1
|
Jakubu V, Cechova M, Musilek M, Malisova L, Zapletalova B, Zemlickova H. Amino acid substitutions in PBP3 in Haemophilus influenzae strains, their phenotypic detection and impact on resistance to β-lactams. J Antimicrob Chemother 2025; 80:980-987. [PMID: 39895369 PMCID: PMC11962375 DOI: 10.1093/jac/dkaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Data from surveillance on antibiotic resistance have shown an increasing prevalence of non-enzymatic resistance (β-lactamase-negative ampicillin-resistant) to β-lactam antibiotics among H. influenzae strains in the Czech Republic. Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. The phenomenon of non-enzymatic resistance to β-lactams is complicated by the fact that the phenotypic detection of PBP3 with specific amino acid substitutions (rPBP3) is challenging, since rPBP3 isolates have repeatedly been demonstrated to be split by the epidemiological cut-off values (ECOFF) for aminopenicillins defined by EUCAST. OBJECTIVES We sought to determine whether the penicillin disc has sufficient detection ability to predict the non-enzymatic mechanism; whether other antibiotics can be used for detection; and what is the agreement between the broth microdilution and disc diffusion methods. METHODS We undertook susceptibility testing of selected antibiotics according to EUCAST of 153 rPBP3 strains, and sequencing of the ftsI gene to determination amino acid substitutions. RESULTS For a selected set of rPBP strains: (i) the detection capability for penicillin, ampicillin, cefuroxime and amoxicillin/clavulanate was found to be 91.5%, 94.4%, 89.5% and 70.6%, respectively; (ii) the categorical agreement between the disc diffusion method and the MIC for ampicillin and cefuroxime was 71.1% and 83.8%, respectively. CONCLUSIONS We observed better recognition of rPBP3 strains by the ampicillin disc than by the penicillin disc. There is frequently a discrepancy in the interpretation of susceptibility results between the methods used.
Collapse
Affiliation(s)
- Vladislav Jakubu
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, The Czech Republic
| | - Marketa Cechova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
| | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
| | - Lucia Malisova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, The Czech Republic
| | - Barbora Zapletalova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, The Czech Republic
| |
Collapse
|
2
|
Frank T, Wohlfarth E, Claus H, Krone M, Lâm TT, Kresken M. Antibiotic resistance and molecular characterization of non-invasive clinical Haemophilus influenzae isolates in Germany 2019 and 2020. JAC Antimicrob Resist 2024; 6:dlae197. [PMID: 39659639 PMCID: PMC11631347 DOI: 10.1093/jacamr/dlae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Background Haemophilus influenzae (Hi) is known as a cause of invasive and non-invasive diseases. Especially ear, nose and throat (ENT) infections are common reasons for antibiotic prescriptions in outpatient settings in Germany. Therefore, antibiotic resistance surveillance is important to provide the basis of recommendations for the empirical usage of antibiotic agents. Objectives To provide data on susceptibility rates of oral antibiotics for non-invasive clinical Hi isolates in Germany and to investigate molecular resistance patterns of β-lactams, ciprofloxacin, doxycycline and trimethoprim/sulfamethoxazole. Methods Isolates were collected from a sentinel network of diagnostic laboratories in a prospective multicentre prevalence study. Antibiotic susceptibility testing was done with a commercial broth microdilution kit. MICs were interpreted according to EUCAST guidelines. Resistance gene sequencing and WGS were performed to analyze molecular antibiotic resistance patterns and genetic relationships between the isolates. Results In total, 215 Hi isolates were collected from 23 laboratories across Germany. The highest resistance rates were found for amoxicillin (n = 30; 14%), cefuroxime (n = 40; 18.6%) and trimethoprim/sulfamethoxazole (co-trimoxazole) (n = 34; 15.8%). Resistance to amoxicillin was mainly due to blaTEM-1 (n = 29; 96.7%). PBP3 alterations were found in 39 of 40 cefuroxime-resistant isolates (97.5%). Two of the cefuroxime-resistant isolates harboured PBP3 mutation patterns that have not yet been associated with cefuroxime resistance; in one of them, a known lpoA mutation was found. One isolate showed no mutations in PBP3 or lpoA. All co-trimoxazole-resistant isolates (15.8%) showed known mutations in folA and its promoter region. Additionally, point mutations in folP were identified in a subset of these isolates. The most frequent sequence types (STs) were ST57 (n = 10) and ST103 (n = 10). Genetic cluster analysis identified six clusters, but no epidemiological link could be confirmed. Conclusion Resistance to oral antibiotics in non-invasive clinical Hi isolates in Germany was generally low. Amoxicillin is estimated to cover 86% of infections involving non-invasive Hi and, therefore, is still effective for the first-line empirical treatment for ENT infections in Germany. Further surveillance of antimicrobial susceptibility in non-invasive Hi isolates is important to ensure the data basis for guidelines of antibiotic usage.
