1
|
Durgun ME, Kahraman E, Hacıoğlu M, Güngör S, Özsoy Y. Posaconazole micelles for ocular delivery: in vitro permeation, ocular irritation and antifungal activity studies. Drug Deliv Transl Res 2022; 12:662-675. [PMID: 33830458 DOI: 10.1007/s13346-021-00974-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Posaconazole (PSC) is a triazole group anti-fungal agent with the widest spectrum. Although there is no commercially available ocular dosage form, its diluted oral suspension preparation (Noxafil®) is used as off-label in topical treatment of severe keratitis and sclerokeratitis in the clinic. However, ocular bioavailability of PSC suspension form is extremely low due to its highly lipophilic character. Thus, there is a clinical need to improve its ocular bioavailability and to develop novel delivery system for the treatment of ocular fungal infections. Herein, we studied ex vivo permeation, penetration, anti-fungal activity, and Hen's Egg Test-Chorioallantoic Membrane (HET-CAM) toxicity tests in order to assess ocular targeting of PSC micelles, which were optimized in our previous study. The results indicated that micellar carrier system increased the permeability of PSC to eye tissues. Micelles showed higher affinity to ocular tissues than that of commercial oral suspension of PSC (Noxafil®). In vitro anti-fungal activity data also confirmed the efficacy of PSC loaded micellar formulations against Candida. albicans strains. The relative safety of the optimized micelles on the ocular tissue was shown with the HET-CAM toxicity test. In conclusion, micellar systems could be a promising strategy for the effective and safe delivery of PSC in the treatment of ocular fungal infections.
Collapse
Affiliation(s)
- Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | - Emine Kahraman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mayram Hacıoğlu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Quindós G, Gil-Alonso S, Marcos-Arias C, Sevillano E, Mateo E, Jauregizar N, Eraso E. Therapeutic tools for oral candidiasis: Current and new antifungal drugs. Med Oral Patol Oral Cir Bucal 2019; 24:e172-e180. [PMID: 30818309 PMCID: PMC6441600 DOI: 10.4317/medoral.22978] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Candidiasis is one of the most common opportunistic oral infections that presents different acute and chronic clinical presentations with diverse diagnostic and therapeutic approaches. The present study carries out a bibliographic review on the therapeutic tools available against oral candidiasis and their usefulness in each clinical situation. MATERIAL AND METHODS Recent studies on treatment of oral candidiasis were retrieved from PubMed and Cochrane Library. RESULTS Nystatin and miconazole are the most commonly used topical antifungal drugs. Both antifungal drugs are very effective but need a long time of use to eradicate the infection. The pharmacological presentations of miconazole are more comfortable for patients but this drug may interact with other drugs and this fact should be assessed before use. Other topical alternatives for oral candidiasis, such as amphotericin B or clotrimazole, are not available in many countries. Oral fluconazole is effective in treating oral candidiasis that does not respond to topical treatment. Other systemic treatment alternatives, oral or intravenous, less used are itraconazole, voriconazole or posaconazole. Available novelties include echinocandins (anidulafungin, caspofungin) and isavuconazole. Echinocandins can only be used intravenously. Isavuconazole is available for oral and intravenous use. Other hopeful alternatives are new drugs, such as ibrexafungerp, or the use of antibodies, cytokines and antimicrobial peptides. CONCLUSIONS Nystatin, miconazole, and fluconazole are very effective for treating oral candidiasis. There are systemic alternatives for treating recalcitrant infections, such as the new triazoles, echinocandins, or lipidic presentations of amphotericin B.
