1
|
In vivo efficacy of olorofim against systemic scedosporiosis and lomentosporiosis. Antimicrob Agents Chemother 2021; 65:e0043421. [PMID: 34252298 DOI: 10.1128/aac.00434-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinically relevant members of the Scedosporium/Pseudallescheria species complex and Lomentospora prolificans are generally resistant against currently available systemic antifungal agents in vitro and the infection due to these species is difficult to treat. We studied the in vivo efficacy of a new fungicidal agent olorofim (formerly F901318) against scedosporiosis and lomentosporiosis in neutropenic animals. Cyclophosphamide immunosuppressed CD-1 mice infected by Scedosporium apiospermum, Pseudallescheria boydii (Scedosporium boydii) and Lomentospora prolificans were treated by intraperitoneal administration of olorofim (15 mg/kg every 8 h for 9 days). The efficacy of olorofim treatment was assessed by the survival rate at 10 days post infection, levels of serum (1-3)-β-d-glucan (BG), histopathology, and fungal burden of kidneys 3 days post infection. Olorofim therapy significantly improved survival compared to the untreated controls; 80%, 100% and 100% of treated mice survived infection by Scedosporium apiospermum, Pseudallescheria boydii, and Lomentospora prolificans, respectively while less than 20% of the control mice (PBS-treated) survived at 10 days post infection. In the olorofim-treated neutropenic CD-1 mice infected with all three species, serum BG levels were significantly suppressed and fungal DNA detected in the target organs was significantly lower than controls. Furthermore, histopathology of kidneys revealed no or only few lesions with hyphal elements in the olorofim-treated mice, while numerous fungal hyphae were present in control mice. These results indicate olorofim to be a promising therapeutic agent for systemic scedosporiosis/lomentosporiosis, a devastating emerging fungal infection difficult to treat with currently available antifungals.
Collapse
|
2
|
Luna-Rodríguez CE, Treviño-Rangel RDJ, Soto-Domínguez A, Becerril-García MA, González-Montalvo MA, Saldivar M AM, Rodríguez-Rocha H, Gonzalez GM. Development of an immunocompetent murine model of pulmonary infection due to Scedosporium apiospermum. Microb Pathog 2020; 142:104073. [PMID: 32070747 DOI: 10.1016/j.micpath.2020.104073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 02/02/2023]
Abstract
A pulmonary infection model due to Scedosporium apiospermum in immunocompetent mice was developed. BALB/c mice were infected by endotracheal intubation with 5 × 106 conidia/mouse and disease progression was evaluated on days 1, 3, 5, 7, 11, 16, 21, 30, 50 and 60 post-infection through quantitative culture and histopathological analysis of lungs, livers, spleens, brains, and kidneys. There was no extrapulmonary dissemination during the study nor shown to be a lethal infection. The fungal burden in lungs was maintained from day 1-5 and gradually decreased by day 30 post-challenge. On day 60, 30% of mice showed complete elimination of the fungus. Severe alterations in the lung tissue were observed, as well as the presence of conidia and hyphae surrounded by a cellular infiltrate composed mainly of neutrophils in the first days of the infection. The elimination of fungal cells and normal tissue morphology were recovered throughout the study.