Collapse
Affiliation(s)
- Thiemo Frank
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | | | - Heike Claus
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | - Manuel Krone
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
3
|
Jakubu V, Vrbova I, Bitar I, Cechova M, Malisova L, Zemlickova H. Evolution of mutations in the ftsI gene leading to amino acid substitutions in PBP3 in Haemophilus influenzae strains under the selective pressure of ampicillin and cefuroxime. Int J Med Microbiol 2024; 316:151626. [PMID: 38954914 DOI: 10.1016/j.ijmm.2024.151626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. One of the mechanisms of resistance to β-lactams is the alteration of the transpeptidase region of penicillin binding protein 3 (PBP3) which is caused by mutations in the ftsI gene. It was shown that exposure to beta-lactams has a stimulating effect on increase of prevalence of H. influenzae strains with the non-enzymatic mechanism of resistance. OBJECTIVES The aim of our study was to compare the mutational potential of ampicillin and cefuroxime in H. influenzae strains, determination of minimum inhibitory concentration and the evolution of mutations over time, focusing on amino acid substitutions in PBP3. METHODS 30 days of serial passaging of strains in liquid broth containing increasing concentrations of ampicillin or cefuroxime was followed by whole-genome sequencing. RESULTS On average, cefuroxime increased the minimum inhibitory concentration more than ampicillin. The minimum inhibitory concentration was increased by a maximum of 32 fold. Substitutions in the PBP3 started to appear after 15 days of passaging. In PBP3, cefuroxime caused different substitutions than ampicillin. CONCLUSIONS Our experiment observed differences in mutation selection by ampicillin and cefuroxime. Selection pressure of antibiotics in vitro generated substitutions that do not occur in clinical strains in the Czech Republic.
Collapse
Affiliation(s)
- Vladislav Jakubu
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic; Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, Czech Republic
| | - Iveta Vrbova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1237/65, 301 00, Plzen, Czech Republic
| | - Marketa Cechova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic
| | - Lucia Malisova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic; Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, Czech Republic
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic; Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, Czech Republic.
| |
Collapse
|
4
|
Michel C, Argudín MDLA, Wautier M, Echahidi F, Prevost B, Vandenberg O, Martiny D, Hallin M. Multiple interspecies recombination events documented by whole-genome sequencing in multidrug-resistant Haemophilus influenzae clinical isolates. Access Microbiol 2024; 6:000649.v3. [PMID: 38482359 PMCID: PMC10928409 DOI: 10.1099/acmi.0.000649.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/22/2023] [Indexed: 04/12/2024] Open
Abstract
Introduction Haemophilus influenzae (Hi) was long known as an easy-to-treat bacterium, but increasing resistance against beta-lactams and other critically important antibiotics is now a growing concern. We describe here the whole-genome sequencing (WGS) analysis of three non-typeable Hi isolates received in 2018-2019 by the Belgian National Reference Centre (NRC) for Haemophilus influenzae, as they presented an unusual multi-resistant profile. Methods All three isolates were sequenced by WGS and mapped to the reference isolate Hi Rd KW20. Shorten uptake signal sequences (USSs) known to be associated with homologous recombination were sought in ftsI, murE and murF genes, and inner partial sequences were compared against the blast nucleotide database to look for similarity with other Haemophilus species. Their antimicrobial resistance (AMR) genotype was studied. Core-genome multilocus sequence typing (MLST) was performed on the NTHi database pubMLST to place our isolates in the actual worldwide epidemiology. Results The isolates also harboured interspecies recombination patterns in the murF-murE-ftsI region involved in cell wall synthesis. The three isolates were multidrug resistant and two of them were also resistant to amoxicillin-clavulanic acid and showed a reduced susceptibility to meropenem. All three isolates belonged to the MLST clonal complex (CC) 422, and WGS revealed that the three were very similar. They harboured mobile genetic elements (carrying blaTEM-1B, mefA and msrD genes associated with resistance), mutations in gyrA and parC linked to fluoroquinolone resistance as well as remodelling events in ompP2 that might be related to lower carbapenem susceptibility. Conclusion The Hi evolution towards antimicrobial multiresistance (AMR) is a complex and poorly understood phenomenon, although probably linked to a large degree to the presence of USSs and exchange within the family Pasteurellaceae. To better understand the respective roles of clonal expansion, horizontal gene transfers, spontaneous mutations and interspecies genetic rearrangements in shaping Hi AMR, both analysis of Hi communities over time within individuals and worldwide monitoring of non-typeable Hi causing infections should be conducted.