Collapse
Affiliation(s)
- G Quindós
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado 699, 48080 Bilbao, (Spain),
| | | | | | | | | | | | | |
Collapse
|
3
|
In Vitro Antifungal Susceptibility of Candida Species Isolated from Iranian Patients with Denture Stomatitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3086586. [PMID: 29888258 PMCID: PMC5977002 DOI: 10.1155/2018/3086586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 11/17/2022]
Abstract
Background Candida-associated denture stomatitis (CADS) is a common fungal infection in people who wear dentures. The main objective of this study was to make molecular identification of causative agents of CADS and in vitro antifungal susceptibility testing (AFST) in the Iranian patients with denture stomatitis. Methods A total of 134 Candida spp. were obtained from patients with denture stomatitis. The Candida spp. were identified using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) involving the universal internal transcribed spacer (ITS1 and ITS4) primers, which were subjected to digestion with MspI and BlnI restriction enzymes. The in vitro antifungal susceptibility of Candida spp. to fluconazole (FLC), terbinafine (TRB), itraconazole (ITC), voriconazole (VRC), posaconazole (POS), ketoconazole (KET), amphotericin B (AMB), and caspofungin (CAS) was evaluated using the Clinical and Laboratory Standards Institute M27-A3 and M27-S4 guidelines. Results Overall, C. albicans was the most commonly isolated species (n = 84; 62.6%), followed by C. glabrata (n = 23; 17.2%), C. tropicalis (n = 16; 12%), and C. parapsilosis (n = 11; 8.2%). Posaconazole had the lowest geometric mean minimum inhibitory concentration (MIC) (0.03 μg/ml), followed by AMB (0.05 μg/ml), ITC (0.08 μg/ml), VRC (0.11 μg/ml), CAS (0.12 μg/ml), KET (0.15 μg/ml), and FLC (0.26 μg/ml). Discussion Our study showed that C. albicans was most prevalent in Iranian patients with CADS and was susceptible to both azoles and amphotericin B. In addition, POS could be an appropriate alternative to the current antifungal agents used for the treatment of CADS, as well as in the treatment of recurrent candidiasis.
Collapse
|
4
|
Rabelo VW, Santos TF, Terra L, Santana MV, Castro HC, Rodrigues CR, Abreu PA. Targeting CYP51 for drug design by the contributions of molecular modeling. Fundam Clin Pharmacol 2016; 31:37-53. [PMID: 27487199 DOI: 10.1111/fcp.12230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
CYP51 is an enzyme of sterol biosynthesis pathway present in animals, plants, protozoa and fungi. This enzyme is described as an important drug target that is still of interest. Therefore, in this work, we reviewed the structure and function of CYP51 and explored the molecular modeling approaches for the development of new antifungal and antiprotozoans that target this enzyme. Crystallographic structures of CYP51 of some organisms have already been described in the literature, which enable the construction of homology models of other organisms' enzymes and molecular docking studies of new ligands. The binding mode and interactions of some new series of azoles with antifungal or antiprotozoan activities has been studied and showed important residues of the active site. Molecular modeling is an important tool to be explored for the discovery and optimization of CYP51 inhibitors with better activities, pharmacokinetics, and toxicological profiles.
Collapse
Affiliation(s)
- Vitor W Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil
| | - Taísa F Santos
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil
| | - Luciana Terra
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LabiEMol), Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho Outeiro de São João Baptista s/n, Centro, CEP 24210130, Niterói, RJ, Brazil
| | - Marcos V Santana
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LabiEMol), Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho Outeiro de São João Baptista s/n, Centro, CEP 24210130, Niterói, RJ, Brazil
| | - Helena C Castro
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LabiEMol), Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho Outeiro de São João Baptista s/n, Centro, CEP 24210130, Niterói, RJ, Brazil
| | - Carlos R Rodrigues
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Paula A Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas (LAMCIFAR), Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Avenida São José do Barreto 767, CEP 27965-045, Macaé, RJ, Brazil
| |
Collapse
|
5
|
Drug-Drug Interaction Associated with Mold-Active Triazoles among Hospitalized Patients. Antimicrob Agents Chemother 2016; 60:3398-406. [PMID: 27001815 DOI: 10.1128/aac.00054-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/11/2016] [Indexed: 12/23/2022] Open
Abstract
