1
|
Al-Marzooq F, Ghazawi A, Alshamsi M, Alzaabi A, Aleissaee O, Almansoori H, Alsaadi A, Aldhaheri R, Ahli H, Daoud L, Ahmad A, Collyns T, Oommen S. Genomic approach to evaluate the intrinsic antibacterial activity of novel diazabicyclooctanes (zidebactam and nacubactam) against clinical Escherichia coli isolates from diverse clonal lineages in the United Arab Emirates. J Infect Public Health 2025; 18:102761. [PMID: 40120434 DOI: 10.1016/j.jiph.2025.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The spiking rise in the prevalence of multidrug-resistant (MDR) pathogens necessitates discovering new antimicrobial agents. This study aims to investigate the intrinsic activity of two novel diazabicyclooctane (DBO) β-lactamase inhibitors, zidebactam and nacubactam, against diverse MDR Escherichia coli isolates from the United Arab Emirates. We aimed to correlate their antibacterial efficacy with the genomic characteristics of the strains. METHODS This study investigated 73 E. coli strains and tested them for susceptibility to different antibiotics, including DBOs. PCR screening for carbapenemase and major β-lactamase genes was done. The strains were then grouped according to phenotypic and genotypic profiles. Whole-genome sequencing was employed to characterize the genetic landscape and clonality of selected 32 strains. Additionally, time-kill studies were conducted to confirm the bactericidal activity of DBOs. RESULTS Zidebactam demonstrated superior efficacy compared to nacubactam, primarily due to its higher affinity for penicillin-binding protein 2 (PBP2). Notably, zidebactam alone exhibited the most potent in vitro activity, outperforming both traditional β-lactams and novel antibiotics like cefiderocol. DBOs maintained effectiveness against strains harboring various resistance determinants, including NDM-5, OXA-181, CTX-M-15, SHV-12, CMY, and DHA. Genomic analysis revealed multiple mutations in PBP1-3, with PBP2 mutations correlating with DBO susceptibility variations. Importantly, DBOs remained highly effective against isolates with PBP mutations, even those belonging to high-risk clonal lineages (ST167, ST410, ST131). Time-kill studies confirmed the bactericidal activity of DBOs, with only one strain showing reduced susceptibility (MIC: 4 µg/ml). CONCLUSIONS This study provides compelling evidence for the potential of DBOs, particularly zidebactam, as novel antibacterial agents. Their unique characteristics and broad-spectrum activity position them as promising candidates for future antibiotic development. While the inclusion of DBO therapies in the antibiotic arsenal could significantly impact MDR pathogen treatment, realizing their full potential requires further research, clinical evaluation, and vigilant monitoring of resistance mechanisms through integrated genomic approaches.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Maitha Alshamsi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates; Tawam Hospital, Al-Ain, United Arab Emirates
| | - Abdulrahman Alzaabi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Omar Aleissaee
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Hamad Almansoori
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Abdullah Alsaadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rauda Aldhaheri
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Hafsa Ahli
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amna Ahmad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Seema Oommen
- Burjeel Medical City/coLAB, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Boattini M, Gaibani P, Comini S, Costa C, Cavallo R, Broccolo F, Bianco G. In vitro activity and resistance mechanisms of novel antimicrobial agents against metallo-β-lactamase producers. Eur J Clin Microbiol Infect Dis 2025; 44:1041-1068. [PMID: 40064744 PMCID: PMC12062158 DOI: 10.1007/s10096-025-05080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 05/09/2025]
Abstract
The carbapenemase-producing Gram-negative organisms represent an urgent clinical and public health concern, as they have been associated with increased mortality and high dissemination in healthcare settings. Although overall incidence rates of infections sustained by metallo-β-lactamase (MβL)-producers have remained lower than those sustained by other carbapenemase-producers, albeit with substantial geographic differences, a significant increase in the prevalence of MβL-producers has been observed over the last decade. The recent development of new antimicrobials expanded the armamentarium to counter the challenge of metallo-β-lactamase (MβL)-producers. Cefiderocol and aztreonam/avibactam are already clinically available and recommended by international guidelines. In addition, two new classes of β-lactam/ β-lactamase combinations are under clinical evaluation: (i) combination of β-lactam with novel boronic-derived inhibitors (e.g. taniborbactam and xeruborbactam), (ii) combination of β-lactam with last generation diazabicyclooctane β-lactamase inhibitors (e.g. zidebactam and nacubactam), active on most of serine-β-lactamases but also showing strong intrinsic activity on PBP-2. This review aims to provide up-to-date data on the characteristics, activity and emerging resistance mechanisms of the armamentarium of clinically available or soon-to-be introduced drugs for the treatment of MβL-producing Gram-negative organisms.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Paolo Gaibani
- Microbiology and Virology Unit, Department of Pathology, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Ancona, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Francesco Broccolo
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Gabriele Bianco
- Department of Experimental Medicine, University of Salento, Lecce, Italy.
| |
Collapse
|
3
|
Bush K. Past, present, and future perspectives on aztreonam and avibactam. Expert Rev Anti Infect Ther 2025; 23:277-290. [PMID: 40011051 DOI: 10.1080/14787210.2025.2473047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Aztreonam is a monobactam antibiotic approved in 1986 to treat infections caused by aerobic Gram-negative bacteria, but, together with cephalosporins, lost clinical utility due to the emergence of extended-spectrum β-lactamases (ESBLs) and novel (serine) carbapenemases. Avibactam was the first in a novel non-β-lactam β-lactamase inhibitor class to effectively inhibit these enzymes. It has been approved in combination with ceftazidime to treat Gram-negative infections caused by bacteria that produce AmpC, ESBLs and serine carbapenemases, and with aztreonam to treat patients infected with metallo-β-lactamase-producing enteric bacteria. Combinations of avibactam with ceftazidime and/or aztreonam have been used successfully to treat enteric pathogens producing multiple classes of β-lactamases. AREAS COVERED Development of aztreonam, avibactam, and avibactam combinations are placed into a historical perspective, based on both preclinical and clinical data. A search of MEDLINE (Ovid) was used to identify relevant literature. EXPERT OPINION Avibactam combined with ceftazidime and aztreonam in either dual or triple combinations provides the opportunity to treat previously untreatable Gram-negative infections that produce multiple β-lactamases. Aztreonam combinations should be particularly attractive, due to stability to metallo-β-lactamase hydrolysis and its safety advantage in treating penicillin-allergic patients. Other inhibitor combinations in development may challenge these combinations.
