1
|
Yin K, Zhang T, Huang J, Hao B. Nup358 and Nup153 Facilitate nuclear import of BmNPV nucleocapsids in Bombyx mori cells. J Invertebr Pathol 2025; 211:108318. [PMID: 40120667 DOI: 10.1016/j.jip.2025.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Nuclear pore complexes (NPCs) are crucial for the nuclear import of viral genomes, serving as gateways for many viruses to deliver their genetic material into host cell nuclei. However, the role of NPCs in the entry of Bombyx mori nucleopolyhedrovirus (BmNPV) remains poorly understood. This study investigates the involvement of specific nucleoporins in the nuclear import of BmNPV nucleocapsids, a crucial step for viral replication in host cells. Using a combination of Importazole, wheat germ agglutinin (WGA), and small interfering RNAs (siRNAs), we demonstrate that BmNPV entry into BmN cells is mediated through the NPC. Importazole and WGA treatment significantly inhibited viral infection, highlighting the essential role of nucleoporins in BmNPV entry. Additionally, siRNA-mediated knockdown of Nup358 and Nup153 resulted in a marked accumulation of nucleocapsids in the cytoplasm. Overexpression of the N-terminal fragment of Nup358 (1-1127) enhanced nucleocapsid entry efficiency, whereas deletion of the phenylalanine-glycine (FG) repeats in Nup153 (Nup153ΔFG) reduced viral entry. These results confirm the pivotal roles of Nup358 and Nup153 in the nuclear import of BmNPV nucleocapsids. Our findings provide new insights into the molecular interactions between BmNPV and host NPCs, offering potential targets for controlling BmNPV infections in sericulture.
Collapse
Affiliation(s)
- Kangping Yin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tianran Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Alvisi G, Manaresi E, Pavan S, Jans DA, Wagstaff KM, Gallinella G. Avermectins Inhibit Replication of Parvovirus B19 by Disrupting the Interaction Between Importin α and Non-Structural Protein 1. Viruses 2025; 17:220. [PMID: 40006975 PMCID: PMC11860776 DOI: 10.3390/v17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized the interaction between NS1 classical nuclear localization signal (cNLS: GACHAKKPRIT-182) and host cell importin (IMP)α and proposed it as a potential target for antiviral drug development. Here, we further extend on such findings. First, we demonstrate that NS1 nuclear localization is required for viral production since introducing the K177T substitution in a cloned, infectious viral genome resulted in a non-viable virus. Secondly, we demonstrate that the antiparasitic drug ivermectin (IVM), known to inhibit the IMPα/β dependent nuclear import pathway, could impair the NS1-NLS:IMPα interaction and suppress viral replication in UT7/EpoS1 cells in a dose-dependent manner. We also show that a panel of structurally related avermectins (AVMs) can dissociate the NS1-NLS:IMPα complex with half-maximal inhibitory concentrations in the nanomolar range. Among them, Eprinomectin emerged as the most selective inhibitor of B19V replication, with a selectivity index of c. 5.0. However, when tested in EPCs generated from peripheral blood mononuclear cells, which constitute a cellular population close to the natural target cells in bone marrow, the inhibitory effect of IVM and Eprinomectin was demonstrated to a lesser extent, and both compounds exhibited high toxicity, thus highlighting the need for more specific inhibitors of the NS1-NLS:IMPα interaction.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Kylie M. Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
3
|
Annamalai Subramani P, Tipthara P, Kolli SK, Nicholas J, Barnes SJ, Ogbondah MM, Kobylinski KC, Tarning J, Adams JH. Efficacy of ivermectin and its metabolites against Plasmodium falciparum liver stages in primary human hepatocytes. Antimicrob Agents Chemother 2024; 68:e0127223. [PMID: 38904389 PMCID: PMC11304735 DOI: 10.1128/aac.01272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Ivermectin, a broad-spectrum anti-parasitic drug, has been proposed as a novel vector control tool to reduce malaria transmission by mass drug administration. Ivermectin and some metabolites have mosquito-lethal effect, reducing Anopheles mosquito survival. Ivermectin inhibits liver stage development in a rodent malaria model, but no inhibition was observed in a primate malaria model or in a human malaria challenge trial. In the liver, cytochrome P450 3A4 and 3A5 enzymes metabolize ivermectin, which may impact drug efficacy. Thus, understanding ivermectin metabolism and assessing this impact on Plasmodium liver stage development is critical. Using primary human hepatocytes (PHHs), we characterized ivermectin metabolism and evaluated the efficacy of ivermectin and its primary metabolites M1 (3″-O-demethyl ivermectin) and M3 (4-hydroxymethyl ivermectin) against Plasmodium falciparum liver stages. Two different modes of ivermectin exposure were evaluated: prophylactic mode (days 0-3 post-infection) and curative mode (days 3-5 post-infection). We used two different PHH donors and modes to determine the inhibitory concentration (IC50) of ivermectin, M1, M3, and the known anti-malarial drug pyrimethamine, with IC50 values ranging from 1.391 to 14.44, 9.95-23.71, 4.767-8.384, and 0.9073-5.416 µM, respectively. In our PHH model, ivermectin and metabolites M1 and M3 demonstrated inhibitory activity against P. falciparum liver stages in curative treatment mode (days 3-5) and marginal activity in prophylactic treatment mode (days 0-3). Ivermectin had improved efficacy when co-administered with ketoconazole, a specific inhibitor of cytochrome P450 3A4 enzyme. Further studies should be performed to examine ivermectin liver stage efficacy when co-administered with CYP3A4 inhibitors and anti-malarial drugs to understand the pharmacokinetic and pharmacodynamic drug-drug interactions that enhance efficacy against human malaria parasites in vitro.