The majority of hospitalized patients receiving mold-active triazoles are at risk of drug-drug interactions (DDIs). Efforts are needed to increase awareness of DDIs that pose a serious risk of adverse events. Triazoles remain the most commonly utilized antifungals. Recent developments have included the mold-active triazoles (MATs) itraconazole, voriconazole, and posaconazole, which are first-line agents for the treatment of filamentous fungal infections but have the potential for DDIs. This objective of this study was to evaluate the prevalence of triazole DDIs. Hospitalized U.S. adults with MAT use were identified in the Cerner HealthFacts database, which contained data from over 150 hospitals (2005 to 2013). The severities of DDIs with MATs were categorized, using drug labels and the drug information from the Drugdex system (Thompson Micromedex), into four groups (contraindicated, major, moderate, and minor severity). DDIs of minor severity were not counted. A DDI event was considered to have occurred if the following two conditions were met: (i) the patient used at least one drug with a classification of at least a moderate interaction with the MAT during the hospitalization and (ii) there was a period of overlap between the administration of the MAT and that of the interacting drug of at least 1 day. A total of 6,962 hospitalizations with MAT use were identified. Among them, 88% of hospitalizations with voriconazole use, 86% of hospitalizations with itraconazole use, and 93% of hospitalizations with posaconazole use included the use of a concomitant interacting drug. A total of 68% of hospitalizations with posaconazole use, 34% of hospitalizations with itraconazole use, and 20% of hospitalizations with voriconazole use included the use of at least one drug with a DDI of contraindicated severity. A total of 83% of hospitalizations with posaconazole use, 61% of hospitalizations with itraconazole use, and 82% of hospitalizations with voriconazole use included the use of at least one drug that resulted in a severe DDI. The findings of this study demonstrate that a majority of hospitalized patients receiving MAT are at risk for severe drug-drug interactions and highlight the need for antifungal stewardship.
Collapse
|
6
|
Smith WJ, Drew RH, Perfect JR. Posaconazole’s impact on prophylaxis and treatment of invasive fungal infections: an update. Expert Rev Anti Infect Ther 2014; 7:165-81. [DOI: 10.1586/14787210.7.2.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Abstract
Posaconazole is the newest triazole antifungal agent. It is structurally related to itraconazole and has activity against Candida species, Aspergillus species, Cryptococcus neoformans, the zygomycetes, and other filamentous fungi. Randomized, double-blind trials have shown posaconazole to be at least as efficacious as fluconazole for the prevention of invasive fungal infections in immunocompromised patients. It has also shown promising results in the treatment of various fungal infections refractory to other antifungal therapy. The dose of posaconazole is 200 mg orally three times daily for the prevention of invasive fungal infections and 800 mg daily in two to four divided doses for the treatment of invasive fungal infections refractory to other antifungal treatment. All posaconazole doses should be given with food or a nutritional supplement to enhance absorption. The most common adverse effects reported with posaconazole therapy were fever, diarrhea, nausea, vomiting, and headache. Instances of elevated liver enzyme levels, hyperbilirubinemia, and hepatocellular damage were also noted in clinical trials, and these laboratory values should be monitored during treatment with posaconazole.
Collapse
Affiliation(s)
- Nickie D Greer
- Department of Pharmacy Services, Baylor University Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Langner S, Staber PB, Neumeister P. Posaconazole in the management of refractory invasive fungal infections. Ther Clin Risk Manag 2011; 4:747-58. [PMID: 19209257 PMCID: PMC2621380 DOI: 10.2147/tcrm.s3329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The rising incidence of invasive fungal infections due to the expanding population of immunocompromised hosts and the increasing prevalence of fungal resistance has led to the need for novel antifungal agents. Posaconazole, a new member of the triazole class has demonstrated in vitro activity against a broad spectrum of fungi and clinical activity against various fungal pathogens, including Aspergillus spp., Candida spp., zygomycetes, and Fusarium spp. To date, posaconazole has been approved for prophylaxis of invasive fungal infections in stem cell transplant recipients with acute graft versus host disease (GVHD) and neutropenic patients receiving intensive induction chemotherapy for acute myelogenous leukemia and myelodys-plastic syndrome. In addition, it has been licensed for use in oropharyngeal candidiasis and for salvage therapy in invasive aspergillosis, fusariosis, coccidioidomycosis, chromoblastomycosis, and mycetoma. Posaconazole is the only azole with activity against zygomycetes and other difficult-to-treat fungi, representing a potential treatment option for refractory invasive mycosis. This article reviews available preclinical and clinical data of posaconazole, focusing on its role in the teatment of refractory invasive fungal infections.