Collapse
Affiliation(s)
- Karen Bush
- Biology Department, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Outeda-García M, Arca-Suárez J, Lence E, Rodriguez-Coello A, Maceiras R, Blanco-Martin T, Guijarro-Sánchez P, Gonzalez-Pinto L, Alonso-Garcia I, García-Pose A, Muras A, Rodriguez-Pallares S, Lasarte-Monterrubio C, Gonzalez-Bello C, Vázquez-Ucha JC, Bou G, Beceiro A. Advancements in the fight against globally distributed OXA-48 carbapenemase: evaluating the new generation of carbapenemase inhibitors. Antimicrob Agents Chemother 2025; 69:e0161424. [PMID: 39791889 PMCID: PMC11823609 DOI: 10.1128/aac.01614-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025] Open
Abstract
Carbapenemase OXA-48 and its variants pose a serious threat to the development of effective treatments for bacterial infections. OXA-48-producing Enterobacterales are the most prevalent carbapenemase-producing bacteria in large parts of the world. Although these bacteria exhibit low-level carbapenem resistance in vitro, the infections they cause are challenging to treat with conventional therapies, owing to their spread and complex detection in clinical settings. However, numerous β-lactamase inhibitors (BLIs) are currently in the pipeline or late clinical stages. To assess the potential of these compounds, this study compared the efficacy against OXA-48 of novel β-lactamase inhibitors, specifically the 1,6-diazabicyclo[3,2,1]octanes (DBOs) avibactam, relebactam, zidebactam, nacubactam, and durlobactam, along with the cyclic and bicyclic boronates vaborbactam, taniborbactam, and xeruborbactam. The extensive kinetics assays identified xeruborbactam, taniborbactam, and durlobactam, together with the already established avibactam, as BLIs with superior biochemical performance. Susceptibility testing further validated these findings but also demonstrated significantly improved bacterial killing by the DBOs zidebactam, nacubactam, and durlobactam. On the other hand, binding studies demonstrated the superior inhibitory capacity of the BLIs durlobactam and xeruborbactam. Combinations, such as cefepime/zidebactam, meropenem/nacubactam, and sulbactam/durlobactam, show promising activity against OXA-48-producing Enterobacterales, while ceftazidime/avibactam, cefepime/taniborbactam, and meropenem/xeruborbactam combinations also appear highly active, largely due to the excellent kinetics of these new inhibitors. Overall, this comprehensive analysis provides important insights into the effectiveness of new BLIs against OXA-48-producing Enterobacterales, highlighting xeruborbactam, durlobactam, and avibactam as leading candidates. Additionally, BLIs like zidebactam, nacubactam, and taniborbactam also showed potential in addressing the clinical challenges posed by OXA-48-mediated antimicrobial resistance.
Collapse
Affiliation(s)
- Michelle Outeda-García
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Jorge Arca-Suárez
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, Spain
| | - Arianna Rodriguez-Coello
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Romina Maceiras
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Tania Blanco-Martin
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Paula Guijarro-Sánchez
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Lucia Gonzalez-Pinto
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Isaac Alonso-Garcia
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Andrea García-Pose
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Andrea Muras
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Salud Rodriguez-Pallares
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Cristina Lasarte-Monterrubio
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
| | - Concepción Gonzalez-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| | - German Bou
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| | - Alejandro Beceiro
- Microbiology department, A Coruna University Hospital (CHUAC), Institute of Biomedical Research of A Coruna (INIBIC), A Coruna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruna, Spain
| |
Collapse
|
5
|
Vidal-Cortés P, Campos-Fernández S, Cuenca-Fito E, del Río-Carbajo L, Fernández-Ugidos P, López-Ciudad VJ, Nieto-del Olmo J, Rodríguez-Vázquez A, Tizón-Varela AI. Difficult-to-Treat Pseudomonas aeruginosa Infections in Critically Ill Patients: A Comprehensive Review and Treatment Proposal. Antibiotics (Basel) 2025; 14:178. [PMID: 40001421 PMCID: PMC11851922 DOI: 10.3390/antibiotics14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The management of infections caused by difficult-to-treat Pseudomonas aeruginosa in critically ill patients poses a significant challenge. Optimal antibiotic therapy is crucial for patient prognosis, yet the numerous resistance mechanisms of P. aeruginosa, which may even combine, complicate the selection of an appropriate antibiotic. In this review, we examine the epidemiology, resistance mechanisms, risk factors, and available and future therapeutic options, as well as strategies for treatment optimization. Finally, we propose a treatment algorithm to facilitate decision making based on the resistance patterns specific to each Intensive Care Unit.
Collapse
Affiliation(s)
- Pablo Vidal-Cortés
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Sandra Campos-Fernández
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Elena Cuenca-Fito
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Lorena del Río-Carbajo
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Paula Fernández-Ugidos
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Víctor J. López-Ciudad
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Jorge Nieto-del Olmo
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| | - Ana Rodríguez-Vázquez
- Hospital Pharmacy, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain;
| | - Ana I. Tizón-Varela
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, 32003 Ourense, Spain; (S.C.-F.); (E.C.-F.); (L.d.R.-C.); (P.F.-U.); (V.J.L.-C.); (J.N.-d.O.); (A.I.T.-V.)
| |
Collapse
|
6
|
Macesic N, Uhlemann AC, Peleg AY. Multidrug-resistant Gram-negative bacterial infections. Lancet 2025; 405:257-272. [PMID: 39826970 DOI: 10.1016/s0140-6736(24)02081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Multidrug-resistant Gram-negative bacterial infections cause significant morbidity and mortality globally. These pathogens easily acquire antimicrobial resistance (AMR), further highlighting their clinical significance. Third-generation cephalosporin-resistant and carbapenem-resistant Enterobacterales (eg, Escherichia coli and Klebsiella spp), multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii are the most problematic and have been identified as priority pathogens. In response, several new diagnostic technologies aimed at rapidly detecting AMR have been developed, including biochemical, molecular, genomic, and proteomic techniques. The last decade has also seen the licensing of multiple antibiotics that have changed the treatment landscape for these challenging infections.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC, Australia; Centre to Impact AMR, Monash University, Melbourne, VIC, Australia; Infection Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Falcone M, Galfo V, Tiseo G. Not all carbapenem-resistant Pseudomonas aeruginosa strains are alike: tailoring antibiotic therapy based on resistance mechanisms. Curr Opin Infect Dis 2024; 37:594-601. [PMID: 39149832 PMCID: PMC11556876 DOI: 10.1097/qco.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW To correlate the resistance mechanisms and the susceptibility to new antibiotics in Pseudomonas aeruginosa . RECENT FINDINGS Definition of antibiotic resistance in Pseudomonas aeruginosa is still debated. Carbapenem-resistant Pseudomonas aeruginosa (CRPA) and difficult-to-treat resistant Pseudomonas aeruginosa (DTR-PA) are used but which of them better correlate with the risk of mortality remains debated. Mechanisms underlying resistance in Pseudomonas aeruginosa are complex and may be combined, resulting in unpredictable phenotype and cross-resistance. Thus, not all CRPA are alike and tailoring antibiotic therapy on resistance mechanisms is challenging. SUMMARY Current guidelines recommend the use of new antipseudomonal agents for CRPA or DTR-PA infections but they don't provide specific information on how tailoring antibiotic therapy on underlying resistance mechanisms. This review may be useful to understand which mechanisms are involved in CRPA and may have practical implications helping clinicians to select an appropriate antibiotic regimen. Several antibiotics are now available for Pseudomonas aeruginosa but their rational use is important to avoid development of future resistance. The knowledge of local epidemiology and most common resistance mechanisms may guide empirical therapy, but targeted antibiotic therapy should be re-evaluated as soon as susceptibility testing profile is available and selected according to Pseudomonas aeruginosa phenotype.
