1
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L, Gómez-Zorrilla S, Sendra E, Oliver A, Juan C. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999. [PMID: 37840717 PMCID: PMC10569695 DOI: 10.3389/fmicb.2023.1270999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between antibiotic resistance and bacterial fitness/virulence has attracted the interest of researchers for decades because of its therapeutic implications, since it is classically assumed that resistance usually entails certain biological costs. Reviews on this topic revise the published data from a general point of view, including studies based on clinical strains or in vitro-evolved mutants in which the resistance phenotype is seen as a final outcome, i.e., a combination of mechanisms. However, a review analyzing the resistance/fitness balance from the basic research perspective, compiling studies in which the different resistance pathways and respective biological costs are individually approached, was missing. Here we cover this gap, specifically focusing on Pseudomonas aeruginosa, a pathogen that stands out because of its extraordinary capacity for resistance development and for which a considerable number of recent and particular data on the interplay with fitness/virulence have been released. The revised information, split into horizontally-acquired vs. mutation-driven resistance, suggests a great complexity and even controversy in the resistance-fitness/virulence balance in the acute infection context, with results ranging from high costs linked to certain pathways to others that are seemingly cost-free or even cases of resistance mechanisms contributing to increased pathogenic capacities. The elusive mechanistic basis for some enigmatic data, knowledge gaps, and possibilities for therapeutic exploitation are discussed. The information gathered suggests that resistance-fitness/virulence interplay may be a source of potential antipseudomonal targets and thus, this review poses the elementary first step for the future development of these strategies harnessing certain resistance-associated biological burdens.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Mª Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel A. Estévez
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Silvia Gómez-Zorrilla
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
3
|
Kanafani ZA, Sleiman A, Frem JA, Doumat G, Gharamti A, El Hafi B, Doumith M, AlGhoribi MF, Kanj SS, Araj GF, Matar GM, Abou Fayad AG. Molecular characterization and differential effects of levofloxacin and ciprofloxacin on the potential for developing quinolone resistance among clinical Pseudomonas aeruginosa isolates. Front Microbiol 2023; 14:1209224. [PMID: 37744929 PMCID: PMC10514475 DOI: 10.3389/fmicb.2023.1209224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background Fluoroquinolones are some of the most used antimicrobial agents for the treatment of Pseudomonas aeruginosa. This study aimed at exploring the differential activity of ciprofloxacin and levofloxacin on the selection of resistance among P. aeruginosa isolates at our medical center. Methods 233 P. aeruginosa clinical isolates were included in this study. Antimicrobial susceptibility testing (AST) was done using disk diffusion and broth microdilution assays. Random Amplification of Polymorphic DNA (RAPD) was done to determine the genetic relatedness between the isolates. Induction of resistance against ciprofloxacin and levofloxacin was done on 19 isolates. Fitness cost assay was done on the 38 induced mutants and their parental isolates. Finally, whole genome sequencing was done on 16 induced mutants and their 8 parental isolates. Results AST results showed that aztreonam had the highest non-susceptibility. RAPD results identified 18 clusters. The 19 P. aeruginosa isolates that were induced against ciprofloxacin and levofloxacin yielded MICs ranging between 16 and 256 μg/mL. Levofloxacin required fewer passages in 10 isolates and the same number of passages in 9 isolates as compared to ciprofloxacin to reach their breakpoints. Fitness cost results showed that 12 and 10 induced mutants against ciprofloxacin and levofloxacin, respectively, had higher fitness cost when compared to their parental isolates. Whole genome sequencing results showed that resistance to ciprofloxacin and levofloxacin in sequenced mutants were mainly associated with alterations in gyrA, gyrB and parC genes. Conclusion Understanding resistance patterns and risk factors associated with infections is crucial to decrease the emerging threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Zeina A. Kanafani
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ahmad Sleiman
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- World Health Organization Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Jim Abi Frem
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - George Doumat
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amal Gharamti
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Bassam El Hafi
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majed F. AlGhoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Souha S. Kanj
- Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - George F. Araj
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan M. Matar
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- World Health Organization Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Antoine G. Abou Fayad
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- World Health Organization Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| |
Collapse
|
4
|
Leinweber H, Sieber RN, Bojer MS, Larsen J, Ingmer H. Fluoroquinolone resistance does not facilitate phage Φ13 integration or excision in Staphylococcus aureus. Access Microbiol 2023; 5:acmi000583.v4. [PMID: 37424547 PMCID: PMC10323784 DOI: 10.1099/acmi.0.000583.v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 07/11/2023] Open
Abstract
Prophages of the ΦSa3int family are commonly found in human-associated strains of Staphylococcus aureus where they encode factors for evading the human innate immune system. In contrast, they are usually absent in livestock-associated methicillin-resistant S. aureus (LA-MRSA) strains where the phage attachment site is mutated compared to the human strains. However, ΦSa3int phages have been found in a subset of LA-MRSA strains belonging to clonal complex 398 (CC398), including a lineage that is widespread in pig farms in Northern Jutland, Denmark. This lineage contains amino acid changes in the DNA topoisomerase IV and the DNA gyrase encoded by grlA and gyrA, respectively, which have been associated with fluoroquinolone (FQ) resistance. As both of these enzymes are involved in DNA supercoiling, we speculated that the mutations might impact recombination between the ΦSa3int phage and the bacterial chromosome. To examine this, we introduced the FQ resistance mutations into S. aureus 8325-4attBLA that carry the mutated CC398-like bacterial attachment site for ΦSa3int phages. When monitoring phage integration and release of Φ13, a well-described representative of the ΦSa3int phage family, we did not observe any significant differences between the FQ-resistant mutant and the wild-type strain. Thus our results suggest that mutations in grlA and gyrA do not contribute to the presence of the ΦSa3int phages in LA-MRSA CC398.
Collapse
Affiliation(s)
- Helena Leinweber
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark
| | - Raphael N. Sieber
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark
| | - Jesper Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark
| |
Collapse
|
5
|
Worthan SB, McCarthy RDP, Behringer MG. Case Studies in the Assessment of Microbial Fitness: Seemingly Subtle Changes Can Have Major Effects on Phenotypic Outcomes. J Mol Evol 2023; 91:311-324. [PMID: 36752825 PMCID: PMC10276084 DOI: 10.1007/s00239-022-10087-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Following the completion of an adaptive evolution experiment, fitness evaluations are routinely conducted to assess the magnitude of adaptation. In doing so, proper consideration should be given when determining the appropriate methods as trade-offs may exist between accuracy and throughput. Here, we present three instances in which small changes in the framework or execution of fitness evaluations significantly impacted the outcomes. The first case illustrates that discrepancies in fitness conclusions can arise depending on the approach to evaluating fitness, the culture vessel used, and the sampling method. The second case reveals that variations in environmental conditions can occur associated with culture vessel material. Specifically, these subtle changes can greatly affect microbial physiology leading to changes in the culture pH and distorting fitness measurements. Finally, the last case reports that heterogeneity in CFU formation time can result in inaccurate fitness conclusions. Based on each case, considerations and recommendations are presented for future adaptive evolution experiments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Robert D P McCarthy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Kumar Panda R, Darshana Patra S, Kumar Mohakud N, Ranjan Sahu B, Ghosh M, Misra N, Suar M. Draft genome of clinical isolate Salmonella enterica Typhimurium ms204 from Odisha, India, reveals multi drug resistance and decreased virulent gene expression. Gene 2023; 863:147248. [PMID: 36738898 DOI: 10.1016/j.gene.2023.147248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Salmonellosis, a food-borne illnesses caused by enteropathogenic bacterium Salmonella spp., is a continuous concern in both developed and developing countries. This study was carried out to perform an in-depth examination of an MDR Salmonella strain isolated from gastroenteritis patients in Odisha, India, in order to understand the genomic architecture, distribution of pathogenic island regions, and virulence factor diversity. Fecal samples were obtained from individuals with acute gastroenteritis and further subjected to panel of biochemical tests. The IlluminaHiSeq X sequencer system was used to generate whole-genome sequencing. The draft genome was submitted to gene prediction and annotation using RAST annotation system. Pathogenicity Island database and bioinformatics pipeline were used to find Salmonella pathogenicity islands (SPI) from the built scaffold. The gene expression in SPI1 and SPI2 encoded regions was investigated using qRT-PCR. The taxonomic position of Salmonella enterica subsp. enterica serovar Typhimurium was validated by serotype analysis and 16S rRNA based phylogenetic analysis. The de-novo genome assembly showed total length of 5,034,110 bp and produced 37 contigs. There are nine prophage areas, comprising of 12 regions and scaffold 8 contained a single plasmid, IncFIB. The isolate contains six known SPI genes content which was shown to be largely conserved from SPI1 to SPI2. We identified the sit ABCD cluster regulatory cascade and acquired antibiotic resistance genes in S. enterica Typhimurium ms204. Further research may aid in the correct diagnosis and monitoring of MDR Salmonella strains with a variety of physiological activities.
