1
|
Mariani M, Scaglione M, Russo C, Rainelli A, Mesini A, Saffioti C, Ricci E, Cafaro A, Cangemi G, Bavastro M, Bellini T, Brisca G, Moscatelli A, Castagnola E. A Real-Life Study of Prolonged Meropenem Infusion in Neonates and Children Admitted to Intensive Care Units: Are Three Hours Long Enough? J Clin Med 2025; 14:1488. [PMID: 40094943 PMCID: PMC11900062 DOI: 10.3390/jcm14051488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Meropenem is a broad-spectrum antibiotic essential for treating resistant Gram-negative infections in pediatric patients. Current dosing recommendations may not consistently achieve optimal pharmacokinetic (PK) targets, especially in critically ill children. Methods: We conducted a retrospective cohort study at IRCCS Istituto Giannina Gaslini, analyzing 97 plasma levels from 86 pediatric patients (<18 years) hospitalized between January 2020 and December 2023 in the neonatal and pediatric intensive care unit. Patients receiving meropenem for proven or suspected infections were included. Demographic, clinical, and PK parameters were assessed, with a focus on trough concentrations (Ctrough). Results: The median age was 25 months, with neonates representing 15.5% of cases. The median Ctrough was 2.8 mg/L and was significantly higher in neonates (8.9 mg/L) compared to older patients (2.2 mg/L, p < 0.001). Only 27.8% of patients achieved the target Ctrough of >8 mg/L, with estimated glomerular filtration rate (eGFR) being the primary factor influencing these levels. Patients with Ctrough > 8 mg/L had a significantly lower eGFR (61 mL/min/1.73 m2) compared to those below this threshold (131 mL/min/1.73 m2, p = 0.001). Conclusions: The current meropenem dosing regimen may not reliably meet PK targets in critically ill pediatric patients, particularly those with augmented renal clearance or when treating pathogens with increased meropenem MIC. Our findings suggest that increased dosages and prolonged infusion times may be necessary to optimize therapeutic efficacy against resistant Gram-negative bacteria in this vulnerable population. Further studies are needed to refine dosing strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Marcello Mariani
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Marco Scaglione
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Chiara Russo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Andrea Rainelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Alessio Mesini
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Carolina Saffioti
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Erica Ricci
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessia Cafaro
- Unit of Biochemistry, Pharmacology and Newborn Screening, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuliana Cangemi
- Unit of Biochemistry, Pharmacology and Newborn Screening, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Martina Bavastro
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Tommaso Bellini
- Pediatric Emergency Room and Emergency Medicine Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giacomo Brisca
- Neonatal and Pediatric Intensive Care Unit and Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit and Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elio Castagnola
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
2
|
Hosmann A, Moser MM, van Os W, Gramms L, al Jalali V, Sanz Codina M, Plöchl W, Lier C, Kees F, Dorn C, Rössler K, Reinprecht A, Zeitlinger M. Linezolid brain penetration in neurointensive care patients. J Antimicrob Chemother 2024; 79:669-677. [PMID: 38323369 PMCID: PMC10904716 DOI: 10.1093/jac/dkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Linezolid exposure in critically ill patients is associated with high inter-individual variability, potentially resulting in subtherapeutic antibiotic exposure. Linezolid exhibits good penetration into the CSF, but its penetration into cerebral interstitial fluid (ISF) is unknown. OBJECTIVES To determine linezolid penetration into CSF and cerebral ISF of neurointensive care patients. PATIENTS AND METHODS Five neurocritical care patients received 600 mg of linezolid IV twice daily for treatment of extracerebral infections. At steady state, blood and CSF samples were collected from arterial and ventricular catheters, and microdialysate was obtained from a cerebral intraparenchymal probe. RESULTS The median fAUC0-24 was 57.6 (24.9-365) mg·h/L in plasma, 64.1 (43.5-306.1) mg·h/L in CSF, and 27.0 (10.7-217.6) mg·h/L in cerebral ISF. The median penetration ratio (fAUCbrain_or_CSF/fAUCplasma) was 0.5 (0.25-0.81) for cerebral ISF and 0.92 (0.79-1) for CSF. Cerebral ISF concentrations correlated well with plasma (R = 0.93, P < 0.001) and CSF levels (R = 0.93, P < 0.001).The median fAUC0-24/MIC ratio was ≥100 in plasma and CSF for MICs of ≤0.5 mg/L, and in cerebral ISF for MICs of ≤0.25 mg/L. The median fT>MIC was ≥80% of the dosing interval in CSF for MICs of ≤0.5 mg/L, and in plasma and cerebral ISF for MICs of ≤0.25 mg/L. CONCLUSIONS Linezolid demonstrates a high degree of cerebral penetration, and brain concentrations correlate well with plasma and CSF levels. However, substantial variability in plasma levels, and thus cerebral concentrations, may result in subtherapeutic tissue concentrations in critically ill patients with standard dosing, necessitating therapeutic drug monitoring.