Collapse
Affiliation(s)
- Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
8
|
Grabein B, Arhin FF, Daikos GL, Moore LSP, Balaji V, Baillon-Plot N. Navigating the Current Treatment Landscape of Metallo-β-Lactamase-Producing Gram-Negative Infections: What are the Limitations? Infect Dis Ther 2024; 13:2423-2447. [PMID: 39352652 PMCID: PMC11499561 DOI: 10.1007/s40121-024-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
The spread of carbapenemase-producing gram-negative pathogens, especially those producing metallo-β-lactamases (MBLs), has become a major health concern. MBLs are molecularly the most diverse carbapenemases, produced by a wide spectrum of gram-negative organisms, including the Enterobacterales, Pseudomonas spp., Acinetobacter baumannii, and Stenotrophomonas maltophilia, and can hydrolyze most β-lactams using metal ion cofactors in their active sites. Over the years, the prevalence of MBL-carrying isolates has increased globally, particularly in Asia. MBL infections are associated with adverse clinical outcomes including longer length of hospital stay, ICU admission, and increased mortality across the globe. The optimal treatment for MBL infections not only depends on the pathogen but also on the underlying resistance mechanisms. Currently, there are only few drugs or drug combinations that can efficiently offset MBL-mediated resistance, which makes the treatment of MBL infections challenging. The rising concern of MBLs along with the limited treatment options has led to the need and development of drugs that are specifically targeted towards MBLs. This review discusses the prevalence of MBLs, their clinical impact, and the current treatment options for MBL infections and their limitations. Furthermore, this review will discuss agents currently in the pipeline for treatment of MBL infections.
Collapse
Affiliation(s)
| | | | - George L Daikos
- National and Kapodistrian University of Athens, Athens, Greece
| | - Luke S P Moore
- Chelsea & Westminster NHS Foundation Trust, London, UK
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, London, UK
| | - V Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | |
Collapse
|
9
|
Harnan S, Kearns B, Scope A, Schmitt L, Jankovic D, Hamilton J, Srivastava T, Hill H, Ku CC, Ren S, Rothery C, Bojke L, Sculpher M, Woods B. Ceftazidime with avibactam for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model. Health Technol Assess 2024; 28:1-230. [PMID: 39487661 PMCID: PMC11586833 DOI: 10.3310/yapl9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
Abstract
Background To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of ceftazidime-avibactam in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods The health benefit of ceftazidime-avibactam was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. Patient-level costs and health-related quality of life of ceftazidime-avibactam under various usage scenarios compared with alternative management strategies in the high-value clinical scenarios were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population in quality-adjusted life-years using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for ceftazidime-avibactam. Results The clinical effectiveness of ceftazidime-avibactam relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. In the base case, ceftazidime-avibactam was associated with a statistically significantly higher susceptibility relative to colistin (odds ratio 7.24, 95% credible interval 2.58 to 20.94). The remainder of the treatments were associated with lower susceptibility than colistin (odds ratio < 1). The results were sensitive to the definition of resistance and the studies included in the analysis. In the base case, patient-level benefit of ceftazidime-avibactam was between 0.08 and 0.16 quality-adjusted life-years, depending on the site of infection and the usage scenario. There was a high degree of uncertainty surrounding the benefits of ceftazidime-avibactam across all subgroups, and the results were sensitive to assumptions in the meta-analysis used to estimate susceptibility. There was substantial uncertainty in the number of infections that are suitable for treatment with ceftazidime-avibactam, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time, and rates of emergence of resistance. The population-level benefit varied substantially across the scenarios, from 531 to 2342 quality-adjusted life-years over 20 years. Conclusion This work has provided quantitative estimates of the value of ceftazidime-avibactam within its areas of expected usage within the NHS. Limitations Given existing evidence, the estimates of the value of ceftazidime-avibactam are highly uncertain. Future work Future evaluations of antimicrobials would benefit from improvements to NHS data linkages, research to support appropriate synthesis of susceptibility studies, and application of routine data and decision modelling to assess enablement value. Study registration No registration of this study was undertaken. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Policy Research Programme (NIHR award ref: NIHR135592), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 73. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Sue Harnan
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ben Kearns
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alison Scope
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Dina Jankovic
- Centre for Health Economics, University of York, York, UK
| | - Jean Hamilton
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Tushar Srivastava
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Harry Hill
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Chu Chang Ku
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Shijie Ren
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| | - Laura Bojke
- Centre for Health Economics, University of York, York, UK
| | - Mark Sculpher
- Centre for Health Economics, University of York, York, UK
| | - Beth Woods
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
10
|
Keck JM, Viteri A, Schultz J, Fong R, Whitman C, Poush M, Martin M. New Agents Are Coming, and So Is the Resistance. Antibiotics (Basel) 2024; 13:648. [PMID: 39061330 PMCID: PMC11273847 DOI: 10.3390/antibiotics13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance is a global threat that requires urgent attention to slow the spread of resistant pathogens. The United States Centers for Disease Control and Prevention (CDC) has emphasized clinician-driven antimicrobial stewardship approaches including the reporting and proper documentation of antimicrobial usage and resistance. Additional efforts have targeted the development of new antimicrobial agents, but narrow profit margins have hindered manufacturers from investing in novel antimicrobials for clinical use and therefore the production of new antibiotics has decreased. In order to combat this, both antimicrobial drug discovery processes and healthcare reimbursement programs must be improved. Without action, this poses a high probability to culminate in a deadly post-antibiotic era. This review will highlight some of the global health challenges faced both today and in the future. Furthermore, the new Infectious Diseases Society of America (IDSA) guidelines for resistant Gram-negative pathogens will be discussed. This includes new antimicrobial agents which have gained or are likely to gain FDA approval. Emphasis will be placed on which human pathogens each of these agents cover, as well as how these new agents could be utilized in clinical practice.
