to stepwise increasing concentrations of cefepime, zidebactam and cefepime/zidebactam. Selected mutants were characterized for change in susceptibility profiles, acquired mutations, fitness, virulence and in vivo susceptibility to cefepime/zidebactam. Mutations were identified through WGS. In vitro fitness was assessed by measuring growth in minimal medium and human serum-supplemented Mueller-Hinton broth. Virulence was determined in Caenorhabditis elegans and neutropenic mice lung infection models. In vivo susceptibility to a human-simulated regimen (HSR) of cefepime/zidebactam was studied in neutropenic mice lung infection. RESULTS Resistance development was lower for the cefepime/zidebactam combination than for the individual components and high-level resistance was only achieved for PAOMS. Cefepime resistance development was associated with mutations leading to the hyperexpression of AmpC or MexXY-OprM, combined with PBP3 mutations and/or large chromosomal deletions involving galU. Zidebactam resistance was mainly associated with mutations in PBP2. On the other hand, resistance to cefepime/zidebactam required multiple mutations in genes encoding MexAB-OprM and its regulators, as well as PBP2 and PBP3. Cumulatively, these mutations inflicted significant fitness cost and cefepime/zidebactam-resistant mutants (MIC = 16-64 mg/L) remained susceptible in vivo to the HSR. CONCLUSIONS Development of cefepime/zidebactam resistance in P. aeruginosa required multiple simultaneous mutations that were associated with a significant impairment of fitness and virulence.
Collapse
Affiliation(s)
- Isabel Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | | | | | | | - Sara Cortés-Lara
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Laura Zamorano
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Irina Sánchez-Diener
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | | | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
31
|
Isler B, Harris P, Stewart AG, Paterson DL. An update on cefepime and its future role in combination with novel β-lactamase inhibitors for MDR Enterobacterales and Pseudomonas aeruginosa. J Antimicrob Chemother 2021; 76:550-560. [PMID: 33332545 DOI: 10.1093/jac/dkaa511] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cefepime, a wide-spectrum β-lactam antibiotic, has been in use for the treatment of serious bacterial infections for almost 25 years. Since its clinical development, there has been a dramatic shift in its dosing, with 2 g every 8 hours being preferred for serious infections to optimize pharmacokinetic/pharmacodynamic considerations. The advent of ESBLs has become a threat to its ongoing use, although future coadministration with β-lactamase inhibitors (BLIs) under development is an area of intense study. There are currently four new cefepime/BLI combinations in clinical development. Cefepime/zidebactam is generally active against MBL-producing Enterobacterales and Pseudomonas aeruginosa, in vitro and in animal studies, and cefepime/taniborbactam has activity against KPC and OXA-48 producers. Cefepime/enmetazobactam and cefepime/tazobactam are potential carbapenem-sparing agents with activity against ESBLs. Cefepime/enmetazobactam has completed Phase III and cefepime/taniborbactam is in Phase III clinical studies, where they are being tested against carbapenems or piperacillin/tazobactam for the treatment of complicated urinary tract infections. While these combinations are promising, their role in the treatment of MDR Gram-negative infections can only be determined with further clinical studies.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Adam G Stewart
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
32
|
Molecular Basis of AmpC β-Lactamase Induction by Avibactam in Pseudomonas aeruginosa: PBP Occupancy, Live Cell Binding Dynamics and Impact on Resistant Clinical Isolates Harboring PDC-X Variants. Int J Mol Sci 2021; 22:ijms22063051. [PMID: 33802668 PMCID: PMC8002452 DOI: 10.3390/ijms22063051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Avibactam belongs to the new class of diazabicyclooctane β-lactamase inhibitors. Its inhibitory spectrum includes class A, C and D enzymes, including P. aeruginosa AmpC. Nonetheless, recent reports have revealed strain-dependent avibactam AmpC induction. In the present work, we wanted to assess the mechanistic basis underlying AmpC induction and determine if derepressed PDC-X mutated enzymes from ceftazidime/avibactam-resistant clinical isolates were further inducible. We determined avibactam concentrations that half-maximally inhibited (IC50) bocillin FL binding. Inducer β-lactams were also studied as comparators. Live cells’ time-course penicillin-binding proteins (PBPs) occupancy of avibactam was studied. To assess the ampC induction capacity of avibactam and comparators, qRT-PCR was performed in wild-type PAO1, PBP4, triple PBP4, 5/6 and 7 knockout derivatives and two ceftazidime/avibactam-susceptible/resistant XDR clinical isolates belonging to the epidemic high-risk clone ST175. PBP4 inhibition was observed for avibactam and β-lactam comparators. Induction capacity was consistently correlated with PBP4 binding affinity. Outer membrane permeability-limited PBP4 binding was observed in the live cells’ assay. As expected, imipenem and cefoxitin showed strong induction in PAO1, especially for carbapenem; avibactam induction was conversely weaker. Overall, the inducer effect was less remarkable in ampC-derepressed mutants and nonetheless absent upon avibactam exposure in the clinical isolates harboring mutated AmpC variants and their parental strains.