Collapse
Affiliation(s)
| | | | - Nirmal Kumar Mohakud
- Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Bikash Ranjan Sahu
- Department of Zoology, Centurion University of Technology and Management, India
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
7
|
Gharbi M, Kamoun S, Hkimi C, Ghedira K, Béjaoui A, Maaroufi A. Relationships between Virulence Genes and Antibiotic Resistance Phenotypes/Genotypes in Campylobacter spp. Isolated from Layer Hens and Eggs in the North of Tunisia: Statistical and Computational Insights. Foods 2022; 11:foods11223554. [PMID: 36429146 PMCID: PMC9689815 DOI: 10.3390/foods11223554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Globally, Campylobacter is a significant contributor to gastroenteritis. Efficient pathogens are qualified by their virulence power, resistance to antibiotics and epidemic spread. However, the correlation between antimicrobial resistance (AR) and the pathogenicity power of pathogens is complex and poorly understood. In this study, we aimed to investigate genes encoding virulence and AR mechanisms in 177 Campylobacter isolates collected from layer hens and eggs in Tunisia and to assess associations between AR and virulence characteristics. Virulotyping was determined by searching 13 virulence genes and AR-encoding genes were investigated by PCR and MAMA-PCR. The following genes were detected in C. jejuni and C. coli isolates: tet(O) (100%/100%), blaOXA-61 (18.82%/6.25%), and cmeB (100%/100%). All quinolone-resistant isolates harbored the Thr-86-Ile substitution in GyrA. Both the A2074C and A2075G mutations in 23S rRNA were found in all erythromycin-resistant isolates; however, the erm(B) gene was detected in 48.38% and 64.15% of the C. jejuni and C. coli isolates, respectively. The machine learning algorithm Random Forest was used to determine the association of virulence genes with AR phenotypes. This analysis showed that C. jejuni virulotypes with gene clusters encompassing the racR, ceuE, virB11, and pldA genes were strongly associated with the majority of phenotypic resistance. Our findings showed high rates of AR and virulence genes among poultry Campylobacter, which is a cause of concern to human health. In addition, the correlations of specific virulence genes with AR phenotypes were established by statistical analysis.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
- Correspondence: ; Tel.: +216-27310041
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Awatef Béjaoui
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
8
|
Zhang Y, Rosado-Lugo JD, Datta P, Sun Y, Cao Y, Banerjee A, Yuan Y, Parhi AK. Evaluation of a Conformationally Constrained Indole Carboxamide as a Potential Efflux Pump Inhibitor in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:716. [PMID: 35740123 PMCID: PMC9220351 DOI: 10.3390/antibiotics11060716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P. aeruginosa. At 6.25 µg/mL, TXA09155, showed ≥8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ajit K. Parhi
- TAXIS Pharmaceuticals, Inc., 9 Deer Park Drive, Suite J-15, Monmouth Junction, NJ 08852, USA; (Y.Z.); (J.D.R.-L.); (P.D.); (Y.S.); (Y.C.); (A.B.); (Y.Y.)
| |
Collapse
|
9
|
Evaluation of Heterocyclic Carboxamides as Potential Efflux Pump Inhibitors in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 11:antibiotics11010030. [PMID: 35052908 PMCID: PMC8772707 DOI: 10.3390/antibiotics11010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to rescue the activity of antimicrobials that are no longer effective against bacterial pathogens such as Pseudomonas aeruginosa is an attractive strategy to combat antimicrobial drug resistance. Herein, novel efflux pump inhibitors (EPIs) demonstrating strong potentiation in combination with levofloxacin against wild-type P. aeruginosa ATCC 27853 are presented. A structure activity relationship of aryl substituted heterocyclic carboxamides containing a pentane diamine side chain is described. Out of several classes of fused heterocyclic carboxamides, aryl indole carboxamide compound 6j (TXA01182) at 6.25 µg/mL showed 8-fold potentiation of levofloxacin. TXA01182 was found to have equally synergistic activities with other antimicrobial classes (monobactam, fluoroquinolones, sulfonamide and tetracyclines) against P. aeruginosa. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA01182. TXA01182 was determined to lower the frequency of resistance (FoR) of the partner antimicrobials and enhance the killing kinetics of levofloxacin. Furthermore, TXA01182 demonstrated a synergistic effect with levofloxacin against several multidrug resistant P. aeruginosa clinical isolates.
Collapse
|
10
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ, Schvartzman JB. Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. BIOLOGY 2021; 10:biology10111195. [PMID: 34827187 PMCID: PMC8615216 DOI: 10.3390/biology10111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary During replication, DNA molecules undergo topological changes that affect supercoiling, catenation and knotting. To better understand this process and the role of topoisomerases, the enzymes that control DNA topology in in vivo, two-dimensional agarose gel electrophoresis were used to investigate the efficiency of three type II DNA topoisomerases, the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α, on partially replicated bacterial plasmids containing replication forks stalled at specific sites. The results obtained revealed that despite the fact these DNA topoisomerases may have evolved to accomplish specific tasks, they share abilities. To our knowledge, this is the first time two-dimensional agarose gel electrophoresis have been used to examine the ability of these topoisomerases to relax supercoiling in the un-replicated region and unlink pre-catenanes in the replicated one of partially replicated molecules in vitro. The methodology described here can be used to study the role of different topoisomerases in partially replicated molecules. Abstract DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Victor Martínez
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - María-José Fernández-Nestosa
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
- Correspondence:
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| |
Collapse
|
11
|
Santos-Lopez A, Marshall CW, Haas AL, Turner C, Rasero J, Cooper VS. The roles of history, chance, and natural selection in the evolution of antibiotic resistance. eLife 2021; 10:e70676. [PMID: 34431477 PMCID: PMC8412936 DOI: 10.7554/elife.70676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
History, chance, and selection are the fundamental factors that drive and constrain evolution. We designed evolution experiments to disentangle and quantify effects of these forces on the evolution of antibiotic resistance. Previously, we showed that selection of the pathogen Acinetobacter baumannii in both structured and unstructured environments containing the antibiotic ciprofloxacin produced distinct genotypes and phenotypes, with lower resistance in biofilms as well as collateral sensitivity to β-lactam drugs (Santos-Lopez et al., 2019). Here we study how this prior history influences subsequent evolution in new β-lactam antibiotics. Selection was imposed by increasing concentrations of ceftazidime and imipenem and chance differences arose as random mutations among replicate populations. The effects of history were reduced by increasingly strong selection in new drugs, but not erased, at times revealing important contingencies. A history of selection in structured environments constrained resistance to new drugs and led to frequent loss of resistance to the initial drug by genetic reversions and not compensatory mutations. This research demonstrates that despite strong selective pressures of antibiotics leading to genetic parallelism, history can etch potential vulnerabilities to orthogonal drugs.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Allison L Haas
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Caroline Turner
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, School of Medicine, University of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|
12
|
Pulukkody AC, Yung YP, Donnarumma F, Murray KK, Carlson RP, Hanley L. Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer. PLoS One 2021; 16:e0250911. [PMID: 34292966 PMCID: PMC8297752 DOI: 10.1371/journal.pone.0250911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Heterogeneity in the distribution of nutrients and oxygen gradients during biofilm growth gives rise to changes in phenotype. There has been long term interest in identifying spatial differences during biofilm development including clues that identify chemical heterogeneity. Laser ablation sample transfer (LAST) allows site-specific sampling combined with label free proteomics to distinguish radially and axially resolved proteomes for Pseudomonas aeruginosa biofilms. Specifically, differential protein abundances on oxic vs. anoxic regions of a biofilm were observed by combining LAST with bottom up proteomics. This study reveals a more active metabolism in the anoxic region of the biofilm with respect to the oxic region for this clinical strain of P. aeruginosa, despite this organism being considered an aerobe by nature. Protein abundance data related to cellular acclimations to chemical gradients include identification of glucose catabolizing proteins, high abundance of proteins from arginine and polyamine metabolism, and proteins that could also support virulence and environmental stress mediation in the anoxic region. Finally, the LAST methodology requires only a few mm2 of biofilm area to identify hundreds of proteins.