Collapse
Affiliation(s)
- Stefan Langner
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Austria
| | | | | |
Collapse
|
9
|
In Vitro Activities of New Triazole Antifungal Agents, Posaconazole and Voriconazole, Against Oral Candida Isolates from Patients Suffering from Denture Stomatitis. Mycopathologia 2011; 173:35-46. [DOI: 10.1007/s11046-011-9460-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/03/2011] [Indexed: 11/27/2022]
|
10
|
Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 2009; 69:361-92. [PMID: 19275278 DOI: 10.2165/00003495-200969030-00010] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Liposomal amphotericin B (AmBisome) is a lipid-associated formulation of the broad-spectrum polyene antifungal agent amphotericin B. It is active against clinically relevant yeasts and moulds, including Candida spp., Aspergillus spp. and filamentous moulds such as Zygomycetes, and is approved for the treatment of invasive fungal infections in many countries worldwide. It was developed to improve the tolerability profile of amphotericin B deoxycholate, which was for many decades considered the gold standard of antifungal treatment, despite being associated with infusion-related events and nephrotoxicity. In well controlled trials, liposomal amphotericin B had similar efficacy to amphotericin B deoxycholate and amphotericin B lipid complex as empirical therapy in adult and paediatric patients with febrile neutropenia. In addition, caspofungin was noninferior to liposomal amphotericin B as empirical therapy in adult patients with febrile neutropenia. For the treatment of confirmed invasive fungal infections, liposomal amphotericin B was more effective than amphotericin B deoxycholate treatment in patients with disseminated histoplasmosis and AIDS, and was noninferior to amphotericin B deoxycholate in patients with acute cryptococcal meningitis and AIDS. In adults, micafungin was shown to be noninferior to liposomal amphotericin B for the treatment of candidaemia and invasive candidiasis. Data from animal studies suggested that higher dosages of liposomal amphotericin B might improve efficacy; however, in the AmBiLoad trial in patients with invasive mould infection, there was no statistical difference in efficacy between the standard dosage of liposomal amphotericin B 3 mg/kg/day and a higher 10 mg/kg/day dosage, although the standard dosage was better tolerated. Despite being associated with fewer infusion-related adverse events and less nephrotoxicity than amphotericin B deoxycholate and amphotericin B lipid complex, liposomal amphotericin B use is still limited to some extent by these adverse events. Both echinocandins were better tolerated than liposomal amphotericin B. The cost of liposomal amphotericin B therapy may also restrict its use, but further pharmacoeconomic studies are required to fully define its cost effectiveness compared with other antifungal agents. Based on comparative data from well controlled trials, extensive clinical experience and its broad spectrum of activity, liposomal amphotericin B remains a first-line option for empirical therapy in patients with febrile neutropenia and in those with disseminated histoplasmosis, and is an option for the treatment of AIDS-associated cryptococcal meningitis, and for invasive Candida spp. or Aspergillus spp. infections. Amphotericin B, a macrocyclic, polyene antifungal agent, is thought to act by binding to ergosterol, the principal sterol in fungal cell membranes and Leishmania cells. This results in a change in membrane permeability, causing metabolic disturbance, leakage of small molecules and, as a consequence, cell death. In vitro and in vivo studies have shown that liposomal amphotericin B remains closely associated with the liposomes in the circulation, thereby reducing the potential for nephrotoxicity and infusion-related toxicity associated with conventional amphotericin B. Amphotericin B shows very good in vitro activity against a broad spectrum of clinically relevant fungal isolates, including most strains of Candida spp. and Aspergillus spp., and other filamentous fungi such as Zygomycetes. Liposomal amphotericin B has proven effective in various animal models of fungal infections, including those for candidiasis, aspergillosis, fusariosis and zygomycosis. Liposomal amphotericin B also shows immunomodulatory effects, although the mechanisms involved are not fully understood, and differ from those of amphotericin B deoxycholate and amphotericin B colloidal dispersion. In adult patients with febrile neutropenia, intravenous liposomal amphotericin B has nonlinear pharmacokinetics, with higher than dose-proportional increases in exposure being