Collapse
|
33
|
Structural Characterization of Diazabicyclooctane β-Lactam "Enhancers" in Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa. mBio 2021; 12:mBio.03058-20. [PMID: 33593978 PMCID: PMC8545096 DOI: 10.1128/mbio.03058-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a significant public health threat. A major mechanism of resistance expressed by MDR pathogens is β-lactamase-mediated degradation of β-lactam antibiotics. The diazabicyclooctane (DBO) compounds zidebactam and WCK 5153, recognized as β-lactam “enhancers” due to inhibition of Pseudomonas aeruginosa penicillin-binding protein 2 (PBP2), are also class A and C β-lactamase inhibitors. To structurally probe their mode of PBP2 inhibition as well as investigate why P. aeruginosa PBP2 is less susceptible to inhibition by β-lactam antibiotics compared to the Escherichia coli PBP2, we determined the crystal structure of P. aeruginosa PBP2 in complex with WCK 5153. WCK 5153 forms an inhibitory covalent bond with the catalytic S327 of PBP2. The structure suggests a significant role for the diacylhydrazide moiety of WCK 5153 in interacting with the aspartate in the S-X-N/D PBP motif. Modeling of zidebactam in the active site of PBP2 reveals a similar binding mode. Both DBOs increase the melting temperature of PBP2, affirming their stabilizing interactions. To aid in the design of DBOs that can inhibit multiple PBPs, the ability of three DBOs to interact with P. aeruginosa PBP3 was explored crystallographically. Even though the DBOs show covalent binding to PBP3, they destabilized PBP3. Overall, the studies provide insights into zidebactam and WCK 5153 inhibition of PBP2 compared to their inhibition of PBP3 and the evolutionarily related KPC-2 β-lactamase. These molecular insights into the dual-target DBOs advance our knowledge regarding further DBO optimization efforts to develop novel potent β-lactamase-resistant, non-β-lactam PBP inhibitors.
Collapse
|
34
|
Bhagwat SS, Legakis NJ, Skalidis T, Loannidis A, Goumenopoulos C, Joshi PR, Shrivastava R, Palwe SR, Periasamy H, Patel MV, Chatzipanagiotou S. In vitro activity of cefepime/zidebactam (WCK 5222) against recent Gram-negative isolates collected from high resistance settings of Greek hospitals. Diagn Microbiol Infect Dis 2021; 100:115327. [PMID: 33744624 DOI: 10.1016/j.diagmicrobio.2021.115327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Cefepime/zidebactam is in clinical development for the treatment of carbapenem-resistant Gram-negative infections. MICs of cefepime/zidebactam (1:1) and comparators against Enterobacterales (n = 563), Pseudomonas (n = 172) and Acinetobacter baumannii (n =181) collected from 15 Greek hospitals (2014-2018) were determined by reference broth microdilution method. The isolates exhibited high carbapenem resistance rates [(Enterobacterales (75%), Pseudomonas (75%) and A. baumannii (98.3%)]. Cefepime/zidebactam showed MIC50/90 of 0.5/2 mg/L, against Enterobacterales including metallo-β-lactamases (MBL)-producers. Reduced susceptibility rates to tigecycline (16.8%), colistin (47.4%), ceftazidime/avibactam (59.8%), and imipenem/relebactam (61%) indicated high prevalence of multi-drug resistance among Greek Enterobacterales. Cefepime/zidebactam exhibited MIC50/90 of 8/16 mg/L against Pseudomonas including MBL-producers. The MIC50/90 of ceftazidime/avibactam and imipenem/relebactam were high (≥32 mg/L). Cefepime/zidebactam showed MIC90 of 64 mg/L against A. baumannii which is within its therapeutic scope. Other antibiotics including colistin showed limited activity against A. baumannii. The activity of cefepime/zidebactam against multi-drug-resistant isolates is attributable to zidebactam mediated novel β-lactam-enhancer mechanism.