Collapse
Affiliation(s)
- Aruni Chathurya Pulukkody
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kermit K. Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ross P. Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
13
|
Card KJ, Jordan JA, Lenski RE. Idiosyncratic variation in the fitness costs of tetracycline-resistance mutations in Escherichia coli. Evolution 2021; 75:1230-1238. [PMID: 33634468 DOI: 10.1111/evo.14203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
A bacterium's fitness relative to its competitors, both in the presence and absence of antibiotics, plays a key role in its ecological success and clinical impact. In this study, we examine whether tetracycline-resistant mutants are less fit in the absence of the drug than their sensitive parents, and whether the fitness cost of resistance is constant or variable across independently derived lines. Tetracycline-resistant lines suffered, on average, a reduction in fitness of almost 8%. There was substantial among-line variation in the fitness cost. This variation was not associated with the level of resistance conferred by the mutations, nor did it vary significantly across several genetic backgrounds. The two resistant lines with the most extreme fitness costs involved functionally unrelated mutations on different genetic backgrounds. However, there was also significant variation in the fitness costs for mutations affecting the same pathway and even different alleles of the same gene. Our findings demonstrate that the fitness costs of antibiotic resistance do not always correlate with the phenotypic level of resistance or the underlying genetic changes. Instead, these costs reflect the idiosyncratic effects of particular resistance mutations and the genetic backgrounds in which they occur.
Collapse
Affiliation(s)
- Kyle J Card
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824.,Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824
| | - Jalin A Jordan
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824.,Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824.,Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
14
|
Nageeb W, Amin DH, Mohammedsaleh ZM, Makharita RR. Novel Molecular Markers Linked to Pseudomonas aeruginosa Epidemic High-Risk Clones. Antibiotics (Basel) 2021; 10:antibiotics10010035. [PMID: 33401446 PMCID: PMC7824207 DOI: 10.3390/antibiotics10010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The population structure of Pseudomonas aeruginosa is panmictic-epidemic in nature, with the prevalence of some high-risk clones. These clones are often linked to virulence, antibiotic resistance, and more morbidity. The clonal success of these lineages has been linked to acquisition and spread of mobile genetic elements. The main aim of the study was to explore other molecular markers that explain their global success. A comprehensive set of 528 completely sequenced P. aeruginosa genomes was analyzed. The population structure was examined using Multilocus Sequence Typing (MLST). Strain relationships analysis and diversity analysis were performed using the geoBURST Full Minimum Spanning Tree (MST) algorithm and hierarchical clustering. A phylogenetic tree was constructed using the Unweighted Pair Group Method with Arithmetic mean (UPGMA) algorithm. A panel of previously investigated resistance markers were examined for their link to high-risk clones. A novel panel of molecular markers has been identified in relation to risky clones including armR, ampR, nalC, nalD, mexZ, mexS, gyrAT83I, gyrAD87N, nalCE153Q, nalCS46A, parCS87W, parCS87L, ampRG283E, ampRM288R, pmrALeu71Arg, pmrBGly423Cys, nuoGA890T, pstBE89Q, phoQY85F, arnAA170T, arnDG206C, and gidBE186A. In addition to mobile genetic elements, chromosomal variants in membrane proteins and efflux pump regulators can play an important role in the success of high-risk clones. Finding risk-associated markers during molecular surveillance necessitates applying more infection-control precautions.
Collapse
Affiliation(s)
- Wedad Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
- Correspondence:
| | - Dina H. Amin
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rabab R. Makharita
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Biology Department, Faculty of Science and Arts, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
15
|
Ogunrinu OJ, Norman KN, Vinasco J, Levent G, Lawhon SD, Fajt VR, Volkova VV, Gaire T, Poole TL, Genovese KJ, Wittum TE, Scott HM. Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model. PLoS One 2020; 15:e0242195. [PMID: 33196662 PMCID: PMC7668573 DOI: 10.1371/journal.pone.0242195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Though carbapenems are not licensed for use in food animals in the U.S., carbapenem resistance among Enterobacteriaceae has been identified in farm animals and their environments. The objective of our study was to determine the extent to which older-generation β-lactam antibiotics approved for use in food animals in the U.S. might differentially select for resistance to antibiotics of critical importance to human health, such as carbapenems. Escherichia coli (E. coli) strains from humans, food animals, or the environment bearing a single β-lactamase gene (n = 20 each) for blaTEM-1, blaCMY-2, and blaCTX-M-* or else blaKPC/IMP/NDM (due to limited availability, often in combination with other bla genes), were identified, along with 20 E. coli strains lacking any known beta-lactamase genes. Baseline estimates of intrinsic bacterial fitness were derived from the population growth curves. Effects of ampicillin (32 μg/mL), ceftriaxone (4 μg/mL) and meropenem (4 μg/mL) on each strain and resistance-group also were assessed. Further, in vitro batch cultures were prepared by mixing equal concentrations of 10 representative E. coli strains (two from each resistance gene group), and each mixture was incubated at 37°C for 24 hours in non-antibiotic cation-adjusted Mueller-Hinton II (CAMH-2) broth, ampicillin + CAMH-2 broth (at 2, 4, 8, 16, and 32 μg/mL) and ceftiofur + CAMH-2 broth (at 0.5, 1, 2, 4, and 8μg/mL). Relative and absolute abundance of resistance-groups were estimated phenotypically. Line plots of the raw data were generated, and non-linear Gompertz models and multilevel mixed-effect linear regression models were fitted to the data. The observed strain growth rate distributions were significantly different across the groups. AmpC strains (i.e., blaCMY-2) had distinctly less robust (p < 0.05) growth in ceftriaxone (4 μg/mL) compared to extended-spectrum beta-lactamase (ESBL) producers harboring blaCTX-M-*variants. With increasing beta-lactam antibiotic concentrations, relative proportions of ESBLs and CREs were over-represented in the mixed bacterial communities; importantly, this was more pronounced with ceftiofur than with ampicillin. These results indicate that aminopenicillins and extended-spectrum cephalosporins would be expected to propagate carbapenemase-producing Enterobacteriaceae in food animals if and when Enterobacteriaceae from human health care settings enter the food animal environment.
Collapse
Affiliation(s)
- Olanrewaju J. Ogunrinu
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Javier Vinasco
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Gizem Levent
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Virginia R. Fajt
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas, United States of America
| | - Victoria V. Volkova
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Tara Gaire
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Toni L. Poole
- Southern Plains Agricultural Research Center, United States Department of Agriculture, College Station, Texas, United States of America
| | - Kenneth J. Genovese
- Southern Plains Agricultural Research Center, United States Department of Agriculture, College Station, Texas, United States of America
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Association of Virulence and Antibiotic Resistance in Salmonella-Statistical and Computational Insights into a Selected Set of Clinical Isolates. Microorganisms 2020; 8:microorganisms8101465. [PMID: 32987719 PMCID: PMC7598717 DOI: 10.3390/microorganisms8101465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
The acquisition of antibiotic resistance (AR) by foodborne pathogens, such as Salmonella enterica, has emerged as a serious public health concern. The relationship between the two key survival mechanisms (i.e., antibiotic resistance and virulence) of bacterial pathogens is complex. However, it is unclear if the presence of certain virulence determinants (i.e., virulence genes) and AR have any association in Salmonella. In this study, we report the prevalence of selected virulence genes and their association with AR in a set of phenotypically tested antibiotic-resistant (n = 117) and antibiotic-susceptible (n = 94) clinical isolates of Salmonella collected from Tennessee, USA. Profiling of virulence genes (i.e., virulotyping) in Salmonella isolates (n = 211) was conducted by targeting 13 known virulence genes and a gene for class 1 integron. The association of the presence/absence of virulence genes in an isolate with their AR phenotypes was determined by the machine learning algorithm Random Forest. The analysis revealed that Salmonella virulotypes with gene clusters consisting of avrA, gipA, sodC1, and sopE1 were strongly associated with any resistant phenotypes. To conclude, the results of this exploratory study shed light on the association of specific virulence genes with drug-resistant phenotypes of Salmonella. The presence of certain virulence genes clusters in resistant isolates may become useful for the risk assessment and management of salmonellosis caused by drug-resistant Salmonella in humans.