Collapse
Affiliation(s)
- Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Miriam M Moser
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Wisse van Os
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leon Gramms
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Valentin al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maria Sanz Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Plöchl
- Department of Anesthesia, General Intensive Care Medicine and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Constantin Lier
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Muller AE, van Vliet P, Koch BCP. Clinical Experience with Off-Label Intrathecal Administration of Selected Antibiotics in Adults: An Overview with Pharmacometric Considerations. Antibiotics (Basel) 2023; 12:1291. [PMID: 37627711 PMCID: PMC10451962 DOI: 10.3390/antibiotics12081291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Drain-associated intracerebral infections are life-threatening emergencies. Their treatment is challenging due to the limited penetration of antibiotics to the site of infection, resulting in potentially inadequate exposure. The emergence of multidrug-resistant pathogens might force the use of off-label intrathecal (IT) doses of antibiotics. We reviewed the literature on general aspects determining intrathecal dosing regimen, using pharmacometric knowledge. We summarised clinical experience with IT doses of antibiotics that are usually not used intrathecally, as well as the outcome of the cases and concentrations reached in the cerebrospinal fluid (CSF). Factors determining the IT regimen are the size of the ventricle system and the CSF drainage volume. With regard to pharmacometrics, pharmacokinetic/pharmacodynamic indices are likely similar to those in non-cerebral infections. The following number (N) of cases were described: benzylpenicillin (>50), ampicillin (1), ceftazidime (2), cephaloridine (56), ceftriaxone (1), cefotiam (1), meropenem (57), linezolid (1), tigecycline (15), rifampicin (3), levofloxacin (2), chloramphenicol (3) and daptomycin (8). Many side effects were reported for benzylpenicillin in the 1940-50s, but for the other antibiotics, when administered correctly, all side effects were minor and reversible. These data might help when choosing an IT dosing regimen in case there is no alternative option due to antimicrobial resistance.
Collapse
Affiliation(s)
- Anouk E. Muller
- Department of Medical Microbiology, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands;
| | - Peter van Vliet
- Department of Intensive Care Medicine, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands;
| | - Birgit C. P. Koch
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Helfer VE, Dias BB, Lock GDA, Tomaszewski CA, Barnet LS, Barreto F, Zavascki AP, de Araújo BV, Dalla Costa T. Population Pharmacokinetic Modeling of Free Plasma and Free Brain Concentrations of Ceftaroline in Healthy and Methicillin-Resistant Staphylococcus aureus-Infected Wistar Rats. Antimicrob Agents Chemother 2023; 67:e0038223. [PMID: 37367389 PMCID: PMC10353457 DOI: 10.1128/aac.00382-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
A population pharmacokinetic model was developed to describe alterations in ceftaroline brain disposition caused by meningitis in healthy and methicillin-resistant Staphylococcus aureus (MRSA)-infected rats. Blood and brain microdialysate samples were obtained after a single bolus dose of ceftaroline fosamil (20 mg/kg) administered intravenously. Plasma data were modeled as one compartment, and brain data were added to the model as a second compartment, with bidirectional drug transport between plasma and brain (Qin and Qout). The cardiac output (CO) of the animals showed a significant correlation with the relative recovery (RR) of plasma microdialysis probes, with animals with greater CO presenting lower RR values. The Qin was approximately 60% higher in infected animals, leading to greater brain exposure to ceftaroline. Ceftaroline brain penetration was influenced by MRSA infection, increasing from 17% (Qin/Qout) in healthy animals to 27% in infected animals. Simulations of a 2-h intravenous infusion of 50 mg/kg every 8 h achieved >90% probability of target attainment (PTA) in plasma and brain for the modal MRSA MIC (0.25 mg/L), suggesting that the drug should be considered an option for treating central nervous system infections.