consistent with reticuloendothelial saturation and redistribution of amphotericin B in the plasma compartment. Liposomal amphotericin B is rapidly and extensively distributed after single and multiple doses, with steady-state concentrations of amphotericin B attained within 4 days and no clinically relevant accumulation of the drug following multiple doses of 1-7.5 mg/kg/day. In autopsy tissue, the highest concentrations of the drug were found in the liver and spleen, followed by the kidney, lung, myocardium and brain tissue. Elimination of liposomal amphotericin B, like that of amphotericin B deoxycholate, is poorly understood; its route of metabolism is not known and its excretion has not been studied. The terminal elimination half-life is about 7 hours. No dosage adjustment is required based on age or renal impairment. In several randomized, double-blind trials (n = 73-1095) in adult and/or paediatric patients, liposomal amphotericin B was effective as empirical therapy or as treatment for confirmed invasive fungal infections, including invasive candidiasis, candidaemia, invasive mould infection (mainly aspergillosis), histoplasmosis and cryptococcal meningitis. All agents were administered as an intravenous infusion; the typical dosage for liposomal amphotericin B was 3 mg/kg/day. Treatment was generally given for 1-2 weeks. Participants in trials evaluating empirical therapy had neutropenia and a persistent fever despite antibacterial treatment and had received chemotherapy or undergone haematopoietic stem cell transplantation. As empirical therapy in adult and paediatric patients, liposomal amphotericin B appeared to be as effective as amphotericin B deoxycholate (approximately 50% of patients in each group achieved treatment success) or amphotericin B lipid complex (approximately 40% of liposomal amphotericin B recipients experienced treatment success). Of note, in the first trial, results of the statistical test to determine equivalence between treatments were not reported. In the second trial, efficacy was assessed as an 'other' endpoint. In another trial, caspofungin was shown to be noninferior to liposomal amphotericin B, with approximately one-third of patients in each group experiencing treatment success. Liposomal amphotericin B was significantly more effective than amphotericin B deoxycholate for the treatment of moderate to severe disseminated histoplasmosis in patients with AIDS, with 88% and 64% of patients, respectively, having a successful response. Liposomal amphotericin B was noninferior to amphotericin B deoxycholate for the treatment of cryptococcal meningitis in terms of mycological success. Micafungin therapy was shown to be noninferior to liposomal amphotericin B for the treatment of adult patients with candidaemia or invasive candidiasis. In a substudy in paediatric patients, which was not powered to determine noninferiority, liposomal amphotericin B was as effective as micafungin for the treatment of candidaemia or invasive candidiasis. In this patient population, within each trial, 90% of adult patients and approximately three-quarters of paediatric patients in both treatment groups experienced a successful response. In patients with invasive mould infection (mainly aspergillosis), there was no difference in efficacy between a higher dosage of liposomal amphotericin B (10 mg/kg/day) and the standard dosage (3 mg/kg/day), with 46% and 50% of patients experiencing a favourable overall response. In well designed clinical trials, liposomal amphotericin B was generally at least as well tolerated as other lipid-associated formulations of amphotericin B and better tolerated than amphotericin B deoxycholate in adult and paediatric patients. Compared with other amphotericin B formulations, liposomal amphotericin B treatment was associated with a lower incidence of infusion-related adverse events and nephrotoxicity. A higher than recommended dosage of liposomal amphotericin B (10 mg/kg/day) was associated with an increased incidence of nephrotoxicity compared with the standard dosage (3 mg/kg/day), although the incidence of infusion-related reactions did not differ between treatment groups. In general, liposomal amphotericin B treatment was not as well tolerated as echinocandin therapy in well designed clinical trials. As empirical therapy or for the treatment of confirmed invasive fungal infections in adult patients, liposomal amphotericin B recipients experienced more infusion-related events and nephrotoxicity than caspofungin or micafungin recipients. There was no difference in the incidence of these adverse events between the liposomal amphotericin B and micafungin groups in a study in paediatric patients.