Collapse
Affiliation(s)
- Pradeep Annamalai Subramani
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Samantha J. Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Madison M. Ogbondah
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Kevin C. Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
4
|
El Saftawy EA, Aboulhoda BE, Hassan FE, Ismail MAM, Alghamdi MA, Hussein SM, Amin NM. ACV with/without IVM: a new talk on intestinal CDX2 and muscular CD34 and Cyclin D1 during Trichinella spiralis infection. Helminthologia 2024; 61:124-141. [PMID: 39040803 PMCID: PMC11260317 DOI: 10.2478/helm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 07/24/2024] Open
Abstract
The current study assessed the efficacy of Acyclovir (ACV) and Ivermectin (IVM) as monotherapies and combined treatments for intestinal and muscular stages of Trichinella spiralis infection. One-hundred Swiss albino mice received orally 250 ± 50 infectious larvae and were divided into infected-untreated (Group-1), IVM-treated (Group-2), ACV-treated (Group-3), combined IVM+ACV (Group-4), and healthy controls (Group-5). Each group was subdivided into subgroup-A-enteric phase (10 mice, sacrificed day-7 p.i.) and subgroup-B-muscular phase (10 mice, sacrificed day-35 p.i.). Survival rate and body weight were recorded. Parasite burden and intestinal histopathology were assessed. In addition, immunohistochemical expression of epithelial CDX2 in the intestinal phase and CyclinD1 as well as CD34 in the muscular phase were evaluated. Compared, IVM and ACV monotherapies showed insignificant differences in the amelioration of enteric histopathology, except for lymphocytic counts. In the muscle phase, monotherapies showed variable disruptions in the encapsulated larvae. Compared with monotherapies, the combined treatment performed relatively better improvement of intestinal inflammation and reduction in the enteric and muscular parasite burden. CDX2 and CyclinD1 positively correlated with intestinal inflammation and parasite burden, while CD34 showed a negative correlation. CDX2 positively correlated with CyclinD1. CD34 negatively correlated with CDX2 and CyclinD1. IVM +ACV significantly ameliorated CDX2, CyclinD1, and CD34 expressions compared with monotherapies. Conclusion. T. spiralis infection-associated inflammation induced CDX2 and CyclinD1 expressions, whereas CD34 was reduced. The molecular tumorigenic effect of the nematode remains questionable. Nevertheless, IVM +ACV appeared to be a promising anthelminthic anti-inflammatory combination that, in parallel, rectified CDX2, CyclinD1, and CD34 expressions.
Collapse
Affiliation(s)
- E. A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - B. E. Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - F. E. Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza11562, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah21442, Saudi Arabia
| | - M. A. M. Ismail
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M. A. Alghamdi
- College of Medicine, King Khalid University, Abha62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha62529, Saudi Arabia
| | - S. M. Hussein
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - N. M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Gao X, Xuan Y, Zhou Z, Chen C, Wen Wang D, Wen Z. Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65. Int Immunopharmacol 2024; 133:112073. [PMID: 38636372 DOI: 10.1016/j.intimp.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/β-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS Increased expression of importin β was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1β/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.
Collapse
Affiliation(s)
- Xu Gao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yunling Xuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China.
| |
Collapse
|
6
|
Mitra S, Datta Chaudhuri R, Sarkar R, Banerjee S, Mukherjee A, Sharma R, Gope A, Kitahara K, Miyoshi SI, Chawla-Sarkar M. Rotavirus rewires host cell metabolic pathways toward glutamine catabolism for effective virus infection. Gut Microbes 2024; 16:2428425. [PMID: 39567865 PMCID: PMC11583611 DOI: 10.1080/19490976.2024.2428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Rotavirus (RV) accounts for 19.11% of global diarrheal deaths. Though GAVI assisted vaccine introduction has curtailed RV induced mortality, factors like RV strain diversity, differential infantile gut microbiome, malnutrition, interference from maternal antibodies and other administered vaccines, etc. often compromise vaccine efficacy. Herein emerges the need of antivirals which can be administered adjunct to vaccination to curb the socio-economic burden stemming from frequent RV infection. Cognisance of pathogen-perturbed host cellular physiology has revolutionized translational research and aided precision-based therapy, particularly for viruses, with no metabolic machinery of their own. To date there has been limited exploration of the host cellular metabolome in context of RV infection. In this study, we explored the endometabolomic landscape of human intestinal epithelial cells (HT-29) on RV-SA11 infection. Significant alteration of host cellular metabolic pathways like the nucleotide biosynthesis pathway, alanine, aspartate and glutamate metabolism pathway, the host citric acid cycle was observed in RV-SA11 infection scenario. Detailed study further revealed that RV replication is exclusively dependent on glutamine metabolism for their propagation in host cells. Glutamine metabolism generates glutamate, aspartate, and asparagine which facilitates virus infection. Abrogation of aspartate biogenesis from glutamine by use of Aminooxyacetic acid (AOAA), significantly curbed RV-SA11 infection in-vitro and in-vivo. Overall, the study improves our understanding of host-rotavirus interactome and recognizes host glutamine metabolism pathway as a suitable target for effective therapeutic intervention against RV infection.
Collapse
Affiliation(s)
- Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| | - Ratul Datta Chaudhuri
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| | - Rakesh Sarkar
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - Shreya Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| | - Ranjana Sharma
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| | - Animesh Gope
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| | - Kei Kitahara
- ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | - Shin-Ichi Miyoshi
- ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Research Center for Intestinal Health Science, Okayama University, Okayama, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India
| |
Collapse
|