Collapse
Affiliation(s)
- Victória Etges Helfer
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bernar Dias
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Graziela de Araújo Lock
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Fabiano Barreto
- Federal Laboratory of Animal and Plant Health and Inspection, Porto Alegre, Brazil
| | - Alexandre P. Zavascki
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bibiana Verlindo de Araújo
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Teresa Dalla Costa
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
König C, Martens-Lobenhoffer J, Czorlich P, Westphal M, Bode-Böger SM, Kluge S, Grensemann J. Cerebrospinal fluid penetration of fosfomycin in patients with ventriculitis: an observational study. Ann Clin Microbiol Antimicrob 2023; 22:29. [PMID: 37095559 PMCID: PMC10127017 DOI: 10.1186/s12941-023-00572-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/12/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND For treatment of ventriculitis, vancomycin and meropenem are frequently used as empiric treatment but cerebrospinal fluid (CSF) penetration is highly variable and may result in subtherapeutic concentrations. Fosfomycin has been suggested for combination antibiotic therapy, but data are sparse, so far. Therefore, we studied CSF penetration of fosfomycin in ventriculitis. METHODS Adult patients receiving a continuous infusion of fosfomycin (1 g/h) for the treatment of ventriculitis were included. Routine therapeutic drug monitoring (TDM) of fosfomycin in serum and CSF was performed with subsequent dose adaptions. Demographic and routine laboratory data including serum and CSF concentrations for fosfomycin were collected. Antibiotic CSF penetration ratio as well as basic pharmacokinetic parameters were investigated. RESULTS Seventeen patients with 43 CSF/serum pairs were included. Median fosfomycin serum concentration was 200 [159-289] mg/L and the CSF concentration 99 [66-144] mg/L. Considering only the first measurements in each patient before a possible dose adaption, serum and CSF concentrations were 209 [163-438] mg/L and 104 [65-269] mg/L. Median CSF penetration was 46 [36-59]% resulting in 98% of CSF levels above the susceptibility breakpoint of 32 mg/L. CONCLUSION Penetration of fosfomycin into the CSF is high, reliably leading to appropriate concentrations for the treatment of gram positive and negative bacteria. Moreover, continuous administration of fosfomycin appears to be a reasonable approach for antibiotic combination therapy in patients suffering from ventriculitis. Further studies are needed to evaluate the impact on outcome parameters.
Collapse
Affiliation(s)
- Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jens Martens-Lobenhoffer
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jörn Grensemann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Maranchick NF, Alshaer MH, Smith AGC, Avaliani T, Gujabidze M, Bakuradze T, Sabanadze S, Avaliani Z, Kipiani M, Peloquin CA, Kempker RR. Cerebrospinal fluid concentrations of fluoroquinolones and carbapenems in tuberculosis meningitis. Front Pharmacol 2022; 13:1048653. [PMID: 36578553 PMCID: PMC9791083 DOI: 10.3389/fphar.2022.1048653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Tuberculosis meningitis (TBM) is the most lethal form of TB. It is difficult to treat in part due to poor or uncertain drug penetration into the central nervous system (CNS). To help fill this knowledge gap, we evaluated the cerebrospinal fluid (CSF) concentrations of fluoroquinolones and carbapenems in patients being treated for TBM. Methods: Serial serum and CSF samples were collected from hospitalized patients being treated for TBM. CSF was collected from routine lumbar punctures between alternating timepoints of 2 and 6 h after drug administration to capture early and late CSF penetration. Rich serum sampling was collected after drug administration on day 28 for non-compartmental analysis. Results: Among 22 patients treated for TBM (8 with confirmed disease), there was high use of fluoroquinolones (levofloxacin, 21; moxifloxacin, 10; ofloxacin, 6) and carbapenems (imipenem, 11; meropenem, 6). Median CSF total concentrations of levofloxacin at 2 and 6 h were 1.34 mg/L and 3.36 mg/L with adjusted CSF/serum ratios of 0.41 and 0.63, respectively. For moxifloxacin, the median CSF total concentrations at 2 and 6 h were 0.78 mg/L and 1.02 mg/L with adjusted CSF/serum ratios of 0.44 and 0.62. Serum and CSF concentrations of moxifloxacin were not affected by rifampin use. Among the 76 CSF samples measured for carbapenem concentrations, 79% were undetectable or below the limit of detection. Conclusion: Fluoroquinolones demonstrated high CSF penetration indicating their potential usefulness for the treatment of TBM. Carbapenems had lower than expected CSF concentrations.