Collapse
Affiliation(s)
- J. Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alina Viteri
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Rebecca Fong
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Charles Whitman
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Madeline Poush
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marlee Martin
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Woods B, Schmitt L, Jankovic D, Kearns B, Scope A, Ren S, Srivastava T, Ku CC, Hamilton J, Rothery C, Bojke L, Sculpher M, Harnan S. Cefiderocol for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model. Health Technol Assess 2024; 28:1-238. [PMID: 38938145 PMCID: PMC11229178 DOI: 10.3310/ygwr4511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of cefiderocol in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform the National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods The health benefit of cefiderocol was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. The clinical effectiveness of cefiderocol relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. Patient-level costs and health outcomes of cefiderocol under various usage scenarios compared with alternative management strategies were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population values using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for cefiderocol. Results Among Enterobacterales isolates with the metallo-beta-lactamase resistance mechanism, the base-case network meta-analysis found that cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.32, 95% credible intervals 0.04 to 2.47), but the result was not statistically significant. The other treatments were also associated with lower susceptibility than colistin, but the results were not statistically significant. In the metallo-beta-lactamase Pseudomonas aeruginosa base-case network meta-analysis, cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.44, 95% credible intervals 0.03 to 3.94), but the result was not statistically significant. The other treatments were associated with no susceptibility. In the base case, patient-level benefit of cefiderocol was between 0.02 and 0.15 quality-adjusted life-years, depending on the site of infection, the pathogen and the usage scenario. There was a high degree of uncertainty surrounding the benefits of cefiderocol across all subgroups. There was substantial uncertainty in the number of infections that are suitable for treatment with cefiderocol, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time and rates of emergence of resistance. The population-level benefits varied substantially across the base-case scenarios, from 896 to 3559 quality-adjusted life-years over 20 years. Conclusion This work has provided quantitative estimates of the value of cefiderocol within its areas of expected usage within the NHS. Limitations Given existing evidence, the estimates of the value of cefiderocol are highly uncertain. Future work Future evaluations of antimicrobials would benefit from improvements to NHS data linkages; research to support appropriate synthesis of susceptibility studies; and application of routine data and decision modelling to assess enablement value. Study registration No registration of this study was undertaken. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment Policy Research Programme (NIHR award ref: NIHR135591), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 28. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Beth Woods
- Centre for Health Economics, University of York, York, UK
| | | | - Dina Jankovic
- Centre for Health Economics, University of York, York, UK
| | - Benjamin Kearns
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alison Scope
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Shijie Ren
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Tushar Srivastava
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Chu Chang Ku
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Jean Hamilton
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| | - Laura Bojke
- Centre for Health Economics, University of York, York, UK
| | - Mark Sculpher
- Centre for Health Economics, University of York, York, UK
| | - Sue Harnan
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Element SJ, Moran RA, Beattie E, Hall RJ, van Schaik W, Buckner MM. Growth in a biofilm promotes conjugation of a bla NDM-1-bearing plasmid between Klebsiella pneumoniae strains. mSphere 2023; 8:e0017023. [PMID: 37417759 PMCID: PMC10449501 DOI: 10.1128/msphere.00170-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing problem, especially in Gram-negative Enterobacteriaceae such as Klebsiella pneumoniae. Horizontal transfer of conjugative plasmids contributes to AMR gene dissemination. Bacteria such as K. pneumoniae commonly exist in biofilms, yet most studies focus on planktonic cultures. Here we studied the transfer of a multi-drug resistance plasmid in planktonic and biofilm populations of K. pneumoniae. We determined plasmid transfer from a clinical isolate, CPE16, which carried four plasmids, including the 119-kbp blaNDM-1-bearing F-type plasmid pCPE16_3, in planktonic and biofilm conditions. We found that transfer frequency of pCPE16_3 in a biofilm was orders-of-magnitude higher than between planktonic cells. In 5/7 sequenced transconjugants (TCs) multiple plasmids had transferred. Plasmid acquisition had no detectable growth impact on TCs. Gene expression of the recipient and a transconjugant was investigated by RNA-sequencing in three lifestyles: planktonic exponential growth, planktonic stationary phase, and biofilm. We found that lifestyle had a substantial impact on chromosomal gene expression, and plasmid carriage affected chromosomal gene expression most in stationary planktonic and biofilm lifestyles. Furthermore, expression of plasmid genes was lifestyle-dependent, with distinct signatures across the three conditions. Our study shows that growth in biofilm greatly increased the risk of conjugative transfer of a carbapenem resistance plasmid in K. pneumoniae without fitness costs and minimal transcriptional rearrangements, thus highlighting the importance of biofilms in the spread of AMR in this opportunistic pathogen. IMPORTANCE Carbapenem-resistant K. pneumoniae is particularly problematic in hospital settings. Carbapenem resistance genes can transfer between bacteria via plasmid conjugation. Alongside drug resistance, K. pneumoniae can form biofilms on hospital surfaces, at infection sites and on implanted devices. Biofilms are naturally protected and can be inherently more tolerant to antimicrobials than their free-floating counterparts. There have been indications that plasmid transfer may be more likely in biofilm populations, thus creating a conjugation "hotspot". However, there is no clear consensus on the effect of the biofilm lifestyle on plasmid transfer. Therefore, we aimed to explore the transfer of a plasmid in planktonic and biofilm conditions, and the impact of plasmid acquisition on a new bacterial host. Our data show transfer of a resistance plasmid is increased in a biofilm, which may be a significant contributing factor to the rapid dissemination of resistance plasmids in K. pneumoniae.