Collapse
Affiliation(s)
- Carolina E Luna-Rodríguez
- Department of Microbiology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Rogelio de J Treviño-Rangel
- Department of Microbiology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Adolfo Soto-Domínguez
- Department of Histology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Miguel A Becerril-García
- Department of Microbiology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Martin A González-Montalvo
- Department of Microbiology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Andrea M Saldivar M
- Department of Microbiology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Humberto Rodríguez-Rocha
- Department of Histology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Gloria M Gonzalez
- Department of Microbiology, Universidad Autónoma de Nuevo León, Facultad de Medicina and Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|
3
|
Mello TP, Bittencourt VCB, Liporagi-Lopes LC, Aor AC, Branquinha MH, Santos AL. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Identification of 14-α-Lanosterol Demethylase (CYP51) in Scedosporium Species. Antimicrob Agents Chemother 2018; 62:AAC.02599-17. [PMID: 29891611 DOI: 10.1128/aac.02599-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Scedosporium spp. cause infections (scedosporiosis) in both immunocompetent and immunocompromised individuals and may persistently colonize the respiratory tract in patients with cystic fibrosis (CF). They are less susceptible against azoles than are other molds, such as Aspergillus spp., suggesting the presence of resistance mechanisms. It can be hypothesized that the decreased susceptibility of Scedosporium spp. to azoles is also CYP51 dependent. Analysis of the Scedosporium apiospermum and Scedosporiumaurantiacum genomes revealed one CYP51 gene encoding the 14-α-lanosterol demethylase. This gene from 159 clinical or environmental Scedosporium isolates and three Lomentospora prolificans isolates has been sequenced and analyzed. The Scedosporium CYP51 protein clustered with the group of known CYP51B orthologues and showed species-specific polymorphisms. A tandem repeat in the 5' upstream region of Scedosporium CYP51 like that in Aspergillus fumigatus could not be detected. Species-specific amino acid alterations in CYP51 of Scedosporium boydii, Scedosporiumellipsoideum, Scedosporium dehoogii, and Scedosporiumminutisporum isolates were located at positions that have not been described as having an impact on azole susceptibility. In contrast, two of the three Sapiospermum-specific amino acid changes (Y136F and G464S) corresponded to respective mutations in A. fumigatus CYP51A at amino acid positions 121 and 448 (Y121F and G448S, respectively) that had been linked to azole resistance.
Collapse
|
5
|
Pharmacodynamics of Voriconazole for Invasive Pulmonary Scedosporiosis. Antimicrob Agents Chemother 2018; 62:AAC.02516-17. [PMID: 29439967 DOI: 10.1128/aac.02516-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/05/2018] [Indexed: 01/07/2023] Open
Abstract
Scedosporium apiospermum is a medically important fungal pathogen that causes a wide range of infections in humans. There are relatively few antifungal agents that are active against Scedosporium spp. Little is known about the pharmacodynamics of voriconazole against Scedosporium Both static and dynamic in vitro models of invasive scedosporiosis were developed. Monoclonal antibodies that target a soluble cell wall antigen secreted by Scedosporium apiospermum were used to describe the pharmacodynamics of voriconazole. Mathematical pharmacokinetic-pharmacodynamic models were fitted to the data to estimate the drug exposure required to suppress the release of fungal antigen. The experimental results were bridged to humans using Monte Carlo simulation. All 3 strains of S. apiospermum tested invaded through the cellular bilayer of the in vitro models and liberated antigen. There was a concentration-dependent decline in the amount of antigen, with near maximal antifungal activity against all 3 strains being achieved with voriconazole at 10 mg/liter. Similarly, there was a drug exposure-dependent decline in the amount of circulating antigen in the dynamic model and complete suppression of antigen, with an area under the concentration-time curve (AUC) of approximately 80 mg · h/liter. A regression of the AUC/MIC versus the area under the antigen-time curve showed that a near maximal effect was obtained with an AUC/MIC of approximately 100. Monte Carlo simulation suggested that only isolates with an MIC of 0.5 mg/liter enabled pharmacodynamic targets to be achieved with a standard regimen of voriconazole. Isolates with higher MICs may need drug exposure targets higher than those currently recommended for other fungi.
Collapse
|
6
|
Real-Life Challenges to the Use of Antifungal Agents in Hematology Patients. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
McCarthy MW, Petraitis V, Walsh TJ. Combination therapy for the treatment of pulmonary mold infections. Expert Rev Respir Med 2017; 11:481-489. [PMID: 28467730 DOI: 10.1080/17476348.2017.1325322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pulmonary mold infections are caused by ubiquitous organisms found in soil, water, and decaying vegetation, including Aspergillus spp., the Mucormycetes, hyaline molds, and dematiaceous (black) molds. Areas covered: These infections are often a challenge to diagnose and even more difficult to treat. Recently, antifungal combination therapy has emerged as a promising strategy to treat some forms of invasive mycoses, including pulmonary mold infections. Historically, this approach has been limited due to non-uniform interpretation criteria, variations in pharmacodynamic/pharmacokinetic properties of antifungals used in combination, and an inability to predict clinical success based on in vitro data and animal models. However, recent advances have helped mitigate some of these challenges. Expert commentary: In this paper, we explore what is known about the antifungal combination therapy in the treatment of pulmonary mold infections and explore how it may impact clinical practice. We pay particular attention to novel combinations and the challenges associated with the development of new antifungal agents.