Collapse
Affiliation(s)
- Marit D Moen
- Wolters Kluwer Health
- Adis, Auckland, New Zealand.
| | | | | |
Collapse
|
11
|
Morris MI. Posaconazole: A new oral antifungal agent with an expanded spectrum of activity. Am J Health Syst Pharm 2009; 66:225-36. [DOI: 10.2146/ajhp070532] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Michele I. Morris
- Michele I. Morris, M.D., is Assistant Professor of Clinical Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, 1400 N.W. 10th Avenue, D90-A, Dominion Tower, #813A, Miami, FL 33136
| |
Collapse
|
12
|
Rautemaa R, Richardson M, Pfaller MA, Perheentupa J, Saxén H. Activity of amphotericin B, anidulafungin, caspofungin, micafungin, posaconazole, and voriconazole against Candida albicans with decreased susceptibility to fluconazole from APECED patients on long-term azole treatment of chronic mucocutaneous candidiasis. Diagn Microbiol Infect Dis 2008; 62:182-5. [PMID: 18597968 DOI: 10.1016/j.diagmicrobio.2008.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 11/19/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I) is exceptionally common in Finland. Most patients have chronic oral candidiasis since childhood. Thus, most patients receive repeated courses of antifungals throughout their life. Eleven of our patients (31.4%) have become colonized with Candida albicans with decreased sensitivity to fluconazole. A total of 43 isolates of C. albicans from 23 APECED patients isolated during the years 1994 to 2004 were divided into 2 groups: fluconazole-susceptible dose-dependent (MIC, 16-32 microg/mL, 18 isolates) and fluconazole-susceptible (MIC <or=8 microg/mL, 25 isolates) groups. Antifungal activity of amphotericin B, echinocandins, and azoles was determined by the Clinical and Laboratory Standards Institute M27-A2 methodology. All isolates were highly susceptible to amphotericin B and echinocandins. Posaconazole and voriconazole were active against all isolates. Our data suggest that topical amphotericin B could continue to be a safe and active drug for daily administration for APECED patients. Posaconazole, voriconazole, and echinocandins may be useful in some complicated cases.
Collapse
Affiliation(s)
- Riina Rautemaa
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki FI-00014, Finland.
| | | | | | | | | |
Collapse
|
13
|
Hof H. Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? Drug Resist Updat 2008; 11:25-31. [PMID: 18325827 DOI: 10.1016/j.drup.2008.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 01/24/2008] [Accepted: 01/27/2008] [Indexed: 11/27/2022]
Abstract
It is well known that development of antibiotic resistance in bacteria is not a matter of if but of when. Recently, azoles have been recommended for long-term prophylaxis of invasive fungal infections; hence, it could be argued that fungi also will become resistant to these agents. However, fungi are different from bacteria in several critical points. Bacteria display several resistance mechanisms: alteration of the target, limited access to the target and modification/inactivation of the antibacterial compound. In fungi some mechanisms of resistance to azoles are also known; with azoles for example, alterations of the 14alpha-demethylase target, as well as efflux pumps. It has been observed that these phenotypes develop in yeast populations either due to mutations or to selection processes. However, enzymes which destroy azoles are not found. Furthermore, a horizontal transfer of genes coding resistance traits does not occur in fungi, which means that an explosive expansion of resistances is unlikely to occur, especially in moulds. Indeed, in epidemiologic studies on human and environmental isolates there is convincing evidence that azole resistance is quite uncommon.
Collapse
Affiliation(s)
- Herbert Hof
- Institute of Medical Microbiology and Hygiene, University Clinic Mannheim, University of Heidelberg, D-68167 Mannheim, Germany.
| |
Collapse
|
14
|
Will resistance in fungi emerge on a scale similar to that seen in bacteria? Eur J Clin Microbiol Infect Dis 2008; 27:327-34. [PMID: 18204870 DOI: 10.1007/s10096-007-0451-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 12/18/2007] [Indexed: 01/26/2023]
Abstract
Growing numbers of patients receive azoles as prophylaxis or treatment for invasive fungal infections, begging the question of whether emergence of resistance will occur, as has been seen with bacteria. This review examines resistance pathways shared by bacteria and fungi, including alteration and overproduction of drug targets, changes in biosynthetic pathways, and enhanced drug efflux, and assesses whether such commonalities predict increased resistance to azoles. Important differences exist between the two kingdoms, including little, if any, horizontal transfer of extrachromosomal material across fungal species and a longer fungal generation time, thereby slowing vertical transfer of mutant traits. Further, no enzymatic modulation or inactivation of azoles has been reported in fungi. The newer broad-spectrum azoles posaconazole and voriconazole are active against the vast majority of yeasts and moulds and are likely to prevent the emergence of inherently resistant strains. Therefore, the likelihood for an explosion of fungal resistance is relatively low.
