1
|
Murillo-Torres M, Peñalver-Fernández IM, Quero-Delgado M, Diaz-Diaz S, Romero-Muñoz M, Recacha E, Docobo-Pérez F, Rodríguez-Martínez JM. Combined inactivation of the SOS response with TCA fumarases and the adaptive response enhances antibiotic susceptibility against Escherichia coli. Front Microbiol 2025; 16:1570764. [PMID: 40415939 PMCID: PMC12098349 DOI: 10.3389/fmicb.2025.1570764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Targeting bacterial DNA damage responses such as the SOS response represents a promising strategy for enhancing the efficacy of existing antimicrobials. This study focuses on a recently discovered DNA damage response mechanism involving tricarboxylic acid cycle (TCA) fumarases and the adaptive response, crucial for Escherichia coli survival in the presence of genotoxic methyl methanesulfonate (MMS). We investigated whether this pathway contributes to protection against antibiotics, either separately or in combination with the SOS response. Methods An isogenic collection of E. coli BW25113 mutants was used, including strains deficient in fumarases (ΔfumA, ΔfumB, ΔfumC) and the adaptive response (ΔalkA, ΔalkB, ΔaidB). Additional SOS response inactivation (ΔrecA) was conducted by P1 phage transduction. All mutants were subjected to antimicrobial susceptibility testing, growth curve analysis, survival and evolution assays. To validate the relevance of these findings, experiments were also performed in a quinolone-resistant E. coli ST131 clinical isolate. Results and discussion Overall, no significant differences or only moderate increases in susceptibility were observed in the single mutants, with ΔfumC and ΔaidB mutants showing the highest susceptibility. To enhance this effect, these genes were then inactivated in combination with the SOS response by constructing ΔfumC/ΔrecA and ΔaidB/ΔrecA mutants. These combinations exhibited significant differences in susceptibility to various antimicrobials, particularly cephalosporins and quinolones, and especially in the ΔfumC/ΔrecA strain. To further assess these results, we constructed an E. coli ST131 ΔfumC/ΔrecA mutant, in which a similar trend was observed. Together, these findings suggest that co-targeting the SOS response together with fumarases or the adaptive response could enhance the effectiveness of antibiotics against E. coli, potentially leading to new therapeutic strategies.
Collapse
Affiliation(s)
- Marina Murillo-Torres
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena / CSIC / Universidad de Sevilla, Sevilla, Spain
| | | | - Marta Quero-Delgado
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Sara Diaz-Diaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena / CSIC / Universidad de Sevilla, Sevilla, Spain
| | - María Romero-Muñoz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Esther Recacha
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena / CSIC / Universidad de Sevilla, Sevilla, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena / CSIC / Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena / CSIC / Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Bush NG, Diez-Santos I, Sankara Krishna P, Clavijo B, Maxwell A. Insights into antibiotic resistance promoted by quinolone exposure. Antimicrob Agents Chemother 2025; 69:e0099724. [PMID: 39589140 PMCID: PMC11784200 DOI: 10.1128/aac.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Quinolone-induced antibiotic resistance (QIAR) refers to the phenomenon by which bacteria exposed to sublethal levels of quinolones acquire resistance to non-quinolone antibiotics. We have explored this in Escherichia coli MG1655 using a variety of compounds and bacteria carrying a quinolone-resistance mutation in gyrase, mutations affecting the SOS response, and mutations in error-prone polymerases. The nature of the antibiotic-resistance mutations was determined by whole-genome sequencing. Exposure to low levels of most quinolones tested led to mutations conferring resistance to chloramphenicol, ampicillin, kanamycin, and tetracycline. The mutations included point mutations and deletions and could mostly be correlated with the resistance phenotype. QIAR depended upon DNA gyrase and involved the SOS response but was not dependent on error-prone polymerases. Only moxifloxacin, among the quinolones tested, did not display a significant QIAR effect. We speculate that the lack of QIAR with moxifloxacin may be attributable to it acting via a different mechanism. In addition to the concerns about antimicrobial resistance to quinolones and other compounds, QIAR presents an additional challenge in relation to the usage of quinolone antibacterials.
