1
|
Li M, Jian Q, Ye X, Jing M, Wu J, Wu Z, Ruan Y, Long X, Zhang R, Ren H, Sun J, Liu Y, Liao X, Lian X. Mechanisms of mepA Overexpression and Membrane Potential Reduction Leading to Ciprofloxacin Heteroresistance in a Staphylococcus aureus Isolate. Int J Mol Sci 2025; 26:2372. [PMID: 40076991 PMCID: PMC11901101 DOI: 10.3390/ijms26052372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Heteroresistance has seriously affected the evaluation of antibiotic efficacy against pathogenic bacteria, causing misjudgment of antibiotics' sensitivity in clinical therapy, leading to treatment failure, and posing a serious threat to current medical health. However, the mechanism of Staphylococcus aureus heteroresistance to ciprofloxacin remains unclear. In this study, heteroresistance to ciprofloxacin in S. aureus strain 529 was confirmed by antimicrobial susceptibility testing and population analysis profiling (PAP), with the resistance of subclonal 529_HR based on MIC being 8-fold that of the original bacteria. A 7-day serial MIC evaluation and growth curves demonstrate that their phenotype was stable, with 529_HR growing more slowly than 529, but reaching a plateau in a similar proportion. WGS analysis showed that there were 11 nonsynonymous mutations and one deletion gene between the two bacteria, but none of these SNPs were directly associated with ciprofloxacin resistance. Transcriptome data analysis showed that the expression of membrane potential related genes (qoxA, qoxB, qoxC, qoxD, mprF) was downregulated, and the expression of multidrug resistance efflux pump gene mepA was upregulated. The combination of ciprofloxacin and limonene restored the 529_HR MIC from 1 mg/L to 0.125 mg/L. Measurement of the membrane potential found that 529_HR had a lower potential, which may enable it to withstand the ciprofloxacin-induced decrease in membrane potential. In summary, we demonstrated that upregulation of mepA gene expression and a reduction in membrane potential are the main heteroresistance mechanisms of S. aureus to ciprofloxacin. Additionally, limonene may be a potentially effective agent to inhibit ciprofloxacin heteroresistance phenotypes.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qianting Jian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xinyi Ye
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Mou Jing
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jia’en Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhihong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yali Ruan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Rongmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Q.J.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang W, Cui J, Liu F, Hu Y, Li F, Zhou Z, Deng X, Dong Y, Li S, Xiao J. Genomic characterization of Salmonella isolated from retail chicken and humans with diarrhea in Qingdao, China. Front Microbiol 2023; 14:1295769. [PMID: 38164401 PMCID: PMC10757937 DOI: 10.3389/fmicb.2023.1295769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Salmonella, especially antimicrobial resistant strains, remains one of the leading causes of foodborne bacterial disease. Retail chicken is a major source of human salmonellosis. Here, we investigated the prevalence, antimicrobial resistance (AMR), and genomic characteristics of Salmonella in 88 out of 360 (24.4%) chilled chicken carcasses, together with 86 Salmonella from humans with diarrhea in Qingdao, China in 2020. The most common serotypes were Enteritidis and Typhimurium (including the serotype I 4,[5],12:i:-) among Salmonella from both chicken and humans. The sequence types were consistent with serotypes, with ST11, ST34 and ST19 the most dominantly identified. Resistance to nalidixic acid, ampicillin, tetracycline and chloramphenicol were the top four detected in Salmonella from both chicken and human sources. High multi-drug resistance (MDR) and resistance to third-generation cephalosporins resistance were found in Salmonella from chicken (53.4%) and humans (75.6%). In total, 149 of 174 (85.6%) Salmonella isolates could be categorized into 60 known SNP clusters, with 8 SNP clusters detected in both sources. Furthermore, high prevalence of plasmid replicons and prophages were observed among the studied isolates. A total of 79 antimicrobial resistant genes (ARGs) were found, with aac(6')-Iaa, blaTEM-1B, tet(A), aph(6)-Id, aph(3″)-Ib, sul2, floR and qnrS1 being the dominant ARGs. Moreover, nine CTX-M-type ESBL genes and the genes blaNMD-1, mcr-1.1, and mcr-9.1 were detected. The high incidence of MDR Salmonella, especially possessing lots of mobile genetic elements (MGEs) in this study posed a severe risk to food safety and public health, highlighting the importance of improving food hygiene measures to reduce the contamination and transmission of this bacterium. Overall, it is essential to continue monitoring the Salmonella serotypes, implement the necessary prevention and strategic control plans, and conduct an epidemiological surveillance system based on whole-genome sequencing.