Collapse
Affiliation(s)
- Charlotte Michel
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Maria De Los Angeles Argudín
- Department of Molecular Biology, Cliniques Universitaires Saint Luc (CUSL), Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Magali Wautier
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Fedoua Echahidi
- Department of Microbiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Pleinlaan 2, 1050 Brussels, Belgium
| | - Benoit Prevost
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Faculty of Medicine and Pharmacy, Mons University, Chemin du Champ de Mars 37, 7000 Mons, Belgium
| | - Marie Hallin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
5
|
Gil-Campillo C, González-Díaz A, Rapún-Araiz B, Iriarte-Elizaintzin O, Elizalde-Gutiérrez I, Fernández-Calvet A, Lázaro-Díez M, Martí S, Garmendia J. Imipenem heteroresistance but not tolerance in Haemophilus influenzae during chronic lung infection associated with chronic obstructive pulmonary disease. Front Microbiol 2023; 14:1253623. [PMID: 38179447 PMCID: PMC10765533 DOI: 10.3389/fmicb.2023.1253623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Antibiotic resistance is a major Public Health challenge worldwide. Mechanisms other than resistance are described as contributors to therapeutic failure. These include heteroresistance and tolerance, which escape the standardized procedures used for antibiotic treatment decision-making as they do not involve changes in minimal inhibitory concentration (MIC). Haemophilus influenzae causes chronic respiratory infection and is associated with exacerbations suffered by chronic obstructive pulmonary disease (COPD) patients. Although resistance to imipenem is rare in this bacterial species, heteroresistance has been reported, and antibiotic tolerance cannot be excluded. Moreover, development of antibiotic heteroresistance or tolerance during within-host H. influenzae pathoadaptive evolution is currently unknown. In this study, we assessed imipenem resistance, heteroresistance and tolerance in a previously sequenced longitudinal collection of H. influenzae COPD respiratory isolates. The use of Etest, disc diffusion, population analysis profiling, tolerance disc (TD)-test methods, and susceptibility breakpoint criteria when available, showed a significant proportion of imipenem heteroresistance with differences in terms of degree among strains, absence of imipenem tolerance, and no specific trends among serial and clonally related strains could be established. Analysis of allelic variation in the ftsI, acrA, acrB, and acrR genes rendered a panel of polymorphisms only found in heteroresistant strains, but gene expression and genome-wide analyses did not show clear genetic traits linked to heteroresistance. In summary, a significant proportion of imipenem heteroresistance was observed among H. influenzae strains isolated from COPD respiratory samples over time. These data should be useful for making more accurate clinical recommendations to COPD patients.
Collapse
Affiliation(s)
- Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexion Nanomedicina CSIC (NanomedCSIC), Madrid, Spain
| | - Aida González-Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Beatriz Rapún-Araiz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexion Nanomedicina CSIC (NanomedCSIC), Madrid, Spain
| | - Oihane Iriarte-Elizaintzin
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Iris Elizalde-Gutiérrez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexion Nanomedicina CSIC (NanomedCSIC), Madrid, Spain
| |
Collapse
|
6
|
Potts CC, Rodriguez-Rivera LD, Retchless AC, Buono SA, Chen AT, Marjuki H, Blain AE, Wang X. Antimicrobial Susceptibility Survey of Invasive Haemophilus influenzae in the United States in 2016. Microbiol Spectr 2022; 10:e0257921. [PMID: 35536039 PMCID: PMC9241922 DOI: 10.1128/spectrum.02579-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Antibiotics are important for the treatment and prevention of invasive Haemophilus influenzae disease. Reduced susceptibility to clinically relevant drugs, except ampicillin, has been uncommon in the United States. Susceptibility of 700 invasive H. influenzae isolates, collected through population-based surveillance during 2016, was assessed for 15 antibiotics using broth microdilution, according to the CLSI guidelines; a subset of 104 isolates were also assessed for rifampin susceptibility using Etest. Genomes were sequenced to identify genes and mutations known to be associated with reduced susceptibility to clinically relevant drugs. A total of 508 (72.6%) had reduced susceptibility to at least one antibiotic and more than half of the isolates exhibited reduced susceptibility to only one (33.6%) or two (21.6%) antibiotic classes. All tested isolates were susceptible to rifampin, a chemoprophylaxis agent, and <1% (n = 3) of isolates had reduced susceptibility to third generation cephalosporins, which are recommended for invasive disease treatment. In contrast, ampicillin resistance was more common (28.1%) and predominantly associated with the detection of a β-lactamase gene; 26.2% of isolates in the collection contained either a TEM-1 or ROB-1 β-lactamase gene, including 88.8% of ampicillin-resistant isolates. β-lactamase negative ampicillin-resistant (BLNAR) isolates were less common and associated with ftsI mutations; resistance to amoxicillin-clavulanate was detected in <2% (n = 13) of isolates. The proportion of reduced susceptibility observed was higher among nontypeable H. influenzae and serotype e than other serotypes. US invasive H. influenzae isolates remain predominantly susceptible to clinically relevant antibiotics except ampicillin, and BLNAR isolates remain uncommon. IMPORTANCE Antibiotics play an important role for the treatment and prevention of invasive Haemophilus influenzae disease. Antimicrobial resistance survey of invasive H. influenzae isolates collected in 2016 showed that the US H. influenzae population remained susceptible to clinically relevant antibiotics, except for ampicillin. Detection of approximately a quarter ampicillin-resistant and β-lactamase containing strains demonstrates that resistance mechanisms can be acquired and sustained within the H. influenzae population, highlighting the continued importance of antimicrobial resistance surveillance for H. influenzae to monitor susceptibility trends and mechanisms of resistance.