Collapse
|
17
|
Sommer LM, Johansen HK, Molin S. Antibiotic resistance in Pseudomonas aeruginosa and adaptation to complex dynamic environments. Microb Genom 2020; 6:e000370. [PMID: 32375975 PMCID: PMC7371113 DOI: 10.1099/mgen.0.000370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become a serious threat to human health (WHO Antibacterial Agents in Clinical Development: an Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. Geneva: World Health Organization; 2017), and the ability to predict antibiotic resistance from genome sequencing has become a focal point for the medical community. With this genocentric prediction in mind, we were intrigued about two particular findings for a collection of clinical Pseudomonas aeruginosa isolates (Marvig et al. Nature Genetics 2015;47:57-64; Frimodt-Møller et al. Scientific Reports 2018;8:12512; Bartell et al. Nature Communications 2019;10:629): (i) 15 out of 52 genes found to be frequently targeted by adaptive mutations during the initial infection stage of cystic fibrosis airways ('candidate pathoadaptive genes') (Marvig et al. Nature Genetics 2015;47:57-64) were associated with antibiotic resistance (López-Causapé et al. Fronters in Microbiology 2018;9:685; López-Causapé et al. Antimicrobal Agents and Chemotherapy 2018;62:e02583-17); (ii) there was a parallel lack of resistance development and linkage to the genetic changes in these antibiotic-resistance-associated genes (Frimodt-Møller et al. Scientific Reports 2018;8:12512; Bartell et al. Nature Communications 2019;10:629). In this review, we highlight alternative selective forces that potentially enhance the infection success of P. aeruginosa and focus on the linkage to the 15 pathoadaptive antibiotic-resistance-associated genes, thereby showing the problems we may face when using only genomic information to predict and inform about relevant antibiotic treatment.
Collapse
Affiliation(s)
- Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen Ø, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
The mutational landscape of quinolone resistance in Escherichia coli. PLoS One 2019; 14:e0224650. [PMID: 31689338 PMCID: PMC6830822 DOI: 10.1371/journal.pone.0224650] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
The evolution of antibiotic resistance is influenced by a variety of factors, including the availability of resistance mutations, and the pleiotropic effects of such mutations. Here, we isolate and characterize chromosomal quinolone resistance mutations in E. coli, in order to gain a systematic understanding of the rate and consequences of resistance to this important class of drugs. We isolated over fifty spontaneous resistance mutants on nalidixic acid, ciprofloxacin, and levofloxacin. This set of mutants includes known resistance mutations in gyrA, gyrB, and marR, as well as two novel gyrB mutations. We find that, for most mutations, resistance tends to be higher to nalidixic acid than relative to the other two drugs. Resistance mutations had deleterious impacts on one or more growth parameters, suggesting that quinolone resistance mutations are generally costly. Our findings suggest that the prevalence of specific gyrA alleles amongst clinical isolates are driven by high levels of resistance, at no more cost than other resistance alleles.
Collapse
|
19
|
Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 2019; 8:e47612. [PMID: 31516122 PMCID: PMC6814407 DOI: 10.7554/elife.47612] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial populations vary in their stress tolerance and population structure depending upon whether growth occurs in well-mixed or structured environments. We hypothesized that evolution in biofilms would generate greater genetic diversity than well-mixed environments and lead to different pathways of antibiotic resistance. We used experimental evolution and whole genome sequencing to test how the biofilm lifestyle influenced the rate, genetic mechanisms, and pleiotropic effects of resistance to ciprofloxacin in Acinetobacter baumannii populations. Both evolutionary dynamics and the identities of mutations differed between lifestyle. Planktonic populations experienced selective sweeps of mutations including the primary topoisomerase drug targets, whereas biofilm-adapted populations acquired mutations in regulators of efflux pumps. An overall trade-off between fitness and resistance level emerged, wherein biofilm-adapted clones were less resistant than planktonic but more fit in the absence of drug. However, biofilm populations developed collateral sensitivity to cephalosporins, demonstrating the clinical relevance of lifestyle on the evolution of resistance.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Michelle R Scribner
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Daniel J Snyder
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
20
|
Bartell JA, Sommer LM, Haagensen JAJ, Loch A, Espinosa R, Molin S, Johansen HK. Evolutionary highways to persistent bacterial infection. Nat Commun 2019; 10:629. [PMID: 30733448 PMCID: PMC6367392 DOI: 10.1038/s41467-019-08504-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/10/2019] [Indexed: 01/18/2023] Open
Abstract
Persistent infections require bacteria to evolve from their naïve colonization state by optimizing fitness in the host via simultaneous adaptation of multiple traits, which can obscure evolutionary trends and complicate infection management. Accordingly, here we screen 8 infection-relevant phenotypes of 443 longitudinal Pseudomonas aeruginosa isolates from 39 young cystic fibrosis patients over 10 years. Using statistical modeling, we map evolutionary trajectories and identify trait correlations accounting for patient-specific influences. By integrating previous genetic analyses of 474 isolates, we provide a window into early adaptation to the host, finding: (1) a 2–3 year timeline of rapid adaptation after colonization, (2) variant “naïve” and “adapted” states reflecting discordance between phenotypic and genetic adaptation, (3) adaptive trajectories leading to persistent infection via three distinct evolutionary modes, and (4) new associations between phenotypes and pathoadaptive mutations. Ultimately, we effectively deconvolute complex trait adaptation, offering a framework for evolutionary studies and precision medicine in clinical microbiology. The pathogen Pseudomonas aeruginosa undergoes complex trait adaptation within cystic fibrosis patients. Here, Bartell, Sommer, and colleagues use statistical modeling of longitudinal isolates to characterize the joint genetic and phenotypic evolutionary trajectories of P. aeruginosa within hosts.
Collapse
Affiliation(s)
- Jennifer A Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Lea M Sommer
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen Ø, Denmark.
| | - Janus A J Haagensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anne Loch
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Rocio Espinosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| |
Collapse
|
21
|
Takrami SR, Ranji N, Hakimi F. New Mutations in Ciprofloxacin Resistant Strains of Pseudomonas aeruginosa Isolated from Guilan Province, Northern Iran. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2018. [DOI: 10.3103/s089141681704005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Treepong P, Kos V, Guyeux C, Blanc D, Bertrand X, Valot B, Hocquet D. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect 2018. [DOI: 10.1016/j.cmi.2017.06.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B, Clarke LM, Schoenrock A, Pitre S, Wong A. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli. Genome Biol Evol 2018; 10:667-679. [PMID: 29432584 PMCID: PMC5817949 DOI: 10.1093/gbe/evy030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Evolutionary trade-offs occur when selection on one trait has detrimental effects on other traits. In pathogenic microbes, it has been hypothesized that antibiotic resistance trades off with fitness in the absence of antibiotic. Although studies of single resistance mutations support this hypothesis, it is unclear whether trade-offs are maintained over time, due to compensatory evolution and broader effects of genetic background. Here, we leverage natural variation in 39 extraintestinal clinical isolates of Escherichia coli to assess trade-offs between growth rates and resistance to fluoroquinolone and cephalosporin antibiotics. Whole-genome sequencing identifies a broad range of clinically relevant resistance determinants in these strains. We find evidence for a negative correlation between growth rate and antibiotic resistance, consistent with a persistent trade-off between resistance and growth. However, this relationship is sometimes weak and depends on the environment in which growth rates are measured. Using in vitro selection experiments, we find that compensatory evolution in one environment does not guarantee compensation in other environments. Thus, even in the face of compensatory evolution and other genetic background effects, resistance may be broadly costly, supporting the use of drug restriction protocols to limit the spread of resistance. Furthermore, our study demonstrates the power of using natural variation to study evolutionary trade-offs in microbes.