Collapse
Affiliation(s)
- Nicole F. Maranchick
- Infectious Disease Pharmacokinetics Lab, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Mohammad H. Alshaer
- Infectious Disease Pharmacokinetics Lab, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Alison G. C. Smith
- Department of Medicine, Division of Internal Medicine, Duke University, Durham, NC, United States
| | - Teona Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Mariam Gujabidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Tinatin Bakuradze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Shorena Sabanadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- David Tvildiani Medical University, Tbilisi, Georgia
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Russell R. Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Meropenem Population Pharmacokinetics and Simulations in Plasma, Cerebrospinal Fluid, and Brain Tissue. Antimicrob Agents Chemother 2022; 66:e0043822. [PMID: 35862739 PMCID: PMC9380529 DOI: 10.1128/aac.00438-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Meropenem is a broad spectrum carbapenem used for the treatment of cerebral infections. There is a need for data describing meropenem pharmacokinetics (PK) in the brain tissue to optimize therapy in these infections. Here, we present a meropenem PK model in the central nervous system and simulate dosing regimens. This was a population PK analysis of a previously published prospective study of patients admitted to the neurointesive care unit between 2016 and 2019 who received 2 g of meropenem intravenously every 8 h. Meropenem concentration was determined in blood, cerebrospinal fluid (CSF), and brain microdialysate. Meropenem was described by a six-compartment model: two compartments in the blood, two in the CSF, and two in the brain tissue. Creatinine clearance and brain glucose were included as covariates. The median elimination rate constant was 1.26 h-1, the central plasma volume was 5.38 L, and the transfer rate constants from the blood to the CSF and from the blood to the brain were 0.001 h-1 and 0.02 h-1, respectively. In the first 24 h, meropenem 2 g, administered every 8 h via intermittent and extended infusions achieved good target attainment in the CSF and brain, but continuous infusion (CI) was better at steady-state. Administering a 3 g loading dose (LD) followed by 8 g CI was beneficial for early target attainment. In conclusion, a meropenem PK model was developed using blood, CSF, and brain microdialysate samples. An 8 g CI may be needed for good target attainment in the CSF and brain. Giving a LD prior to the CI improved the probability of early target attainment.
Collapse
|
8
|
Upton CM, Steele CI, Maartens G, Diacon AH, Wiesner L, Dooley KE. Pharmacokinetics of bedaquiline in cerebrospinal fluid (CSF) in patients with pulmonary tuberculosis (TB). J Antimicrob Chemother 2022; 77:1720-1724. [PMID: 35257182 PMCID: PMC9633714 DOI: 10.1093/jac/dkac067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND With current treatment options most patients with CNS TB develop severe disability or die. Drug-resistant tuberculous meningitis is nearly uniformly fatal. Novel treatment strategies are needed. Bedaquiline, a potent anti-TB drug, has been reported to be absent from CSF in a single report. OBJECTIVES To explore the pharmacokinetics of bedaquiline and its M2 metabolite in the CSF of patients with pulmonary TB. PATIENTS AND METHODS Individuals with rifampicin-resistant pulmonary TB established on a 24 week course of treatment with bedaquiline underwent a lumbar puncture along with multiple blood sample collections over 24 h for CSF and plasma pharmacokinetic assessment, respectively. To capture the expected low bedaquiline and M2 concentrations (due to high protein binding in plasma) we optimized CSF collection and storage methods in vitro before concentrations were quantified via liquid chromatography with tandem MS. RESULTS Seven male participants were enrolled, two with HIV coinfection. Using LoBind® tubes lined with a 5% BSA solution, bedaquiline and M2 could be accurately measured in CSF. Bedaquiline and M2 were present in all patients at all timepoints at concentrations similar to the estimated unbound fractions in plasma. CONCLUSIONS Bedaquiline and M2 penetrate freely into the CSF of pulmonary TB patients with a presumably intact blood-brain barrier. Clinical studies are urgently needed to determine whether bedaquiline can contribute meaningfully to the treatment of CNS TB.