Collapse
Affiliation(s)
| | | | | | - Anastassios Loannidis
- Department of Medical Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
35
|
In Vitro Activity of WCK 5222 (Cefepime-Zidebactam) against Worldwide Collected Gram-Negative Bacilli Not Susceptible to Carbapenems. Antimicrob Agents Chemother 2020; 64:AAC.01432-20. [PMID: 32928739 DOI: 10.1128/aac.01432-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
WCK 5222 (cefepime-zidebactam, 2 g + 1g, every 8 h [q8h]) is in clinical development for the treatment of infections caused by carbapenem-resistant and multidrug-resistant (MDR) Gram-negative bacilli. We determined the in vitro susceptibility of 1,385 clinical isolates of non-carbapenem-susceptible Enterobacterales, MDR Pseudomonas aeruginosa (also non-carbapenem susceptible), Stenotrophomonas maltophilia, and Burkholderia spp. collected worldwide (49 countries) from 2014 to 2016 to cefepime-zidebactam (1:1 ratio), ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, and colistin using the CLSI broth microdilution method. Cefepime-zidebactam inhibited 98.5% of non-carbapenem-susceptible Enterobacterales (n = 1,018) at ≤8 μg/ml (provisional cefepime-zidebactam-susceptible MIC breakpoint). Against the subset of metallo-β-lactamase (MBL)-positive Enterobacterales (n = 214), cefepime-zidebactam inhibited 94.9% of isolates at ≤8 μg/ml. Further, it inhibited 99.6% of MDR P. aeruginosa (n = 262) isolates at ≤32 μg/ml (proposed cefepime-zidebactam-susceptible pharmacokinetic/pharmacodynamic MIC breakpoint), including all MBL-positive isolates (n = 94). Moreover, cefepime-zidebactam was active against the majority of isolates of Enterobacterales (≥95%) and P. aeruginosa (99%) that were not susceptible to ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and colistin. Most isolates (99%) of S. maltophilia (n = 101; MIC50, 8 μg/ml; MIC90, 32 μg/ml) and Burkholderia spp. (n = 4; MIC range, 16 to 32 μg/ml) were also inhibited by cefepime-zidebactam at ≤32 μg/ml. The activity of cefepime-zidebactam against carbapenem-resistant Gram-negative bacteria is ascribed to its β-lactam enhancer mechanism of action (i.e., zidebactam binding to penicillin binding protein 2 [PBP2] and its universal stability to both serine β-lactamases and MBLs). The results from this study support the continued development of cefepime-zidebactam as a potential therapy for infections caused by Enterobacterales, P. aeruginosa, and other nonfermentative Gram-negative bacilli where resistance to marketed antimicrobial agents is a limiting factor.
Collapse
|
36
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
37
|
Bassetti M, Di Pilato V, Giani T, Vena A, Rossolini GM, Marchese A, Giacobbe DR. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol 2020; 15:1489-1505. [PMID: 33140656 DOI: 10.2217/fmb-2020-0210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last decades, there was an important paucity of agents for adequately treating infections due to metallo-β-lactamases-producing Gram-negative bacteria (MBL-GNB). Cefiderocol, a novel siderophore cephalosporin showing in vitro activity against MBL-GNB, has been recently marketed, and a combination of aztreonam and ceftazidime/avibactam has shown a possible favorable effect on survival of patients with severe MBL-GNB infections in observational studies. Other agents showing in vitro activity against MBL-GNB are currently in clinical development (e.g., cefepime/taniborbactam, LYS228, cefepime/zidebactam) that could be an important addition to our future armamentarium for severe MBL-GNB infections. Nonetheless, we should not discontinue our efforts to optimize the use of non-β-lactams agents, since they could remain an essential last-resort or alternative option in selected cases.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Tommaso Giani
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Anna Marchese
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
38
|
Is it time to move away from polymyxins?: evidence and alternatives. Eur J Clin Microbiol Infect Dis 2020; 40:461-475. [PMID: 33009595 DOI: 10.1007/s10096-020-04053-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Increasing burden of carbapenem resistance and resultant difficult-to-treat infections are of particular concern due to the lack of effective and safe treatment options. More recently, several new agents with activity against certain multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative pathogens have been approved for clinical use. These include ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, and cefiderocol. For the management of MBL infections, clinically used triple combination comprising ceftazidime-avibactam and aztreonam is hindered due to non-availability of antimicrobial susceptibility testing methods and lack of information on potential drug-drug interaction leading to PK changes impacting its safety and efficacy. Moreover, in several countries including Indian subcontinent and developing countries, these new agents are yet to be made available. Under these circumstances, polymyxins are the only last resort for the treatment of carbapenem-resistant infections. With the recent evidence of suboptimal PK/PD particularly in lung environment, limited efficacy and increased nephrotoxicity associated with polymyxin use, the Clinical and Laboratory Standards Institute (CLSI) has revised both colistin and polymyxin B breakpoints. Thus, polymyxins 'intermediate' breakpoint for Enterobacterales, P. aeruginosa, and Acinetobacter spp. are now set at ≤ 2 mg/L, implying limited clinical efficacy even for isolates with the MIC value 2 mg/L. This change has questioned the dependency on polymyxins in treating XDR infections. In this context, recently approved cefiderocol and phase 3 stage combination drug cefepime-zidebactam assume greater significance due to their potential to act as polymyxin-supplanting therapies.
Collapse
|