Collapse
Affiliation(s)
- Natassja G. Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Isabel Diez-Santos
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Pilla Sankara Krishna
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bernardo Clavijo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
3
|
Tian P, Li QQ, Guo MJ, Zhu YZ, Zhu RQ, Guo YQ, Yang Y, Liu YY, Yu L, Li YS, Li JB. Zidovudine in synergistic combination with nitrofurantoin or omadacycline: in vitro and in murine urinary tract or lung infection evaluation against multidrug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0034424. [PMID: 39194261 PMCID: PMC11459972 DOI: 10.1128/aac.00344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Limited treatment options and multidrug-resistant (MDR) Klebsiella pneumoniae present a significant therapeutic challenge, underscoring the need for novel approaches. Drug repurposing is a promising tool for augmenting the activity of many antibiotics. This study aimed to identify novel synergistic drug combinations against K. pneumoniae based on drug repurposing. We used the clinically isolated GN 172867 MDR strain of K. pneumoniae to determine the reversal resistance activity of zidovudine (AZT). The combined effects of AZT and various antibiotics, including nitrofurantoin (NIT) and omadacycline (OMC), were examined using the checkerboard method, growth curves, and crystal violet assays to assess biofilms. An in vitro combination activity testing was carried out in 12 isolates of K. pneumoniae. In vivo murine urinary tract and lung infection models were used to evaluate the therapeutic effects of AZT + NIT and AZT + OMC, respectively. The fractional inhibitory concentration index and growth curve demonstrated that AZT synergized with NIT or OMC against K. pneumoniae strains. In addition, AZT + NIT inhibited biofilm formation and cleared mature biofilms. In vivo, compared with untreated GN 172867-infected mice, AZT + NIT and AZT + OMC treatment decreased colony counts in multiple tissues (P < 0.05) and pathological scores in the bladder and kidneys (P < 0.05) and increased the survival rate by 60% (P < 0.05). This study evaluated the combination of AZT and antibiotics to treat drug-resistant K. pneumoniae infections and found novel drug combinations for the treatment of acute urinary tract infections. These findings suggest that AZT may exert significant anti-resistance activity.
Collapse
Affiliation(s)
- Ping Tian
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Qing-Qing Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ming-Juan Guo
- Department of Hepatology, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun-Zhu Zhu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Rong-Qing Zhu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Qin Guo
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yan-Yan Liu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Liang Yu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Sheng Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Jia-Bin Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases and Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Tian P, Guo MJ, Li QQ, Li XF, Liu XQ, Kong QX, Zhang H, Yang Y, Liu YY, Yu L, Li JB, Li YS. Discovery of clinical isolation of drug-resistant Klebsiella pneumoniae with overexpression of OqxB efflux pump as the decisive drug resistance factor. Microbiol Spectr 2024; 12:e0012224. [PMID: 39150249 PMCID: PMC11448435 DOI: 10.1128/spectrum.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/19/2024] [Indexed: 08/17/2024] Open
Abstract
Background emergence of multidrug-resistant (MDR) bacterial strains is a public health concern that threatens global and regional security. Efflux pump-overexpressing MDR strains from clinical isolates are the best subjects for studying the mechanisms of MDR caused by bacterial efflux pumps. A Klebsiella pneumoniae strain overexpressing the OqxB-only efflux pump was screened from a clinical strain library to explore reverse OqxB-mediated bacterial resistance strategies. We identified non-repetitive clinical isolated K. pneumoniae strains using a matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry clinical TOF-II (Clin-TOF-II) and susceptibility test screening against levofloxacin and ciprofloxacin. And the polymorphism analysis was conducted using pulsed-field gel electrophoresis. Efflux pump function of resistant strains is obtained by combined drug sensitivity test of phenylalanine-arginine beta-naphthylamide (PaβN, an efflux pump inhibitor) and detection with ethidium bromide as an indicator. The quantitative reverse transcription PCR was performed to assess whether the oqxB gene was overexpressed in K. pneumoniae isolates. Additional analyses assessed whether the oqxB gene was overexpressed in K. pneumoniae isolates and gene knockout and complementation strains were constructed. The binding mode of PaβN with OqxB was determined using molecular docking modeling. Among the clinical quinolone-resistant K. pneumoniae strains, one mediates resistance almost exclusively through the overexpression of the resistance-nodulation-division efflux pump, OqxB. Crystal structure of OqxB has been reported recently by N. Bharatham, P. Bhowmik, M. Aoki, U. Okada et al. (Nat Commun 12:5400, 2021, https://doi.org/10.1038/s41467-021-25679-0). The discovery of this strain will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and builds on the foundation for addressing the threat posed by quinolone resistance.IMPORTANCEThe emergence of antimicrobial resistance is a growing and significant health concern, particularly in the context of K. pneumoniae infections. The upregulation of efflux pump systems is a key factor that contributes to this resistance. Our results indicated that the K. pneumoniae strain GN 172867 exhibited a higher oqxB gene expression compared to the reference strain ATCC 43816. Deletion of oqxB led a decrease in the minimum inhibitory concentration of levofloxacin. Complementation with oqxB rescued antibiotic resistance in the oqxB mutant strain. We demonstrated that the overexpression of the OqxB efflux pump plays an important role in quinolone resistance. The discovery of strain GN 172867 will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and promotes further study of antimicrobial resistance.