Collapse
Affiliation(s)
- Prabh Basra
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ahlam Alsaadi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Bryn Hazlett
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | - Andrew Schoenrock
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Research Computing Services, Carleton University, Ottawa, Ontario, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Ferreira S, Correia DR, Oleastro M, Domingues FC. Arcobacter butzleri Ciprofloxacin Resistance: Point Mutations in DNA Gyrase A and Role on Fitness Cost. Microb Drug Resist 2018; 24:915-922. [PMID: 29336679 DOI: 10.1089/mdr.2017.0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arcobacter butzleri is a widely distributed emerging pathogen resistant to various classes of antimicrobial agents, namely fluoroquinolones. A. butzleri resistance to fluoroquinolones is conferred by point mutations at the antibiotic target. The aim of this study was to evaluate mutations at gyrA associated with ciprofloxacin resistance and evaluate whether acquisition of resistance impacts on fitness and stress tolerance of A. butzleri. A. butzleri ciprofloxacin mutants were generated by laboratory induction. Identification of mutations associated with ciprofloxacin resistance was performed by gyrA sequencing. Growth kinetics, cost of fitness, biofilm formation ability, and stress tolerance were assessed. Two amino acid substitutions in the quinolone resistance-determining region of GyrA were identified in the mutant strains, one previously described (Thr-85-Ile) and a new substitution (Asp-89-Tyr). No differences in growth kinetics were recorded between parental and mutant strains; however, fitness cost was variable, according to the genetic background of the strains, and independently of ciprofloxacin resistance. Overall, the ciprofloxacin resistance development did not significantly affect stress tolerance, motility, or biofilm-forming ability. In conclusion, acquisition of ciprofloxacin resistance in A. butzleri is associated with mutations in gyrA and is likely well compensated, with cost of fitness reflecting the diversity in genetic background of this bacterium.
Collapse
Affiliation(s)
- Susana Ferreira
- 1 CICS-UBI-Health Sciences Research Center, University of Beira Interior , Covilhã, Portugal
| | - Daniela R Correia
- 1 CICS-UBI-Health Sciences Research Center, University of Beira Interior , Covilhã, Portugal
| | - Mónica Oleastro
- 2 Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge , National Reference Laboratory for Gastrointestinal Infections, Lisbon, Portugal
| | - Fernanda C Domingues
- 1 CICS-UBI-Health Sciences Research Center, University of Beira Interior , Covilhã, Portugal
| |
Collapse
|
25
|
Fuzi M, Szabo D, Csercsik R. Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Front Microbiol 2017; 8:2261. [PMID: 29250038 PMCID: PMC5715326 DOI: 10.3389/fmicb.2017.02261] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated.
Collapse
Affiliation(s)
- Miklos Fuzi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Rita Csercsik
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Barbosa C, Trebosc V, Kemmer C, Rosenstiel P, Beardmore R, Schulenburg H, Jansen G. Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects. Mol Biol Evol 2017; 34:2229-2244. [PMID: 28541480 PMCID: PMC5850482 DOI: 10.1093/molbev/msx158] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When bacteria evolve resistance against a particular antibiotic, they may simultaneously gain increased sensitivity against a second one. Such collateral sensitivity may be exploited to develop novel, sustainable antibiotic treatment strategies aimed at containing the current, dramatic spread of drug resistance. To date, the presence and molecular basis of collateral sensitivity has only been studied in few bacterial species and is unknown for opportunistic human pathogens such as Pseudomonas aeruginosa. In the present study, we assessed patterns of collateral effects by experimentally evolving 160 independent populations of P. aeruginosa to high levels of resistance against eight commonly used antibiotics. The bacteria evolved resistance rapidly and expressed both collateral sensitivity and cross-resistance. The pattern of such collateral effects differed to those previously reported for other bacterial species, suggesting interspecific differences in the underlying evolutionary trade-offs. Intriguingly, we also identified contrasting patterns of collateral sensitivity and cross-resistance among the replicate populations adapted to the same drug. Whole-genome sequencing of 81 independently evolved populations revealed distinct evolutionary paths of resistance to the selective drug, which determined whether bacteria became cross-resistant or collaterally sensitive towards others. Based on genomic and functional genetic analysis, we demonstrate that collateral sensitivity can result from resistance mutations in regulatory genes such as nalC or mexZ, which mediate aminoglycoside sensitivity in β-lactam-adapted populations, or the two-component regulatory system gene pmrB, which enhances penicillin sensitivity in gentamicin-resistant populations. Our findings highlight substantial variation in the evolved collateral effects among replicates, which in turn determine their potential in antibiotic therapy.
Collapse
Affiliation(s)
- Camilo Barbosa
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Kiel, Germany
| | | | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), CAU Kiel, Kiel, Germany
| | | | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Kiel, Germany
| | - Gunther Jansen
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Kiel, Germany
| |
Collapse
|
27
|
Metabolic Compensation of Fitness Costs Is a General Outcome for Antibiotic-Resistant Pseudomonas aeruginosa Mutants Overexpressing Efflux Pumps. mBio 2017; 8:mBio.00500-17. [PMID: 28743808 PMCID: PMC5527304 DOI: 10.1128/mbio.00500-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H+ accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic “reaccommodation” might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs.
Collapse
|
28
|
Collier ZJ, Gottlieb LJ, Alverdy JC. Stochasticity among Antibiotic-Resistance Profiles of Common Burn-Related Pathogens over a Six-Year Period. Surg Infect (Larchmt) 2017; 18:327-335. [DOI: 10.1089/sur.2016.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Lawrence J. Gottlieb
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - John C. Alverdy
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
- Department of Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem 2017; 61:37-48. [PMID: 28258228 DOI: 10.1042/ebc20160057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
Acquisition of antibiotic resistance is a relevant problem for human health. The selection and spread of antibiotic-resistant organisms not only compromise the treatment of infectious diseases, but also the implementation of different therapeutic procedures as organ transplantation, advanced surgery or chemotherapy, all of which require proficient methods for avoiding infections. It has been generally accepted that the acquisition of antibiotic resistance will produce a general metabolic burden: in the absence of selection, the resistant organisms would be outcompeted by the susceptible ones. If that was always true, discontinuation of antibiotic use would render the disappearance of resistant microorganisms. However, several studies have shown that, once resistance emerges, the recovery of a fully susceptible population even in the absence of antibiotics is not easy. In the present study, we review updated information on the effect of the acquisition of antibiotic resistance in bacterial physiology as well as on the mechanisms that allow the compensation of the fitness costs associated with the acquisition of resistance.
Collapse
|
30
|
Wong A. Epistasis and the Evolution of Antimicrobial Resistance. Front Microbiol 2017; 8:246. [PMID: 28261193 PMCID: PMC5313483 DOI: 10.3389/fmicb.2017.00246] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The fitness effects of a mutation can depend, sometimes dramatically, on genetic background; this phenomenon is often referred to as “epistasis.” Epistasis can have important practical consequences in the context of antimicrobial resistance (AMR). For example, genetic background plays an important role in determining the costs of resistance, and hence in whether resistance will persist in the absence of antibiotic pressure. Furthermore, interactions between resistance mutations can have important implications for the evolution of multi-drug resistance. I argue that there is a need to better characterize the extent and nature of epistasis for mutations and horizontally transferred elements conferring AMR, particularly in clinical contexts. Furthermore, I suggest that epistasis should be an important consideration in attempts to slow or limit the evolution of AMR.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, Ottawa ON, Canada
| |
Collapse
|
31
|
Effect of Trehalose and Trehalose Transport on the Tolerance of Clostridium perfringens to Environmental Stress in a Wild Type Strain and Its Fluoroquinolone-Resistant Mutant. Int J Microbiol 2017; 2016:4829716. [PMID: 28058047 PMCID: PMC5183799 DOI: 10.1155/2016/4829716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022] Open
Abstract
Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose.