Collapse
Affiliation(s)
- Matthew William McCarthy
- a Hospital Medicine , Joan and Sanford I Weill Medical College of Cornell University , New York , NY , USA
| | - Vidmantas Petraitis
- b Transplantation-Oncology, Infectious Diseases Program , Weill Cornell Medical Center of Cornell University , New York , NY , USA
| | - Thomas J Walsh
- c Transplantation-Oncology Infectious Diseases Program , Weill Cornell Medical Center , New York , NY , USA
| |
Collapse
|
8
|
Scedosporium apiospermum Mycetoma in an Immunocompetent Patient without Prior Lung Disease. Ann Am Thorac Soc 2016; 14:145-147. [PMID: 28035880 DOI: 10.1513/annalsats.201609-697le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Susceptibility and diversity in the therapy-refractory genus scedosporium. Antimicrob Agents Chemother 2014; 58:5877-85. [PMID: 25070092 DOI: 10.1128/aac.03211-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scedosporium species show decreased susceptibility to the majority of systemic antifungal drugs. Acquired resistance is likely to disseminate differentially with the mode of exchange of genetic material between lineages. Inter- and intraspecific diversities of Scedosporium species were analyzed for three partitions (rDNA internal transcribed spacer gene [ITS], partial β-tubulin gene, and amplified fragment length polymorphism profiles), with the aim to establish distribution of resistance between species, populations, and strains. Heterogeneity of and recombination between lineages were determined, and distances between clusters were calculated using a centroid approach. Clinical, geographic, and antifungal data were plotted on diversity networks. Scedosporium minutisporum, Scedosporium desertorum, and Scedosporium aurantiacum were distinguished unambiguously in all partitions and had differential antifungal susceptibility profiles (ASP). Pseudallescheria fusoidea and Pseudallescheria ellipsoidea were indistinguishable from Scedosporium boydii. Pseudallescheria angusta took an intermediate position between Scedosporium apiospermum and S. boydii. Scedosporium boydii and S. apiospermum had identical ASP. Differences in (multi)resistance were linked to individual strains. S. apiospermum and S. boydii showed limited interbreeding and were recognized as valid, sympatric species. The S. apiospermum/S. boydii group, comprising the main clinically relevant Scedosporium species, consists of separate lineages and is interpreted as a complex undergoing sympatric evolution with incomplete lineage sorting. In routine diagnostics, the lineages in S. apiospermum/S. boydii are indicated with the umbrella descriptor "S. apiospermum complex"; individual species can be identified with rDNA ITS with 96.3% confidence. Voriconazole is recommended as the first-line treatment; resistance against this compound is rare.
Collapse
|
10
|
Animal Models In Mycology: What Have We Learned Over The Past 30 Years. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0126-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Gazzoni AF, Capilla J, Mayayo E, Guarro J. Efficacy of intrathecal administration of liposomal amphotericin B combined with voriconazole in a murine model of cryptococcal meningitis. Int J Antimicrob Agents 2012; 39:223-7. [PMID: 22226648 DOI: 10.1016/j.ijantimicag.2011.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/31/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
Meningitis is one of the most fatal manifestations of cryptococcosis, even with specific treatment. Combination of a prompt diagnosis and appropriate therapy are critical to reduce the fungal load and the inflammatory response effects of the proliferation of yeast into the central nervous system (CNS). Mice with experimental acute meningitis caused by Cryptococcus neoformans were treated with liposomal amphotericin B (L-AmB) administered intrathecally (i.t.c.) at 0.006 mg/kg weekly or intravenously (i.v.) at 10 mg/kg daily or with voriconazole (VCZ) administered orally at 30 mg/kg per dose twice daily or with combinations of both drugs, i.e. L-AmB i.t.c.+VCZ or L-AmB i.v.+VCZ at the same doses as used in the monotherapies. All treatments significantly increased the survival of animals in comparison with the control group, with VCZ being less effective in comparison with all other treatments (P ≤ 0.012). All treatments, with the exception of VCZ (P=0.533), reduced fungal burdens in the brain in comparison with controls. The combination of L-AmB i.t.c.+VCZ showed a synergistic effect in the reduction of fungal load that was significantly superior to any tested therapy (P ≤ 0.039). Histologically, untreated animals showed a marked inflammatory response with massive fungal cells in the meninges, whilst treated animals showed a variable number of fungal cells in the CNS, with the exception of animals receiving L-AmB i.t.c.+VCZ in which neither yeasts nor inflammation were observed.