Collapse
Affiliation(s)
- Ping Tian
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ming-Juan Guo
- Department of Hepatology, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Qing-Qing Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Xu-Feng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Xiao-Qiang Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Qin-Xiang Kong
- Department of Infectious Diseases, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
| | - Yi Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Yan-Yan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Liang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Jia-Bin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Ya-Sheng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Infectious Diseases, Anhui Medical University, Hefei, China
- Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Diaz-Diaz S, Garcia-Montaner A, Vanni R, Murillo-Torres M, Recacha E, Pulido MR, Romero-Muñoz M, Docobo-Pérez F, Pascual A, Rodriguez-Martinez JM. Heterogeneity of SOS response expression in clinical isolates of Escherichia coli influences adaptation to antimicrobial stress. Drug Resist Updat 2024; 75:101087. [PMID: 38678745 DOI: 10.1016/j.drup.2024.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.
Collapse
Affiliation(s)
- Sara Diaz-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain.
| | - Andrea Garcia-Montaner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Roberta Vanni
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marina Murillo-Torres
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Esther Recacha
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marina R Pulido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Romero-Muñoz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Fernando Docobo-Pérez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Manuel Rodriguez-Martinez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Sullivan GJ, Barquist L, Cain AK. A method to correct for local alterations in DNA copy number that bias functional genomics assays applied to antibiotic-treated bacteria. mSystems 2024; 9:e0066523. [PMID: 38470252 PMCID: PMC11019837 DOI: 10.1128/msystems.00665-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Functional genomics techniques, such as transposon insertion sequencing and RNA-sequencing, are key to studying relative differences in bacterial mutant fitness or gene expression under selective conditions. However, certain stress conditions, mutations, or antibiotics can directly interfere with DNA synthesis, resulting in systematic changes in local DNA copy numbers along the chromosome. This can lead to artifacts in sequencing-based functional genomics data when comparing antibiotic treatment to an unstressed control. Further, relative differences in gene-wise read counts may result from alterations in chromosomal replication dynamics, rather than selection or direct gene regulation. We term this artifact "chromosomal location bias" and implement a principled statistical approach to correct it by calculating local normalization factors along the chromosome. These normalization factors are then directly incorporated into statistical analyses using standard RNA-sequencing analysis methods without modifying the read counts themselves, preserving important information about the mean-variance relationship in the data. We illustrate the utility of this approach by generating and analyzing a ciprofloxacin-treated transposon insertion sequencing data set in Escherichia coli as a case study. We show that ciprofloxacin treatment generates chromosomal location bias in the resulting data, and we further demonstrate that failing to correct for this bias leads to false predictions of mutant drug sensitivity as measured by minimum inhibitory concentrations. We have developed an R package and user-friendly graphical Shiny application, ChromoCorrect, that detects and corrects for chromosomal bias in read count data, enabling the application of functional genomics technologies to the study of antibiotic stress.IMPORTANCEAltered gene dosage due to changes in DNA replication has been observed under a variety of stresses with a variety of experimental techniques. However, the implications of changes in gene dosage for sequencing-based functional genomics assays are rarely considered. We present a statistically principled approach to correcting for the effect of changes in gene dosage, enabling testing for differences in the fitness effects or regulation of individual genes in the presence of confounding differences in DNA copy number. We show that failing to correct for these effects can lead to incorrect predictions of resistance phenotype when applying functional genomics assays to investigate antibiotic stress, and we provide a user-friendly application to detect and correct for changes in DNA copy number.