Collapse
Affiliation(s)
| | - Chanel I Steele
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
König C, Grensemann J, Czorlich P, Schlemm E, Kluge S, Wicha SG. A dosing nomograph for cerebrospinal fluid penetration of meropenem applied by continuous infusion in patients with nosocomial ventriculitis. Clin Microbiol Infect 2022; 28:1022.e9-1022.e16. [PMID: 35182756 DOI: 10.1016/j.cmi.2022.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In difficult to treat infections such as nosocomial ventriculitis, meropenem exposure in the infected compartment is often uncertain but crucial for antibacterial effects. The aim of this study was to investigate the cerebrospinal fluid (CSF) penetration of meropenem in patients with nosocomial ventriculitis and to derive a nomograph to predict effective meropenem doses as a function of clinical parameters. METHODS Retrospective patient data including meropenem serum and CSF levels, as well as CSF inflammation markers were analysed using NONMEM® to assess the general pharmacokinetics and CSF penetration. Monte Carlo simulations (MCS) were used to evaluate different meropenem dosing regimens. Probability of target attainment (PTA) in CSF was assessed and a nomograph to achieve a target concentration of 4 mg/L was developed. RESULTS A one-compartment model with meropenem clearance dependent on the estimated glomerular filtration rate (CKD-EPI eGFR, p< 5 e-10) best described meropenem serum pharmacokinetics of 51 critically ill patients. CSF penetration ratio was correlated with the amount of protein in CSF (p< 1 e-8), with higher CSF protein levels accounting for higher penetration ratios. Preserved renal function (CKD-EPI GFR> 50 ml/min/1.73 m2) as well as low CSF protein levels (<500 mg/L) resulted in 80 % PTA (100 %fT>2xMIC) for a meropenem dose of 6 g/24 h. CONCLUSIONS High interindividual variability in meropenem CSF concentration was observed in patients with nosocomial ventriculitis. A nomograph to predict the daily meropenem dose required for target attainment for a given eGFR and CSF protein count was developed.
Collapse
Affiliation(s)
- Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany; Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Germany.
| | - Jörn Grensemann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Eckhard Schlemm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University Hamburg, Germany
| |
Collapse
|
10
|
Karvouniaris M, Brotis A, Tsiakos K, Palli E, Koulenti D. Current Perspectives on the Diagnosis and Management of Healthcare-Associated Ventriculitis and Meningitis. Infect Drug Resist 2022; 15:697-721. [PMID: 35250284 PMCID: PMC8896765 DOI: 10.2147/idr.s326456] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/05/2022] [Indexed: 12/31/2022] Open
Abstract
Ventriculitis or post-neurosurgical meningitis or healthcare-associated ventriculitis and meningitis (VM) is a severe infection that complicates central nervous system operations or is related to the use of neurosurgical devices or drainage catheters. It can further deteriorate patients who have already presented significant neurologic injury and is associated with high morbidity, mortality, and poor functional outcome. VM can be difficult to distinguish from aseptic meningitis, inflammation that follows hemorrhagic strokes and neurosurgical operations. The associated microorganisms can be either skin flora or nosocomial pathogens, most commonly, Gram-negative bacteria. Classical microbiology can fail to isolate the culprit pathogen. Novel cerebrospinal fluid (CSF) biomarkers and molecular microbiology can fill the diagnostic gap and expedite pathogen identification and treatment. The pathogens may demonstrate significant resistant patterns and their antibiotic treatment can be difficult, as many important drug classes, including the beta-lactams and the glycopeptides, hardly penetrate to the CSF, and do not achieve therapeutic levels at the site of the infection. Treatment modifications, such as higher daily dose and prolonged or continuous administration, might increase antibiotic levels in the site of infection and facilitate pathogens clearance. However, in the case of therapeutic failure or infection due to difficult-to-treat bacteria, the direct antibiotic instillation into the CSF, in addition to the intravenous antibiotic delivery, may help in the resolution of infection. However, intraventricular antibiotic therapy may result in aseptic meningitis and seizures, concerning the administration of aminoglycosides, polymyxins, and vancomycin. Meanwhile, bacteria form biofilms on the catheter or the device that should routinely be removed. Novel neurosurgical treatment modalities comprise endoscopic evacuation of debris and irrigation of the ventricles. VM prevention includes perioperative antibiotics, antimicrobial impregnated catheters, and the implementation of standardized protocols, regarding catheter insertion and manipulation.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, Thessaloniki, Greece
- Correspondence: Marios Karvouniaris, ACHEPA University Hospital, S.Kiriakidi 1, Thessaloniki, 54636, Greece, Tel +302313303645, Fax +302313303096, Email
| | - Alexandros Brotis
- Neurosurgery Department, University Hospital of Larissa, Larissa, Greece
| | | | - Eleni Palli
- Intensive Care Unit, University Hospital of Larissa, Larissa, Greece
| | - Despoina Koulenti
- Second Critical Care Department, Attikon University Hospital, Athens, Greece
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|