Collapse
Affiliation(s)
- Alexandra F Gazzoni
- Pathologic Anatomy Unit, Facultat de Medicina i Ciències de Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | |
Collapse
|
12
|
Guarro J. Lessons from animal studies for the treatment of invasive human infections due to uncommon fungi. J Antimicrob Chemother 2011; 66:1447-66. [PMID: 21493649 DOI: 10.1093/jac/dkr143] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Clinical experience in the management of opportunistic infections, especially those caused by less common fungi, is, due to their rarity, very scarce; therefore, the most effective treatments remain unknown. The ever-increasing numbers of fungal infections due to opportunistic fungi have repeatedly proven the limitations of the antifungal armamentarium. Moreover, some of these fungi, such as Fusarium spp. or Scedosporium spp., are innately resistant to almost all the available antifungal drugs, which makes the development of new and effective therapies a high priority. Since it is difficult to conduct randomized clinical trials in these uncommon mycoses, the use of animal models is a good alternative for evaluating new therapies. This is an extensive review of the numerous studies that have used animal models for this purpose against a significant number of less common fungi. A table describing the different studies performed on the efficacy of the different drugs tested is included for each fungal species. In addition, there is a summary table showing the conclusions that can be derived from the analysis of the studies and listing the drugs that showed the best results. Considering the wide variability in the response to the antifungals that the different strains of a given species can show, the table highlights the drugs that showed positive results using at least two parameters for evaluating efficacy against at least two different strains without showing any negative results. These data can be very useful for guiding the treatment of rare infections when there is very little experience or when controversial results exist, or when treatment fails.
Collapse
Affiliation(s)
- Josep Guarro
- Mycology Unit, Medical School, IISPV, Rovira i Virgili University, 43201 Reus, Spain.
| |
Collapse
|
13
|
Harun A, Serena C, Gilgado F, Chen SCA, Meyer W. Scedosporium aurantiacum is as virulent as S. prolificans, and shows strain-specific virulence differences, in a mouse model. Med Mycol 2011; 48 Suppl 1:S45-51. [PMID: 21067330 DOI: 10.3109/13693786.2010.517224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several Scedosporium species are clinically important emerging pathogens. Scedosporium prolificans is reported to be the most virulent of the species, while the recently described species Scedosporium aurantiacum, which accounts for a substantial proportion of Australian clinical isolates is capable of causing a range of serious infections. In addition, environmental surveys have revealed a high prevalence of S. aurantiacum in the urban Sydney region. This study was conducted to assess the virulence of selected S. aurantiacum strains recovered from patients who are colonized or have invasive disease, as well as those from environmental sources, in comparison with S. prolificans. PCR fingerprinting with the primer M13 revealed high genetic variation among the S. aurantiacum strains. We evaluated the virulence of eight S. aurantiacum and two S. prolificans strains in a murine model using an infectious dose of 2 × 10⁵ conidia. S. aurantiacum was noted to be as virulent as S. prolificans, causing death in 60-100% of mice (P > 0.05). There were significant strain-specific virulence differences (P < 0.005), indicating a possible link between genotype and virulence in S. aurantiacum.