Collapse
Affiliation(s)
- Sarah J. Element
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Emilie Beattie
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Michelle M.C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
13
|
Corona A, De Santis V, Agarossi A, Prete A, Cattaneo D, Tomasini G, Bonetti G, Patroni A, Latronico N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics (Basel) 2023; 12:1262. [PMID: 37627683 PMCID: PMC10451333 DOI: 10.3390/antibiotics12081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Not enough data exist to inform the optimal duration and type of antimicrobial therapy against GN infections in critically ill patients. METHODS Narrative review based on a literature search through PubMed and Cochrane using the following keywords: "multi-drug resistant (MDR)", "extensively drug resistant (XDR)", "pan-drug-resistant (PDR)", "difficult-to-treat (DTR) Gram-negative infection," "antibiotic duration therapy", "antibiotic combination therapy" "antibiotic monotherapy" "Gram-negative bacteremia", "Gram-negative pneumonia", and "Gram-negative intra-abdominal infection". RESULTS Current literature data suggest adopting longer (≥10-14 days) courses of synergistic combination therapy due to the high global prevalence of ESBL-producing (45-50%), MDR (35%), XDR (15-20%), PDR (5.9-6.2%), and carbapenemases (CP)/metallo-β-lactamases (MBL)-producing (12.5-20%) Gram-negative (GN) microorganisms (i.e., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumanii). On the other hand, shorter courses (≤5-7 days) of monotherapy should be limited to treating infections caused by GN with higher (≥3 antibiotic classes) antibiotic susceptibility. A general approach should be based on (i) third or further generation cephalosporins ± quinolones/aminoglycosides in the case of MDR-GN; (ii) carbapenems ± fosfomycin/aminoglycosides for extended-spectrum β-lactamases (ESBLs); and (iii) the association of old drugs with new expanded-spectrum β-lactamase inhibitors for XDR, PDR, and CP microorganisms. Therapeutic drug monitoring (TDM) in combination with minimum inhibitory concentration (MIC), bactericidal vs. bacteriostatic antibiotics, and the presence of resistance risk predictors (linked to patient, antibiotic, and microorganism) should represent variables affecting the antimicrobial strategies for treating GN infections. CONCLUSIONS Despite the strategies of therapy described in the results, clinicians must remember that all treatment decisions are dynamic, requiring frequent reassessments depending on both the clinical and microbiological responses of the patient.
Collapse
Affiliation(s)
- Alberto Corona
- Accident, Emergency and ICU Department and Surgical Theatre, ASST Valcamonica, University of Brescia, 25043 Breno, Italy
| | | | - Andrea Agarossi
- Accident, Emergency and ICU Department, ASST Santi Paolo Carlo, 20142 Milan, Italy
| | - Anna Prete
- AUSL Romagna, Umberto I Hospital, 48022 Lugo, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Via GB Grassi 74, 20157 Milan, Italy
| | - Giacomina Tomasini
- Urgency and Emergency Surgery and Medicine Division ASST Valcamonica, 25123 Brescia, Italy
| | - Graziella Bonetti
- Clinical Pathology and Microbiology Laboratory, ASST Valcamonica, 25123 Brescia, Italy
| | - Andrea Patroni
- Medical Directorate, Infection Control Unit, ASST Valcamonica, 25123 Brescia, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
14
|
Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol 2023; 31:735-748. [PMID: 36858862 DOI: 10.1016/j.tim.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Resistance to β-lactam antibiotics is rapidly growing, substantially due to the spread of serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which efficiently catalyse β-lactam hydrolysis. Combinations of a β-lactam antibiotic with an SBL inhibitor have been clinically successful; however, no MBL inhibitors have been developed for clinical use. MBLs are a worrying resistance vector because they catalyse hydrolysis of all β-lactam antibiotic classes, except the monobactams, and they are being disseminated across many bacterial species worldwide. Here we review the classification, structures, substrate profiles, and inhibition mechanisms of MBLs, highlighting current clinical problems due to MBL-mediated resistance and progress in understanding and combating MBL-mediated resistance.
Collapse
Affiliation(s)
- Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Russo A, Fusco P, Morrone HL, Trecarichi EM, Torti C. New advances in management and treatment of multidrug-resistant Klebsiella pneumoniae. Expert Rev Anti Infect Ther 2023; 21:41-55. [PMID: 36416713 DOI: 10.1080/14787210.2023.2151435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The management of multidrug-resistant (MDR) Klebsiella pneumoniae (KP) represents a major challenge in the field of infectious diseases. It is associated with a high rate of nosocomial infections with a mortality rate that reaches approximately 50%, even when using an effective antimicrobial therapy. Therefore, combined actions addressing infection control and antibiotic stewardship are required to delay the emergence of resistance. Since new antimicrobial agents targeting MDR-GNB bacteria have been produced during the last years and are now available for physicians to treat MDR, it is fundamental to choose appropriate antimicrobial therapy for K. pneumoniae infection. AREAS COVERED The PubMed database was searched to review the most significant recent literature on the topic, including data from articles coming from endemic areas and from the current European and American Guidelines. EXPERT OPINION We explore the most effective strategies for prevention of MDR-KP spread and the currently available treatment options, focusing on comparing old strategies and new compounds. We reviewed data concerning newly developed drugs that could play an important role in the future; we also propose a treatment algorithm that could be useful for physicians in daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Paolo Fusco
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Helen Linda Morrone
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
16
|
Reynolds D, Burnham JP, Vazquez Guillamet C, McCabe M, Yuenger V, Betthauser K, Micek ST, Kollef MH. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic. Eur Respir Rev 2022; 31:220068. [PMID: 36261159 PMCID: PMC9724833 DOI: 10.1183/16000617.0068-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance is recognised as a global threat to human health by national healthcare agencies, governments and medical societies, as well as the World Health Organization. Increasing resistance to available antimicrobial agents is of concern for bacterial, fungal, viral and parasitic pathogens. One of the greatest concerns is the continuing escalation of antimicrobial resistance among Gram-negative bacteria resulting in the endemic presence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) pathogens. This concern is heightened by the identification of such MDR/XDR Gram-negative bacteria in water and food sources, as colonisers of the intestine and other locations in both hospitalised patients and individuals in the community, and as agents of all types of infections. Pneumonia and other types of respiratory infections are among the most common infections caused by MDR/XDR Gram-negative bacteria and are associated with high rates of mortality. Future concerns are already heightened due to emergence of resistance to all existing antimicrobial agents developed in the past decade to treat MDR/XDR Gram-negative bacteria and a scarcity of novel agents in the developmental pipeline. This clinical scenario increases the likelihood of a future pandemic caused by MDR/XDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Daniel Reynolds
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason P Burnham
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Mikaela McCabe
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Valerie Yuenger
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Kevin Betthauser
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Scott T Micek
- Dept of Pharmacy Practice, University of Health Sciences and Pharmacy, St. Louis, MO, USA