Collapse
Affiliation(s)
- Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jing Cui
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Feng Liu
- Pharmaceutical Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital) Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhemin Zhou
- Key Laboratory of Alkene-carbon Fibres-based Technology and Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shaoting Li
- Guangdong University of Technology, Guangzhou, China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
3
|
Barra Caracciolo A, Visca A, Rauseo J, Spataro F, Garbini GL, Grenni P, Mariani L, Mazzurco Miritana V, Massini G, Patrolecco L. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120413. [PMID: 36243186 DOI: 10.1016/j.envpol.2022.120413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The degradation and bioaccumulation of selected antibiotics such as the sulfonamide sulfamethoxazole (SMX) and the fluoroquinolones enrofloxacin (ENR) and ciprofloxacin (CIP) were investigated in soil microcosm experiments where Lactuca sativa was grown with manure or digestate (1%) and spiked with a mixture of the three antibiotics (7.5 mg/kg each). The soil, rhizosphere and leaf phyllosphere were sampled (at 0 and 46 days) from each microcosm to analyze the antibiotic concentrations, main resistance genes (sul1, sul2, qnrS, aac-(6')-Ib-crand qepA), the intI1and tnpA mobile genetic elements and the microbial community structure.Overall results showed that SMX and CIP decreased (70-85% and 55-79%, respectively), and ENR was quite persistent during the 46-day experiment. In plant presence, CIP and ENR were partially up-taken from soil to plant. In fact the bioaccumulation factors were > 1, with higher values in manure than digestate amended soils. The most abundant gene in soil was sul2 in digestate- and aac-(6')-Ib-cr in the manure-amended microcosms. In soil, neither sulfamethoxazole-resistance (sul1 and sul2), nor fluoroquinolone-resistance (aac-(6')-Ib-cr, qepA and qnrS) gene abundances were correlated with any antibiotic concentration. On the contrary, in lettuce leaves, the aac-(6')-Ib-cr gene was the most abundant, in accordance with the fluoroquinolone bioaccumulation. Finally, digestate stimulated a higher soil microbial biodiversity, introducing and promoting more bacterial genera associated with antibiotic degradation and involved in soil fertility and decreased fluoroquinolone bioaccumulation.
Collapse
Affiliation(s)
| | - Andrea Visca
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Paola Grenni
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Livia Mariani
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy
| | - Valentina Mazzurco Miritana
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Giulia Massini
- Water Research Institute - National Research Council (IRSA-CNR), Rome, Italy; Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
4
|
Wójcicki M, Chmielarczyk A, Świder O, Średnicka P, Strus M, Kasperski T, Shymialevich D, Cieślak H, Emanowicz P, Kowalczyk M, Sokołowska B, Juszczuk-Kubiak E. Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens 2022; 11:1323. [PMID: 36365074 PMCID: PMC9692263 DOI: 10.3390/pathogens11111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 10/13/2023] Open
Abstract
Salmonella is one of the most important foodborne pathogens. Fifty-three strains of Salmonella deposited in the Culture Collection of Industrial Microorganisms-Microbiological Resources Center (IAFB) were identified using molecular and proteomic analyses. Moreover, the genetic similarity of the tested strains was determined using the PFGE method. Main virulence genes were identified, and phenotypical antibiotic susceptibility profiles and prevalence of resistance genes were analyzed. Subsequently, the occurrence of the main mechanisms of β-lactam resistance was determined. Virulence genes, invA, fimA, and stn were identified in all tested strains. Phenotypic tests, including 28 antibiotics, showed that 50.9% of the strains were MDR. The tet genes associated with tetracyclines resistance were the most frequently identified genes. Concerning the genes associated with ESBL-producing Salmonella, no resistance to the TEM and CTX-M type was identified, and only two strains (KKP 1597 and KKP 1610) showed resistance to SHV. No strains exhibited AmpC-type resistance but for six Salmonella strains, the efflux-related resistance of PSE-1 was presented. The high number of resistant strains in combination with multiple ARGs in Salmonella indicates the possible overuse of antibiotics. Our results showed that it is necessary to monitor antimicrobial resistance profiles in all food chain links constantly and to implement a policy of proper antibiotic stewardship to contain or at least significantly limit the further acquisition of antibiotic resistance among Salmonella strains.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Tomasz Kasperski
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
5
|
Relationships between Efflux Pumps and Emergence of Heteroresistance: A Comprehensive Study on the Current Findings. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:3916980. [PMID: 36249589 PMCID: PMC9553693 DOI: 10.1155/2022/3916980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Heteroresiatnce (HR) is the type of resistance toward one or more antibiotics appearing as a population of the bacterial load consisting of one or more subpopulations with lower antibiotic susceptibility levels than others. Due to the lack of appropriate diagnosis of HR isolates and their importance in resistance emergence to antibiotics, investigating the origins, emergence factors, and HR inhibitors is critical in combating antibiotic resistance. Efflux pumps (EPs) are bacterial systems that own an influential role in acquiring resistance toward anti-bacterial compounds. Studies on EPs revealed that they can affect HR emergence mechanisms and are competent to be introduced as a suitable bacterial target for diagnostic and therapeutic development in combating HR isolates. This review will consider the relations between EPs and the emergence of HR isolates and discuss their importance in confronting this type of antibiotic resistance.