Collapse
Affiliation(s)
- Azian Harun
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead Millennium Institute, The University of Sydney, Australia
| | | | | | | | | |
Collapse
|
14
|
Elad D. Infections caused by fungi of the Scedosporium/Pseudallescheria complex in veterinary species. Vet J 2011; 187:33-41. [DOI: 10.1016/j.tvjl.2010.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/17/2010] [Accepted: 05/23/2010] [Indexed: 11/28/2022]
|
15
|
Experimental murine scedosporiosis: histopathology and azole treatment. Antimicrob Agents Chemother 2010; 54:3980-4. [PMID: 20547805 DOI: 10.1128/aac.00046-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The histopathology of clinical isolates of Scedosporium apiospermum, Scedosporium boydii, and Scedosporium aurantiacum in immunosuppressed mice was evaluated. The organs most affected were the brain, kidneys, and spleen. S. aurantiacum produced more tissue damage than the other two species. Amphotericin B (AMB) was ineffective in the treatment of murine infections caused by such isolates, and posaconazole and voriconazole showed efficacy that correlated with the in vitro susceptibility data.
Collapse
|
16
|
Pedroso VSP, Vilela MDC, Santos PC, Cisalpino PS, Arantes RME, Rachid MA, Teixeira AL. Development of a Murine Model of Neuroparacoccidioidomycosis. ACTA ACUST UNITED AC 2010. [DOI: 10.4303/jnp/n100402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
In vitro antifungal combination effects of micafungin with fluconazole, voriconazole, amphotericin B, and flucytosine against clinical isolates of Candida species. J Infect Chemother 2009; 15:1-5. [DOI: 10.1007/s10156-008-0653-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
|
18
|
Kantarcioglu AS, Guarro J, de Hoog GS. Central nervous system infections by members of the Pseudallescheria boydii species complex in healthy and immunocompromised hosts: epidemiology, clinical characteristics and outcome. Mycoses 2008; 51:275-90. [DOI: 10.1111/j.1439-0507.2008.01489.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abstract
Scedosporium spp. are increasingly recognized as causes of resistant life-threatening infections in immunocompromised patients. Scedosporium spp. also cause a wide spectrum of conditions, including mycetoma, saprobic involvement and colonization of the airways, sinopulmonary infections, extrapulmonary localized infections, and disseminated infections. Invasive scedosporium infections are also associated with central nervous infection following near-drowning accidents. The most common sites of infection are the lungs, sinuses, bones, joints, eyes, and brain. Scedosporium apiospermum and Scedosporium prolificans are the two principal medically important species of this genus. Pseudallescheria boydii, the teleomorph of S. apiospermum, is recognized by the presence of cleistothecia. Recent advances in molecular taxonomy have advanced the understanding of the genus Scedosporium and have demonstrated a wider range of species than heretofore recognized. Studies of the pathogenesis of and immune response to Scedosporium spp. underscore the importance of innate host defenses in protection against these organisms. Microbiological diagnosis of Scedosporium spp. currently depends upon culture and morphological characterization. Molecular tools for clinical microbiological detection of Scedosporium spp. are currently investigational. Infections caused by S. apiospermum and P. boydii in patients and animals may respond to antifungal triazoles. By comparison, infections caused by S. prolificans seldom respond to medical therapy alone. Surgery and reversal of immunosuppression may be the only effective therapeutic options for infections caused by S. prolificans.
Collapse
|
20
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
Guarro J, Kantarcioglu AS, Horré R, Rodriguez-Tudela JL, Cuenca Estrella M, Berenguer J, de Hoog GS. Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist*. Med Mycol 2006; 44:295-327. [PMID: 16772225 DOI: 10.1080/13693780600752507] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Current knowledge on the opportunist Scedosporium apiospermum (teleomorph: Pseudallescheria boydii), generated over a period of more than 120 years, is reviewed. The natural environmental habitat of the fungus is unknown; nutrient-rich, brackish waters like river estuaria have been suggested. The fungus is strongly promoted by agricultural and particularly by industrial pollution.
Collapse
Affiliation(s)
- Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Spain
| | | | | | | | | | | | | |
Collapse
|