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of ertapenem/zidebactam (WCK 6777) against problem Enterobacterales. J Antimicrob Chemother 2022; 77:2772-2778. [PMID: 35972407 PMCID: PMC9384802 DOI: 10.1093/jac/dkac280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background Secondary healthcare will remain pressured for some years, both because SARS-CoV-2 will circulate as a nosocomial pathogen, and owing to backlogs of patients awaiting delayed elective procedures. These stresses will drive the use of Outpatient Parenteral Antibiotic Therapy (OPAT), which will need to cover increasingly resistant Gram-negative opportunists. We evaluated the activity of ertapenem/zidebactam, proposed for 2 + 2 g q24h administration. Materials and methods MICs were determined, by BSAC agar dilution, for 1632 Enterobacterales submitted to the UK national reference laboratory for investigation of antimicrobial resistance. Results Over 90% of Escherichia coli with AmpC, ESBLs, KPC, metallo- or OXA-48 carbapenemases were inhibited by ertapenem/zidebactam 1:1 at ertapenem’s current 0.5 mg/L breakpoint. For other major Enterobacterales, the proportions inhibited by ertapenem/zidebactam 1:1 at 0.5 mg/L were mostly 65% to 90% but were lower for Klebsiella pneumoniae/oxytoca with metallo- or OXA-48 β-lactamases. However, animal studies support an 8 mg/L breakpoint for ertapenem/zidebactam, based on a shortened T>MIC being needed compared with ertapenem alone. On this basis ertapenem/zidebactam would count as active against 90%–100% of isolates in all groups except K. pneumoniae/oxytoca with MBLs (±OXA-48), where MICs and percent susceptibility vary substantially even with inocula within the BSAC acceptable range. Conclusions Ertapenem/zidebactam has a proposed once-daily regimen well suited to OPAT. Even on highly conservative breakpoint projections, it has potential against MDR E. coli, including metallo-carbapenemase producers. If trial data sustain the 8 mg/L breakpoint indicated by animal experiments, its potential will extend widely across infections due to ESBL-, AmpC- and carbapenemase-producing Enterobacterales.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Reference Services Division, United Kingdom Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
18
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
19
|
Lasarte-Monterrubio C, Fraile-Ribot PA, Vázquez-Ucha JC, Cabot G, Guijarro-Sánchez P, Alonso-García I, Rumbo-Feal S, Galán-Sánchez F, Beceiro A, Arca-Suárez J, Oliver A, Bou G. Activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2022; 77:2809-2815. [PMID: 35904000 DOI: 10.1093/jac/dkac241] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa β-lactamase mutants. METHODS The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins. To evaluate how the different β-lactamases in the clinical isolates affected the resistance to these agents, a copy of each blaPDC, blaOXA-2 and blaOXA-10 ancestral and mutant allele from the clinical isolates was cloned in pUCp24 and expressed in dual blaPDC-oprD (for blaPDC-like genes) or single oprD (for blaOXA-2-like and blaOXA-10-like genes) PAO1 knockout mutants. MICs were determined using reference methodologies. RESULTS For all isolates, MICs were higher than 4 and/or 8 mg/L for ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Cefiderocol was the most active agent, showing activity against all isolates, except one clinical isolate that carried an R504C substitution in PBP3 (MIC = 16 mg/L). Imipenem/relebactam was highly active against all isolates, except two clinical isolates that carried the VIM-20 carbapenemase. Cefepime/zidebactam and cefepime/taniborbactam displayed activity against most of the isolates, but resistance was observed in some strains with PBP3 amino acid substitutions or that overexpressed mexAB-oprM or mexXY efflux pumps. Evaluation of transformants revealed that OXA-2 and OXA-10 extended-spectrum variants cause a 2-fold increase in the MIC of cefiderocol relative to parental enzymes. CONCLUSIONS Cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam show promising and complementary in vitro activity against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa. These agents may represent potential therapeutic options for ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Cristina Lasarte-Monterrubio
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Pablo Arturo Fraile-Ribot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Ciber de Enfermedades Infecciosas CIBERINFEC, Palma de Mallorca, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Ciber de Enfermedades Infecciosas CIBERINFEC, Palma de Mallorca, Spain
| | - Paula Guijarro-Sánchez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Isaac Alonso-García
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Ciber de Enfermedades Infecciosas CIBERINFEC, Palma de Mallorca, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, Ciber de Enfermedades Infecciosas CIBERINFEC, A Coruña, Spain
| |
Collapse
|
20
|
Gill CM, Oliver A, Fraile-Ribot PA, Nicolau DP. In vivo translational assessment of the GES genotype on the killing profile of ceftazidime, ceftazidime/avibactam and meropenem against Pseudomonas aeruginosa. J Antimicrob Chemother 2022; 77:2803-2808. [PMID: 35848936 PMCID: PMC9525071 DOI: 10.1093/jac/dkac232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the in vivo killing profile of human-simulated exposures of ceftazidime, ceftazidime/avibactam and meropenem against GES-harbouring Pseudomonas aeruginosa in the murine thigh infection model. Methods Five P. aeruginosa isolates [three isogenic (GES-1, GES-5 and GES-15) and two clinical (GES-5 and GES-15)] were evaluated. MICs were determined using broth microdilution. Human-simulated regimens (HSRs) of ceftazidime 2 g IV q8h as a 2 h infusion, ceftazidime/avibactam 2.5 g IV q8h as a 2 h infusion and meropenem 2 g IV q8h as a 3 h infusion were administered. Change in bacterial burden relative to baseline was assessed. Results Modal MICs ranged from 8 to >64 mg/L for ceftazidime, from 1 to 16 mg/L for ceftazidime/avibactam and from 1 to >64 mg/L for meropenem. In vivo, for the isogenic strains, avibactam augmented ceftazidime activity against the GES-1- and GES-15-harbouring isolates. Both ceftazidime and ceftazidime/avibactam resulted in significant kill against the GES-5 isogenic isolate. The meropenem HSR produced >1 log10 kill against each isogenic isolate (MICs of 1–4 mg/L). Against the GES-5 clinical isolate, ceftazidime and ceftazidime/avibactam resulted in >1 log10 kill compared with bacterial growth with the meropenem HSR. In the clinical isolate harbouring GES-15, the elevated MICs of ceftazidime and ceftazidime/avibactam reduced the effectiveness of both compounds, while the observed reduction in meropenem MIC translated into in vivo efficacy of the HSR regimen, predictive of clinical efficacy. Conclusions In GES-harbouring P. aeruginosa, quantitative reductions in bacterial density observed with the translational murine model suggest that the phenotypic profile of ceftazidime, ceftazidime/avibactam and meropenem is predictive of clinical efficacy when using the evaluated dosing regimens.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Pablo Arturo Fraile-Ribot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
21
|
Cedano J, Baez M, Pasteran F, Montaña SD, Ra G, Fua V, Corso A, Tolmasky ME, Bonomo RA, Ramírez MS. Zidebactam restores sulbactam susceptibility against carbapenem-resistant Acinetobacter baumannii isolates. Front Cell Infect Microbiol 2022; 12:918868. [PMID: 35899052 PMCID: PMC9309244 DOI: 10.3389/fcimb.2022.918868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Carbapenems are commonly used to treat infections caused by multidrug-resistant (MDR) bacteria. Unfortunately, carbapenem resistance is increasingly reported in many gram-negative bacteria, especially Acinetobacter baumannii. Diazabicyclooctane (DBO) β-lactamase inhibitors, such as avibactam (AVI), when combined with sulbactam successfully restore sulbactam susceptibility against certain carbapenem-resistant A. baumannii (CRAB) isolates. In the present study, we tested zidebactam, a novel DBO with an additional mechanism of action, in combination with sulbactam against CRAB isolates, including strains that exhibited resistance against sulbactam/avibactam combination. A panel of 43 geographically and genetically distinct CRAB isolates recovered from different hospitals and containing different mechanisms of resistance were included in the present study. We also tested three reference strains (AB0057, AB5075, and AYE). Minimum inhibitory concentrations (MICs) for sulbactam (range 0.12-512 mg/l) and sulbactam plus 4 mg/l zidebactam were performed using microdilution according to CLSI Standards. A decrease ≥2 dilutions in sulbactam MICs was observed in 84% of the isolates when tested in combination with zidebactam. The sulbactam/zidebactam combination was able to restore sulbactam susceptibility in 91% of the isolates, including isolates that were resistant to sulbactam/avibactam combination. These data encouraged us to further explore sulbactam/zidebactam in other experimental models especially against CRAB isolates resistant to other DBOs.