Collapse
|
6
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
7
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
8
|
Hyeon JY, Helal ZH, Polkowski R, Heishima M, Kim J, Lee DH, Risatti GR. Genetic features of Salmonella enterica subspecies diarizonae serovar 61:k:1,5 isolated from abortion cases in sheep, United States, 2020. Res Vet Sci 2021; 138:125-136. [PMID: 34139624 DOI: 10.1016/j.rvsc.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Salmonella enterica subspecies diarizonae serovar 61:(k):1, 5, (7) (sheep associated S. diarizonae, SASd) is the most common Salmonella serotype identified in sheep flocks. Despite the involvement with animal and human infections, there is limited information regarding virulence profiles of SASds and their antibiotic resistance gene complement, particularly for those circulating in the U.S. In this study, we genetically characterized three SASds, 20-265, 20-269, and 20-312, isolated from sheep placental tissues during an abortion storm affecting a flock in Connecticut during 2020. SASds were the only bacteria isolated from analyzed sheep tissues. The isolates were sensitive to all the antibiotics tested, but all these SASd isolates carry the aminoglycoside resistance gene, aac(6')-Iaa, and a chromosomal substitution in the parC gene. The proportion of pseudogenes (5.3-5.5%) was similar among the isolates, and these SASds carry IncX1 type plasmids. Comparing with the SASds isolates from Enterobase, the three isolates showed an identical genomic virulence profile carrying virulence genes in the conserved set of other SASd isolates except for steC, iagB, iacP, sseI, and slrP genes. In the SNP-based phylogenetic analysis, SASd sequences were grouped into group A-C, and the group C was further subdivided into subgroup C1-C6. The three isolates clustered with other SASd isolates from the U.S. and Canada in subgroup C6. SASd isolates in the identical phylogenetic groups tended to have similar geographical origin. The results of our study did not provide conclusive evidence about which are the genetic traits that trigger SASds to become virulent in sheep, but our data will provide a point for comparative studies of this Salmonella serovar.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA; Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Zeinab H Helal
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA; Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Robert Polkowski
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Mizuki Heishima
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Junwon Kim
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA; Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Lee S, Park N, Yun S, Hur E, Song J, Lee H, Kim Y, Ryu S. Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut Pathog 2021; 13:35. [PMID: 34074336 PMCID: PMC8167944 DOI: 10.1186/s13099-021-00431-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal salmonellosis remains a pressing public health problem worldwide. Quinolones, particularly fluoroquinolones, are widely used to treat various infections, including non-typhoidal salmonellosis, which can be a serious illness. The emergence of fluoroquinolone-resistant Salmonella has resulted in treatment failure and high mortality rates. In this study, we estimated the presence of plasmid-mediated quinolone resistance (PMQR) genes in Salmonella enterica isolated from human salmonellosis patients in South Korea from 2016 to 2019. We evaluated the association of these genes with fluoroquinolone susceptibility. Antimicrobial susceptibility tests for Salmonella isolates were performed using the Vitek II system, and the minimum inhibitory concentrations (MIC) of ciprofloxacin and levofloxacin were determined using the E-test method. Plasmid-mediated quinolone resistance (PMQR) genes were detected by PCR amplification and quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes were analyzed following Sanger sequencing of the PCR products. Thirty-four Salmonella strains with reduced susceptibility to fluoroquinolones (ciprofloxacin MIC ≥ 0.125 µg/mL and levofloxacin MIC ≥ 0.25 µg/mL) were selected from 208 human clinical Salmonella isolates. Among them, 22 Salmonella strains harbored one PMQR gene (qnrA, qnrB, or qnrS), and three Salmonella strains carried two PMQR genes (qnrS and aac(6′)-Ib-cr or qnrA and qnrB). qnrS was the most common PMQR gene. Serotyping revealed that Salmonella 4,[5]12:i:- (32.4%, 11/34) and Salmonella Typhimurium (29.4%, 10/34) were the two most predominant serovars, and Multi-locus sequence typing (MLST) showed that ST19 and ST34 were the most frequent sequence types. In conclusion, qnr gene-positive Salmonella 4,[5],12:i:- and Salmonella Typhimurium were the main serovars responsible for reduced susceptibility to fluoroquinolones. Therefore, our findings suggest that PMQR-positive Salmonella strains, which can be isolated from various samples including human, food, and the environment, should be carefully monitored.
Collapse
Affiliation(s)
- Sohyun Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Nanjoo Park
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea.,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Sujung Yun
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Eunseon Hur
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Jiwon Song
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Hanna Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Yongsug Kim
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|