Collapse
Affiliation(s)
- Geraldine J. Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Lars Barquist
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
Recacha E, Kuropka B, Díaz-Díaz S, García-Montaner A, González-Tortuero E, Docobo-Pérez F, Rodríguez-Rojas A, Rodríguez-Martínez JM. Impact of suppression of the SOS response on protein expression in clinical isolates of Escherichia coli under antimicrobial pressure of ciprofloxacin. Front Microbiol 2024; 15:1379534. [PMID: 38659986 PMCID: PMC11039860 DOI: 10.3389/fmicb.2024.1379534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction/objective Suppression of the SOS response in combination with drugs damaging DNA has been proposed as a potential target to tackle antimicrobial resistance. The SOS response is the pathway used to repair bacterial DNA damage induced by antimicrobials such as quinolones. The extent of lexA-regulated protein expression and other associated systems under pressure of agents that damage bacterial DNA in clinical isolates remains unclear. The aim of this study was to assess the impact of this strategy consisting on suppression of the SOS response in combination with quinolones on the proteome profile of Escherichia coli clinical strains. Materials and methods Five clinical isolates of E. coli carrying different chromosomally- and/or plasmid-mediated quinolone resistance mechanisms with different phenotypes were selected, with E. coli ATCC 25922 as control strain. In addition, from each clinical isolate and control, a second strain was created, in which the SOS response was suppressed by deletion of the recA gene. Bacterial inocula from all 12 strains were then exposed to 1xMIC ciprofloxacin treatment (relative to the wild-type phenotype for each isogenic pair) for 1 h. Cell pellets were collected, and proteins were digested into peptides using trypsin. Protein identification and label-free quantification were done by liquid chromatography-mass spectrometry (LC-MS) in order to identify proteins that were differentially expressed upon deletion of recA in each strain. Data analysis and statistical analysis were performed using the MaxQuant and Perseus software. Results The proteins with the lowest expression levels were: RecA (as control), AphA, CysP, DinG, DinI, GarL, PriS, PsuG, PsuK, RpsQ, UgpB and YebG; those with the highest expression levels were: Hpf, IbpB, TufB and RpmH. Most of these expression alterations were strain-dependent and involved DNA repair processes and nucleotide, protein and carbohydrate metabolism, and transport. In isolates with suppressed SOS response, the number of underexpressed proteins was higher than overexpressed proteins. Conclusion High genomic and proteomic variability was observed among clinical isolates and was not associated with a specific resistant phenotype. This study provides an interesting approach to identify new potential targets to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Esther Recacha
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sara Díaz-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Andrea García-Montaner
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Fernando Docobo-Pérez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jose Manuel Rodríguez-Martínez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
8
|
RecA inactivation as a strategy to reverse the heteroresistance phenomenon in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2023; 61:106721. [PMID: 36642235 DOI: 10.1016/j.ijantimicag.2023.106721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
RecA inhibition could be an important strategy to combat antimicrobial resistance because of its key role in the SOS response, DNA repair and homologous recombination contributing to bacterial survival. This study evaluated the impact of RecA inactivation on heteroresistance in clinical isolates of Escherichia coli and their corresponding recA-deficient isogenic strains to multiple classes of antimicrobial agents. A high frequency (>30%) of heteroresistance was observed in this collection of clinical isolates. Deletion of the recA gene led to a marked reduction in heteroresistant subpopulations, especially against quinolones or β-lactams. The molecular basis of heteroresistance was associated with an increase in copy number of plasmid-borne resistance genes (blaTEM-1B) or tandem gene amplifications (qnrA1). Of note, in the absence of the recA gene, the increase in copy number of resistance genes was suppressed. This makes the recA gene a promising target for combating heteroresistance.
Collapse
|
9
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
10
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|