Collapse
Affiliation(s)
- Jose Cedano
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Michelle Baez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Fernando Pasteran
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Sabrina Daiana Montaña
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Grace Ra
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Venjaminne Fua
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Alejandra Corso
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, Administracion Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States,Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States,*Correspondence: María Soledad Ramírez,
| |
Collapse
|
22
|
Cruz-López F, Martínez-Meléndez A, Morfin-Otero R, Rodriguez-Noriega E, Maldonado-Garza HJ, Garza-González E. Efficacy and In Vitro Activity of Novel Antibiotics for Infections With Carbapenem-Resistant Gram-Negative Pathogens. Front Cell Infect Microbiol 2022; 12:884365. [PMID: 35669117 PMCID: PMC9163340 DOI: 10.3389/fcimb.2022.884365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Infections by Gram-negative multi-drug resistant (MDR) bacterial species are difficult to treat using available antibiotics. Overuse of carbapenems has contributed to widespread resistance to these antibiotics; as a result, carbapenem-resistant Enterobacterales (CRE), A. baumannii (CRAB), and P. aeruginosa (CRPA) have become common causes of healthcare-associated infections. Carbapenems, tigecycline, and colistin are the last resource antibiotics currently used; however, multiple reports of resistance to these antimicrobial agents have been documented worldwide. Recently, new antibiotics have been evaluated against Gram-negatives, including plazomicin (a new aminoglycoside) to treat CRE infection, eravacycline (a novel tetracycline) with in vitro activity against CRAB, and cefiderocol (a synthetic conjugate) for the treatment of nosocomial pneumonia by carbapenem-non-susceptible Gram-negative isolates. Furthermore, combinations of known β-lactams with recently developed β-lactam inhibitors, such as ceftazidime-avibactam, ceftolozane-tazobactam, ceftazidime-tazobactam, and meropenem-vaborbactam, has been suggested for the treatment of infections by extended-spectrum β-lactamases, carbapenemases, and AmpC producer bacteria. Nonetheless, they are not active against all carbapenemases, and there are reports of resistance to these combinations in clinical isolates.This review summarizes and discusses the in vitro and clinical evidence of the recently approved antibiotics, β-lactam inhibitors, and those in advanced phases of development for treating MDR infections caused by Gram-negative multi-drug resistant (MDR) bacterial species.
Collapse
Affiliation(s)
- Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Adrian Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodriguez-Noriega
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Héctor J Maldonado-Garza
- Servicio de Gastroenterología, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elvira Garza-González
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
23
|
Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. New Drugs for the Treatment of Pseudomonas aeruginosa Infections with Limited Treatment Options: A Narrative Review. Antibiotics (Basel) 2022; 11:antibiotics11050579. [PMID: 35625223 PMCID: PMC9137685 DOI: 10.3390/antibiotics11050579] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/13/2022] Open
Abstract
P. aeruginosa is still one of the most threatening pathogens responsible for serious hospital-acquired infections. It is intrinsically resistant to many antimicrobial agents and additional acquired resistance further complicates the management of such infections. High rates of combined antimicrobial resistance persist in many countries, especially in the eastern and south-eastern parts of Europe. The aim of this narrative review is to provide a comprehensive assessment of the epidemiology, latest data, and clinical evidence on the current and new available drugs active against P. aeruginosa isolates with limited treatment options. The latest evidence and recommendations supporting the use of ceftolozane-tazobactam and ceftazidime-avibactam, characterized by targeted clinical activity against a significant proportion of P. aeruginosa strains with limited treatment options, are described based on a review of the latest microbiological and clinical studies. Cefiderocol, with excellent in vitro activity against P. aeruginosa isolates, good stability to all β-lactamases and against porin and efflux pumps mutations, is also examined. New carbapenem combinations are explored, reviewing the latest experimental and initial clinical evidence. One section is devoted to a review of new anti-pseudomonal antibiotics in the pipeline, such as cefepime-taniborbactam and cefepime-zidebactam. Finally, other “old” antimicrobials, mainly fosfomycin, that can be used as combination strategies, are described.
Collapse
Affiliation(s)
- Angela Raffaella Losito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.L.); (F.R.); (P.D.G.)
| | - Francesca Raffaelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.L.); (F.R.); (P.D.G.)