Collapse
Affiliation(s)
- Caelin C. Potts
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lorraine D. Rodriguez-Rivera
- Weems Design Studio, Inc., Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- IHRC, Inc., Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adam C. Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sean A. Buono
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexander T. Chen
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Henju Marjuki
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amy E. Blain
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Invasive Haemophilus influenzae Infections after 3 Decades of Hib Protein Conjugate Vaccine Use. Clin Microbiol Rev 2021; 34:e0002821. [PMID: 34076491 DOI: 10.1128/cmr.00028-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae serotype b (Hib) was previously the most common cause of bacterial meningitis and an important etiologic agent of pneumonia in children aged <5 years. Its major virulence factor is the polyribosyl ribitol phosphate (PRP) polysaccharide capsule. In the 1980s, PRP-protein conjugate Hib vaccines were developed and are now included in almost all national immunization programs, achieving a sustained decline in invasive Hib infections. However, invasive Hib disease has not yet been eliminated in countries with low vaccine coverage, and sporadic outbreaks of Hib infection still occur occasionally in countries with high vaccine coverage. Over the past 2 decades, other capsulated serotypes have been recognized increasingly as causing invasive infections. H. influenzae serotype a (Hia) is now a major cause of invasive infection in Indigenous communities of North America, prompting a possible requirement for an Hia conjugate vaccine. H. influenzae serotypes e and f are now more common than serotype b in Europe. Significant year-to-year increases in nontypeable H. influenzae invasive infections have occurred in many regions of the world. Invasive H. influenzae infections are now seen predominantly in patients at the extremes of life and those with underlying comorbidities. This review provides a comprehensive and critical overview of the current global epidemiology of invasive H. influenzae infections in different geographic regions of the world. It discusses those now at risk of invasive Hib disease, describes the emergence of other severe invasive H. influenzae infections, and emphasizes the importance of long-term, comprehensive, clinical and microbiologic surveillance to monitor a vaccine's impact.
Collapse
|
8
|
Characteristics and Antibiotic Resistance of Haemophilus influenzae in Children with Lower Respiratory Tract Infection in Chengdu, China. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Haemophilus influenzae is an opportunistic pathogen of the human respiratory tract. Haemophilus influenzae can cause not only respiratory tract infection in children but also otitis media, epiglottitis and sinusitis. With the widespread use of antibiotics, the positive rate of β-lactamase in H. influenzae is increasing, and the rate of antimicrobial resistance is also increasing, which increases the difficulty of clinical treatment. Objectives: To study the infection characteristics of patients and the antibiotic resistance of H. influenzae in lower respiratory tract samples of children in Chengdu, so as to provide a reference for its clinical diagnosis and the rational use of antibiotics. Methods: Sputum samples of 15891 children aged 0-14 years with lower respiratory tract infection were collected. Haemophilus influenzae was cultured and identified, its drug susceptibility tested, and the results determined according to the guidelines of CLSI 2020. Results: A total of 15891 clinical isolate strains in sputum were detected for drug sensitivity from December 2018 to January 2020, of which 5488 were H. influenzae, accounting for 34.54% (5488/15891). The sex of children infected with H. influenzae was not skewed (P > 0.05). The detection rate of H. influenzae was the highest in children aged 7 - 11 months, and the lowest was in the age group ≤ 28 d. The detection rate was the highest in spring and the lowest in autumn. The positive rate of β-lactamase was 92.0%, the resistance rate to ampicillin was 92.0%, the sensitivity to amoxicillin/clavulanate was 70.2%, and the sensitivity to cefotaxime, ofloxacin, tetracycline, chloramphenicol, and rifampicin was more than 90.0%. Conclusions: Children aged 7 months to 14 years were generally susceptible to H. influenzae in spring, and the positive rate of β-lactamase was high. Doctors should refer to the infection characteristics and drug resistance of H. influenzae and choose antibiotics correctly to better control the infection.
Collapse
|