Collapse
|
32
|
Kaiser SJ, Mutters NT, DeRosa A, Ewers C, Frank U, Günther F. Determinants for persistence of Pseudomonas aeruginosa in hospitals: interplay between resistance, virulence and biofilm formation. Eur J Clin Microbiol Infect Dis 2016; 36:243-253. [PMID: 27734161 DOI: 10.1007/s10096-016-2792-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa (Pa) is one of the major bacterial pathogens causing nosocomial infections. During the past few decades, multidrug-resistant (MDR) and extensively drug-resistant (XDR) lineages of Pa have emerged in hospital settings with increasing numbers. However, it remains unclear which determinants of Pa facilitated this spread. A total of 211 clinical XDR and 38 susceptible clinical Pa isolates (nonXDR), as well as 47 environmental isolates (EI), were collected at the Heidelberg University Hospital. We used RAPD PCR to identify genetic clusters. Carriage of carbapenamases (CPM) and virulence genes were analyzed by PCR, biofilm formation capacity was assessed, in vitro fitness was evaluated using competitive growth assays, and interaction with the host's immune system was analyzed using serum killing and neutrophil killing assays. XDR isolates showed significantly elevated biofilm formation (p < 0.05) and higher competitive fitness compared to nonXDR and EI isolates. Thirty percent (62/205) of the XDR isolates carried a CPM. Similarities in distribution of virulence factors, as well as biofilm formation properties, between CPM+ Pa isolates and EI and between CPM- and nonXDR isolates were detected. Molecular typing revealed two distinct genetic clusters within the XDR population, which were characterized by even higher biofilm formation. In contrast, XDR isolates were more susceptible to the immune response than nonXDR isolates. Our study provides evidence that the ability to form biofilms is an outstanding determinant for persistence and endemic spread of Pa in the hospital setting.
Collapse
Affiliation(s)
- S J Kaiser
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - N T Mutters
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - A DeRosa
- Department of Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - C Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - U Frank
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - F Günther
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
33
|
Qi Q, Toll-Riera M, Heilbron K, Preston GM, MacLean RC. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proc Biol Sci 2016; 283:rspb.2015.2452. [PMID: 26763710 PMCID: PMC4721101 DOI: 10.1098/rspb.2015.2452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings.
Collapse
Affiliation(s)
- Qin Qi
- Department of Zoology, University of Oxford, Oxford, UK Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, UK Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Karl Heilbron
- Department of Zoology, University of Oxford, Oxford, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
34
|
Agnello M, Finkel SE, Wong-Beringer A. Fitness Cost of Fluoroquinolone Resistance in Clinical Isolates of Pseudomonas aeruginosa Differs by Type III Secretion Genotype. Front Microbiol 2016; 7:1591. [PMID: 27757111 PMCID: PMC5047889 DOI: 10.3389/fmicb.2016.01591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is highly prevalent among clinical strains of Pseudomonas aeruginosa, limiting treatment options. We have reported previously that highly virulent strains containing the exoU gene of the type III secretion system are more likely to be FQ-resistant than strains containing the exoS gene, as well as more likely to acquire resistance-conferring mutations in gyrA/B and parC/E. We hypothesize that FQ-resistance imposes a lower fitness cost on exoU compared to exoS strains, thus allowing for better adaptation to the FQ-rich clinical environment. We created isogenic mutants containing a common FQ-resistance conferring point mutation in parC from three exoU to three exoS clinical isolates and tested fitness in vitro using head-to-head competition assays. The mutation differentially affected fitness in the exoU and exoS strains tested. While the addition of the parC mutation dramatically increased fitness in one of the exoU strains leaving the other two unaffected, all three exoS strains displayed a general decrease in fitness. In addition, we found that exoU strains may be able to compensate for the fitness costs associated with the mutation through better regulation of supercoiling compared to the exoS strains. These results may provide a biological explanation for the observed predominance of the virulent exoU genotype in FQ-resistant clinical subpopulations and represent the first investigation into potential differences in fitness costs of FQ-resistance that are linked to the virulence genotype of P. aeruginosa. Understanding the fitness costs of antibiotic resistance and possibilities of compensation for these costs is essential for the rational development of strategies to combat the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Melissa Agnello
- School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
35
|
Nouri R, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol 2016; 47:925-930. [PMID: 27522930 PMCID: PMC5052375 DOI: 10.1016/j.bjm.2016.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/25/2016] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to examine mutations in the quinolone-resistance-determining region (QRDR) of gyrA and parC genes in Pseudomonas aeruginosa isolates. A total of 100 clinical P. aeruginosa isolates were collected from different university-affiliated hospitals in Tabriz, Iran. Minimum inhibitory concentrations (MICs) of ciprofloxacin and levofloxacin were evaluated by agar dilution assay. DNA sequences of the QRDR of gyrA and parC were determined by the dideoxy chain termination method. Of the total 100 isolates, 64 were resistant to ciprofloxacin. No amino acid alterations were detected in gyrA or parC genes of the ciprofloxacin susceptible or ciprofloxacin intermediate isolates. Thr-83 → Ile substitution in gyrA was found in all 64 ciprofloxacin resistant isolates. Forty-four (68.75%) of them had additional substitution in parC. A correlation was found between the number of the amino acid alterations in the QRDR of gyrA and parC and the level of ciprofloxacin and levofloxacin resistance of the P. aeruginosa isolates. Ala-88 → Pro alteration in parC was generally found in high level ciprofloxacin resistant isolates, which were suggested to be responsible for fluoroquinolone resistance. These findings showed that in P. aeruginosa, gyrA was the primary target for fluoroquinolone and additional mutation in parC led to highly resistant isolates.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran; Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran; Tabriz University of Medical Sciences, Student Research Committee, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran; Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran.
| | - Alka Hasani
- Tabriz University of Medical Sciences, Infectious and Tropical Diseases Research Center, Tabriz, Iran; Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran
| | - Mohammad Aghazadeh
- Tabriz University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Tabriz University of Medical Sciences, Biotechnology Research Center, Tabriz, Iran
| |
Collapse
|
36
|
Roux D, Danilchanka O, Guillard T, Cattoir V, Aschard H, Fu Y, Angoulvant F, Messika J, Ricard JD, Mekalanos JJ, Lory S, Pier GB, Skurnik D. Fitness cost of antibiotic susceptibility during bacterial infection. Sci Transl Med 2016. [PMID: 26203082 DOI: 10.1126/scitranslmed.aab1621] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.
Collapse
Affiliation(s)
- Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. INSERM, IAME, UMR 1137, F-75018 Paris, France. Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| | - Olga Danilchanka
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. EA 4687, Faculté de Médecine, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Vincent Cattoir
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. EA 4655, Faculté de Médecine, Université de Caen Basse-Normandie, 14033 Caen, France
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francois Angoulvant
- Hôpitaux de Paris (AP-HP), Pédiatrique Emergency Département, Hôpital Necker-Enfants Malades and Université Paris Descartes, 75015 Paris, France
| | | | | | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol 2016; 65:261-271. [PMID: 26860081 DOI: 10.1099/jmm.0.000229] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Rochell Davis
- Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Paul D. Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
38
|
Suppression of Emergence of Resistance in Pathogenic Bacteria: Keeping Our Powder Dry, Part 2. Antimicrob Agents Chemother 2015; 60:1194-201. [PMID: 26711766 DOI: 10.1128/aac.02231-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are in a crisis of bacterial resistance. For economic reasons, most pharmaceutical companies are abandoning antimicrobial discovery efforts, while, in health care itself, infection control and antibiotic stewardship programs have generally failed to prevent the spread of drug-resistant bacteria. At this point, what can be done? The first step has been taken. Governments and international bodies have declared there is a worldwide crisis in antibiotic drug resistance. As discovery efforts begin anew, what more can be done to protect newly developing agents and improve the use of new drugs to suppress resistance emergence? A neglected path has been the use of recent knowledge regarding antibiotic dosing as single agents and in combination to minimize resistance emergence, while also providing sufficient early bacterial kill. In this review, we look at the data for resistance suppression. Approaches include increasing the intensity of therapy to suppress resistant subpopulations; developing concepts of clinical breakpoints to include issues surrounding suppression of resistance; and paying attention to the duration of therapy, which is another important issue for resistance suppression. New understanding of optimizing combination therapy is of interest for difficult-to-treat pathogens like Pseudomonas aeruginosa, Acinetobacter spp., and multidrug-resistant (MDR) Enterobacteriaceae. These lessons need to be applied to our old drugs as well to preserve them and to be put into national and international antibiotic resistance strategies. As importantly, from a regulatory perspective, new chemical entities should have a resistance suppression plan at the time of regulatory review. In this way, we can make the best of our current situation and improve future prospects.