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.L.); (F.R.); (P.D.G.)
| | - Mario Tumbarello
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy
- Correspondence: or ; Tel.: +39-0577-586572
| |
Collapse
|
24
|
Pan X, Zhao X, Song Y, Ren H, Tian Z, Liang Q, Jin Y, Bai F, Cheng Z, Feng J, Wu W. Molecular Characterization of WCK 5222 (Cefepime/Zidebactam)-Resistant Mutants Developed from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate. Microbiol Spectr 2022; 10:e0267821. [PMID: 35196805 PMCID: PMC8865557 DOI: 10.1128/spectrum.02678-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
WCK 5222 (cefepime/zidebactam) is a β-lactam/β-lactamase inhibitor combination that is effective against a broad range of highly drug-resistant bacterial pathogens, including those producing metallo-β-lactamase. In this study, we isolated a multidrug-resistant Pseudomonas aeruginosa clinical strain that is resistant to a variety of β-lactam antibiotics and the ceftazidime-avibactam combination. A metallo-β-lactamase gene blaDIM-2 was identified on a self-transmissible megaplasmid in the strain, which confers the resistance to β-lactam antibiotics, leaving WCK 5222 potentially one of the last treatment resorts. In vitro passaging assay combined with whole-genome sequencing revealed mutations in the pbpA gene (encoding the zidebactam target protein PBP2) in the evolved resistant mutants. Among the mutations, a V516M mutation increased the bacterial virulence in a murine acute pneumonia model. Reconstitution of the mutations in the reference strain PAO1 verified their roles in the resistance to zidebactam and revealed their influences on cell morphology in the absence and presence of zidebactam. Microscale thermophoresis (MST) assays demonstrated that the mutations reduced the affinity between PBP2 and zidebactam to various extents. Overall, our results revealed that mutations in the pbpA gene might be a major cause of evolved resistance to WCK 5222 in clinical settings. IMPORTANCE Antibiotic resistance imposes a severe threat on human health. WCK 5222 is a β-lactam/β-lactamase inhibitor combination that is composed of cefepime and zidebactam. It is one of the few antibiotics in clinical trials that are effective against multidrug-resistant Pseudomonas aeruginosa, including those producing metallo-β-lactamases. Understanding the mechanisms and development of bacterial resistance to WCK 5222 may provide clues for the development of strategies to suppress resistant evolvement. In this study, we performed an in vitro passaging assay by using a multidrug-resistant P. aeruginosa clinical isolate. Our results revealed that mutations in the zidebactam target protein PBP2 play a major role in the bacterial resistance to WCK 5222. We further demonstrated that the mutations reduced the affinities between PBP2 and zidebactam and resulted in functional resistance of PBP2 to zidebactam.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenyang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qi’an Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
25
|
Cusack R, Garduno A, Elkholy K, Martín-Loeches I. Novel investigational treatments for ventilator-associated pneumonia and critically ill patients in the intensive care unit. Expert Opin Investig Drugs 2022; 31:173-192. [PMID: 35040388 DOI: 10.1080/13543784.2022.2030312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) is common; its prevalence has been highlighted by the Covid-19 pandemic. Even young patients can suffer severe nosocomial infection and prolonged mechanical ventilation. Multidrug-resistant bacteria can spread alarmingly fast around the globe and new antimicrobials are struggling to keep pace; hence physicians must stay abreast of new developments in the treatment of nosocomial pneumonia and VAP. AREAS COVERED This narrative review examines novel antimicrobial investigational drugs and their implementation in the ICU setting for VAP. The paper highlights novel approaches such as monoclonal antibody treatments for P. aeruginosa and S. aureus, and phage antibiotic synthesis. The paper also examines mechanisms of resistance in gram-negative bacteria, virulence factors and inhaled antibiotics and questions what may be on the horizon in terms of emerging treatment strategies. EXPERT OPINION The post-antibiotic era is rapidly approaching and the need for personalised medicine, point-of-care microbial sensitivity testing and development of biomarkers for severe infections is clear. Results from emerging and new antibiotics are encouraging, but infection control measures and de-escalation protocols must be employed to prolong their usefulness in critical illness.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Clinical Medicine, Trinity College Dublin.,Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland)
| | - Alexis Garduno
- Department of Clinical Medicine, Trinity College Dublin.,Intensive Care Translational Research, Trinity College Dublin
| | - Khalid Elkholy
- Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland)
| | - Ignacio Martín-Loeches
- Department of Clinical Medicine, Trinity College Dublin.,Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland).,Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, (Ireland)
| |
Collapse
|
26
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1916-1922. [DOI: 10.1093/jac/dkac108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
|
27
|
Morroni G, Bressan R, Fioriti S, D’Achille G, Mingoia M, Cirioni O, Di Bella S, Piazza A, Comandatore F, Mauri C, Migliavacca R, Luzzaro F, Principe L, Lagatolla C. Antimicrobial Activity of Aztreonam in Combination with Old and New β-Lactamase Inhibitors against MBL and ESBL Co-Producing Gram-Negative Clinical Isolates: Possible Options for the Treatment of Complicated Infections. Antibiotics (Basel) 2021; 10:1341. [PMID: 34827279 PMCID: PMC8615000 DOI: 10.3390/antibiotics10111341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are among the most challenging bacterial enzymes to overcome. Aztreonam (ATM) is the only β-lactam not hydrolyzed by MBLs but is often inactivated by co-produced extended-spectrum β-lactamases (ESBL). We assessed the activity of the combination of ATM with old and new β-lactamases inhibitors (BLIs) against MBL and ESBL co-producing Gram-negative clinical isolates. Six Enterobacterales and three non-fermenting bacilli co-producing MBL and ESBL determinants were selected as difficult-to-treat pathogens. ESBLs and MBLs genes were characterized by PCR and sequencing. The activity of ATM in combination with seven different BLIs (clavulanate, sulbactam, tazobactam, vaborbactam, avibactam, relebactam, zidebactam) was assessed by microdilution assay and time-kill curve. ATM plus avibactam was the most effective combination, able to restore ATM susceptibility in four out of nine tested isolates, reaching in some cases a 128-fold reduction of the MIC of ATM. In addition, relebactam and zidebactam showed to be effective, but with lesser reduction of the MIC of ATM. E. meningoseptica and C. indologenes were not inhibited by any ATM-BLI combination. ATM-BLI combinations demonstrated to be promising against MBL and ESBL co-producers, hence providing multiple options for treatment of related infections. However, no effective combination was found for some non-fermentative bacilli, suggesting the presence of additional resistance mechanisms that complicate the choice of an active therapy.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Raffaela Bressan
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (C.L.)
| | - Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Gloria D’Achille
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy; (G.M.); (S.F.); (G.D.); (M.M.); (O.C.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy;
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (R.M.)
| | - Francesco Comandatore
- Department of Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Carola Mauri
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (R.M.)
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, 23900 Lecco, Italy; (C.M.); (F.L.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, S. Giovanni di Dio Hospital, 88900 Crotone, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (C.L.)
| |
Collapse
|