Collapse
|
39
|
Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, Martinez-Ramos I, Hittle LE, Davis MR, Damron FH, Liechti GW, Puchałka J, dos Santos VAPM, Ernst RK, Papin JA, Albertí S, Oliver A, Goldberg JB. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics 2015; 16:883. [PMID: 26519161 PMCID: PMC4628258 DOI: 10.1186/s12864-015-2069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 01/24/2023] Open
Abstract
Background Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized. Results This strain displays phenotypes that have been associated with chronic respiratory infections in CF including alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels to β-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a 6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. aeruginosa genome sequences. Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids and lipids is up-regulated when compared to PAO1 and metabolic modeling identified further potential differences between PAO1 and PAHM4. Conclusions This work provides insights into the potential differential adaptation of this bacterium to the lung of patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the development of disease-appropriate treatment strategies for P. aeruginosa infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2069-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John J Varga
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Xavier Mulet
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Piotr Bielecki
- Synthetic and Systems Biology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Present address: Immunobiology Department, Yale University, School of Medicine, New Haven, CT, 06511, USA.
| | - Jennifer A Bartell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Joshua P Owings
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Lauren E Hittle
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Michael R Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - George W Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Jacek Puchałka
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain. .,Present address: Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany.
| | - Vitor A P Martins dos Santos
- Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands. .,Present address: Chair of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands. .,Present address: LifeGlimmer GmbH, Berlin, Germany.
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Sebastian Albertí
- IUNICS, University of the Balearic Islands, Palma, de Mallorca, Spain.
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
40
|
Gómez-Zorrilla S, Camoez M, Tubau F, Cañizares R, Periche E, Dominguez MA, Ariza J, Peña C. Prospective observational study of prior rectal colonization status as a predictor for subsequent development of Pseudomonas aeruginosa clinical infections. Antimicrob Agents Chemother 2015; 59:5213-9. [PMID: 26077248 PMCID: PMC4538513 DOI: 10.1128/aac.04636-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/06/2015] [Indexed: 01/17/2023] Open
Abstract
The potential role of Pseudomonas aeruginosa (PA) intestinal colonization in the subsequent development of infections has not been thoroughly investigated. The aims of this study were to assess the role of PA intestinal colonization as a predictor of subsequent infections and to investigate the risk factors associated with the development of PA infection in patients in the intensive care unit (ICU). For this purpose, a prospective study was conducted that included (i) active surveillance of PA rectal colonization at ICU admission and weekly until ICU discharge, (ii) detection of PA clinical infections, and (iii) genotypic analysis by pulsed-field gel electrophoresis (PFGE). A total of 414 patients were included, of whom 179 (43%) were colonized with PA. Among the 77 patients who developed PA infection, 69 (90%) had prior PA colonization, and 60 (87%) of these showed genotyping concordance between rectal and clinical isolates. The probability of PA infection 14 days after ICU admission was 26% for carriers versus 5% for noncarriers (P < 0.001). Cox regression analysis identified prior PA rectal colonization as the main predictor of PA infection (hazard ratio [HR], 15.23; 95% confidence interval [CI], 6.9 to 33.7; P < 0.001). Prior use of nonantipseudomonal penicillins was also identified as an independent variable associated with PA infection (HR, 2.15; 95% CI, 1.3 to 3.55; P < 0.003). Our study demonstrated that prior PA rectal colonization is a key factor for developing PA infection.
Collapse
Affiliation(s)
- Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Mariana Camoez
- Microbiology Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Fe Tubau
- Microbiology Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Rosario Cañizares
- Intensive Care Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Elisabet Periche
- Intensive Care Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - M Angeles Dominguez
- Microbiology Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Javier Ariza
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Carmen Peña
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Concepción-Acevedo J, Weiss HN, Chaudhry WN, Levin BR. Malthusian Parameters as Estimators of the Fitness of Microbes: A Cautionary Tale about the Low Side of High Throughput. PLoS One 2015; 10:e0126915. [PMID: 26114477 PMCID: PMC4482697 DOI: 10.1371/journal.pone.0126915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/09/2015] [Indexed: 01/29/2023] Open
Abstract
The maximum exponential growth rate, the Malthusian parameter (MP), is commonly used as a measure of fitness in experimental studies of adaptive evolution and of the effects of antibiotic resistance and other genes on the fitness of planktonic microbes. Thanks to automated, multi-well optical density plate readers and computers, with little hands-on effort investigators can readily obtain hundreds of estimates of MPs in less than a day. Here we compare estimates of the relative fitness of antibiotic susceptible and resistant strains of E. coli, Pseudomonas aeruginosa and Staphylococcus aureus based on MP data obtained with automated multi-well plate readers with the results from pairwise competition experiments. This leads us to question the reliability of estimates of MP obtained with these high throughput devices and the utility of these estimates of the maximum growth rates to detect fitness differences.
Collapse
Affiliation(s)
| | - Howard N. Weiss
- Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Waqas Nasir Chaudhry
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli. Antimicrob Agents Chemother 2015; 59:4662-8. [PMID: 26014933 DOI: 10.1128/aac.00665-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase- and topoisomerase IV-encoding genes and mutations in regulatory genes affecting different efflux systems, among others. We studied the role of the acquisition of a mutation in the gyrA gene in the virulence and protein expression of uropathogenic Escherichia coli (UPEC). The HC14366M strain carrying a mutation in the gyrA gene (S83L) was found to lose the capacity to cause cystitis and pyelonephritis mainly due to a decrease in the expression of the fimA, papA, papB, and ompA genes. The levels of expression of the fimA, papB, and ompA genes were recovered on complementing the strain with a plasmid containing the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced the virulence of the bacteria, likely in association with the effect of DNA supercoiling on the expression of several virulence factors and proteins, thereby decreasing their capacity to cause cystitis and pyelonephritis.
Collapse
|
43
|
Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro. Antimicrob Agents Chemother 2014; 59:1794-6. [PMID: 25534738 DOI: 10.1128/aac.04503-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Point mutations conferring resistance to fluoroquinolones were introduced in the gyr genes of the reference strain Clostridium difficile 630. Only mutants with the substitution Thr-82→Ile in GyrA, which characterizes the hypervirulent epidemic clone III/027/NAP1, were resistant to all fluoroquinolones tested. The absence of a fitness cost in vitro for the most frequent mutations detected in resistant clinical isolates suggests that resistance will be maintained even in the absence of antibiotic pressure.
Collapse
|
44
|
Global Phenotypic Characterization of Effects of Fluoroquinolone Resistance Selection on the Metabolic Activities and Drug Susceptibilities of Clostridium perfringens Strains. Int J Microbiol 2014; 2014:456979. [PMID: 25587280 PMCID: PMC4283427 DOI: 10.1155/2014/456979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
Fluoroquinolone resistance affects toxin production of Clostridium perfringens strains differently. To investigate the effect of fluoroquinolone resistance selection on global changes in metabolic activities and drug susceptibilities, four C. perfringens strains and their norfloxacin-, ciprofloxacin-, and gatifloxacin-resistant mutants were compared in nearly 2000 assays, using phenotype microarray plates. Variations among mutant strains resulting from resistance selection were observed in all aspects of metabolism. Carbon utilization, pH range, osmotic tolerance, and chemical sensitivity of resistant strains were affected differently in the resistant mutants depending on both the bacterial genotype and the fluoroquinolone to which the bacterium was resistant. The susceptibilities to gentamicin and erythromycin of all resistant mutants except one increased, but some resistant strains were less susceptible to amoxicillin, cefoxitin, ceftriaxone, chloramphenicol, and metronidazole than their wild types. Sensitivity to ethidium bromide decreased in some resistant mutants and increased in others. Microarray analysis of two gatifloxacin-resistant mutants showed changes in metabolic activities that were correlated with altered expression of various genes. Both the chemical structures of fluoroquinolones and the genomic makeup of the wild types influenced the changes found in resistant mutants, which may explain some inconsistent reports of the effects of therapeutic use of fluoroquinolones on clinical isolates of bacteria.
Collapse
|
45
|
Moor H, Teppo A, Lahesaare A, Kivisaar M, Teras R. Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF. MICROBIOLOGY-SGM 2014; 160:2681-2693. [PMID: 25253613 DOI: 10.1099/mic.0.082503-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteria form biofilm as a response to a number of environmental signals that are mediated by global transcription regulators and alarmones. Here we report the involvement of the global transcription regulator Fis in Pseudomonas putida biofilm formation through regulation of lapA and lapF genes. The major component of P. putida biofilm is proteinaceous and two large adhesive proteins, LapA and LapF, are known to play a key role in its formation. We have previously shown that Fis overexpression enhances P. putida biofilm formation. In this study, we used mini-Tn5 transposon mutagenesis to select potential Fis-regulated genes involved in biofilm formation. A total of 90 % of the studied transposon mutants carried insertions in the lap genes. Since our experiments showed that Fis-enhanced biofilm is mostly proteinaceous, the amounts of LapA and LapF from P. putida cells lysates were quantified using SDS-PAGE. Fis overexpression increases the quantity of LapA 1.6 times and decreases the amount of LapF at least 4 times compared to the wild-type cells. The increased LapA expression caused by Fis overexpression was confirmed by FACS analysis measuring the amount of LapA-GFP fusion protein. Our results suggest that the profusion of LapA in the Fis-overexpressed cells causes enhanced biofilm formation in mature stages of P. putida biofilm and LapF has a minor role in P. putida biofilm formation.
Collapse
Affiliation(s)
- Hanna Moor
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Annika Teppo
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Andrio Lahesaare
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Riho Teras
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
46
|
Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl 2014; 8:273-83. [PMID: 25861385 PMCID: PMC4380921 DOI: 10.1111/eva.12196] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance is increasing in pathogenic microbial populations and is thus a major threat to public health. The fate of a resistance mutation in pathogen populations is determined in part by its fitness. Mutations that suffer little or no fitness cost are more likely to persist in the absence of antibiotic treatment. In this review, we performed a meta-analysis to investigate the fitness costs associated with single mutational events that confer resistance. Generally, these mutations were costly, although several drug classes and species of bacteria on average did not show a cost. Further investigations into the rate and fitness values of compensatory mutations that alleviate the costs of resistance will help us to better understand both the emergence and management of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Anita H Melnyk
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada
| | - Alex Wong
- Department of Biology, Carleton University Ottawa, ON, Canada
| | - Rees Kassen
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
47
|
Pseudomonas aeruginosa bacteremia after burn injury: the impact of multiple-drug resistance. J Burn Care Res 2014; 34:649-58. [PMID: 23817000 DOI: 10.1097/bcr.0b013e318280e2c7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To evaluate the clinical impact of multiple-drug resistance in burn patients with Pseudomonas aeruginosa (Pa) bacteremia. A retrospective cohort study in a 10-bed burn intensive care unit (BICU) was performed. Univariate and multivariate analyses were used to analyze the influence of multiple-drug resistance on mortality and length of BICU stay in Pa bacteremic patients. During a 21-year study period (1989-2009), 87 patients with Pa bacteremia were identified; 45 patients had multiple-drug resistant (MDR) strains and 42 susceptible strains. On comparison of the two populations, one with multiple-drug resistant strains and the other with the susceptible strains, the following parameters were found to be significantly different in the univariate analysis: age (32.7 vs 43.6 years; P = .013), sex (males: 91.1 vs 66.7%; P = .005), intubation status on admission (75.6 vs. 54.8%; P = .041), escharotomy (57.8 vs 33.3%; P = .022), burn size (51.0 vs 35.3% of TBSA; P = .002) and Abbreviated Burn Severity Index score (9.2 vs 8.1; P = .048). In terms of outcome parameters, multiple-drug resistance was not significantly related to mortality (adjusted odds ratio 1.076; 95% confidence interval [CI] 0.356-3.254; P = .897) and length of BICU stay after Pa bacteremia (Kaplan-Meier analysis log-rank test P = .945; Cox's proportional hazards regression hazards ratio, 0.994; 95% CI 0.513-1.925; P = .985) in the univariate and multivariate analyses. The data from this study suggest that multiple-drug resistance is not associated with significant increases in mortality and length of BICU stay among burn patients with Pa bacteremia.
Collapse
|
48
|
Park M, Sutherland JB, Kim JN, Rafii F. Effect of Fluoroquinolone Resistance Selection on the Fitness of Three Strains of Clostridium perfringens. Microb Drug Resist 2013; 19:421-7. [DOI: 10.1089/mdr.2013.0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - John B. Sutherland
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Jong Nam Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
49
|
Kiem S, Schentag JJ. Correlations between Microbiological Outcomes and Clinical Responses in Patients with Severe Pneumonia. Infect Chemother 2013; 45:283-91. [PMID: 24396629 PMCID: PMC3848515 DOI: 10.3947/ic.2013.45.3.283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022] Open
Abstract
Background In treatment of pneumonia, microorganisms sometimes persist, appear or reappear despite good clinical responses. On the other hand, recent increasing antibiotic resistance emphases the goal of rapid eradication of pathogen in severe infection. This study was planned to evaluate the correlations between microbiological outcomes and clinical responses in severe pneumonia. Materials and Methods Data was gathered from 3 clinical trials regarding severe pneumonia. Microbiological outcomes, determined by serial culture of respiratory tract samples,were compared with clinical outcomes. Results In total, 146 bacterial strains from 76 patients were analyzed. While clinical success was generally related to total or partial eradication of isolated organisms, Acinetobacter, Enterobacter, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia were often not eradicated and yet were observed in 56% of cases considered clinically successful at the end of antibiotic treatment. Most of the non-eradicated strains (71%) already had or developed resistance against the antibiotics used for treatment. Ten patients relapsed during the follow-up period; 7 of these relapses were associated with 10 non-eradicated organisms. Conclusions These data raise concern about the pathogenicity of bacteria that persist in the respiratory tract even though good clinical outcomes of pneumonia are achieved, especially when Acinetobacter, Enterobacter, P. aeruginosa, or S. maltophilia were involved. Thus, clinical relapse and development of drug resistance by non-eradicated organisms may be raised.
Collapse
Affiliation(s)
- Sungmin Kiem
- Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Jerome J Schentag
- School of Pharmacy and Pharmaceutical Sciences, The University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
50
|
Angst DC, Hall AR. The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evol Biol 2013; 13:163. [PMID: 23914906 PMCID: PMC3751127 DOI: 10.1186/1471-2148-13-163] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/25/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The persistence of antibiotic resistance depends on the fitness effects of resistance elements in the absence of antibiotics. Recent work shows that the fitness effect of a given resistance mutation is influenced by other resistance mutations on the same genome. However, resistant bacteria acquire additional beneficial mutations during evolution in the absence of antibiotics that do not alter resistance directly but may modify the fitness effects of new resistance mutations. RESULTS We experimentally evolved rifampicin-resistant and sensitive Escherichia coli in a drug-free environment, before measuring the effects of new resistance elements on fitness in antibiotic-free conditions. Streptomycin-resistance mutations had small fitness effects in rifampicin-resistant genotypes that had adapted to antibiotic-free growth medium, compared to the same genotypes without adaptation. We observed a similar effect when resistance was encoded by a different mechanism and carried on a plasmid. Antibiotic-sensitive bacteria that adapted to the same conditions showed the same pattern for some resistance elements but not others. CONCLUSIONS Epistatic variation of costs of resistance can result from evolution in the absence of antibiotics, as well as the presence of other resistance mutations.
Collapse
Affiliation(s)
- Daniel C Angst
- Institute of Integrative Biology, ETH Zürich, Zürich, CH-8092, Switzerland
| | | |
Collapse
|