Collapse
|
15
|
Abstract
The rising incidence of invasive fungal infections and the emergence of broader fungal resistance have led to the need for novel antifungal agents. Posaconazole is a new member of the triazole class of antifungals. It is available as an oral suspension and has a favorable toxicity profile, has demonstrated clinical efficacy in the treatment of oropharyngeal candidiasis and has shown promise as salvage therapy for invasive aspergillosis, zygomycosis, cryptococcal meningitis and a variety of other fungal infections. In addition, data from randomized controlled studies support its efficacy for use in prophylaxis of invasive fungal infections in patients who are severely immunocompromised. The wide spectrum activity of posaconazole in in vitro studies, animal models and preliminary clinical studies suggest that posaconazole represents an important addition to the antifungal armamentarium.
Collapse
Affiliation(s)
- Douglas S Kwon
- Massachusetts General Hospital, Division of Infectious Diseases, 55 Fruit Street, Boston, MA 02114-2696, USA
| | | |
Collapse
|
16
|
Groll AH, Walsh TJ. Posaconazole: clinical pharmacology and potential for management of fungal infections. Expert Rev Anti Infect Ther 2007; 3:467-87. [PMID: 16107193 DOI: 10.1586/14787210.3.4.467] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Posaconazole is a novel lipophilic antifungal triazole that inhibits cytochrome P450-dependent 14-alpha demethylase in the biosynthetic pathway of ergosterol. Inhibition of this enzyme leads to an accumulation of toxic 14-alpha methylsterols and a depletion of ergosterol, resulting in a perturbation of the function of the fungal cell membrane and blockage of cell growth and division. In vitro, posaconazole has potent and broad-spectrum activity against opportunistic, endemic and dermatophytic fungi. This activity extends to organisms that are often refractory to existing triazoles, amphotericin B or echinocandins, such as Candida glabrata, Candida krusei, Aspergillus terreus, Fusarium spp. and the Zygomycetes. A large variety of animal models of invasive fungal infections have provided consistent evidence of efficacy against these organisms in vivo, both in normal and immunocompromised animals. Posaconazole is available as an oral suspension and optimal exposure is achieved when the drug is administered in two to four divided doses along with food or a nutritional supplement. The compound has a large volume of distribution, in the order of 5 l/kg, and a half-life of approximately 20 h. Posaconazole is not metabolized to a significant extent through the cytochrome P450 enzyme system and is primarily excreted in an unchanged form in the feces. Although it is inhibitory, cytochrome P3A4 has no effect on 1A2, 2C8, 2C9, 2D6 and 2E1 isoenzymes, and therefore, a limited spectrum of drug-drug interactions can be expected. Pharmacokinetic studies in special populations revealed no necessity for dosage adjustment based on differences in age, gender, race, renal or hepatic function. Posaconazole has demonstrated strong antifungal efficacy in Phase II and III clinical trials in immunocompromised patients with oropharyngeal and esophageal candidiasis. Posaconazole also showed promising efficacy as salvage therapy in a large Phase II study including 330 patients with invasive fungal infections intolerant to or refractory to standard therapies. Posaconazole appears to be well tolerated in a manner comparable with that of fluconazole and it is currently under regulatory review in the USA and Europe for the treatment of refractory invasive fungal infections. This drug profile reviews the preclinical and clinical pharmacology of posaconazole and its potential role for prevention and treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Andreas H Groll
- Children's University Hospital, Dept. of Hematology/Oncology, Center for Bone Marrow Transplantation, Albert-Schweitzer-Strasse 33, 48149 Münster, Germany.
| | | |
Collapse
|
17
|
Cada DJ, Levien T, Baker DE. Posaconazole Oral Suspension. Hosp Pharm 2007. [DOI: 10.1310/hpj4201-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Each month, subscribers to The Formulary Monograph Service receive five to six well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to your Pharmacy and Therapeutics Committee. Subscribers also receive monthly one-page summary monographs on the agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation (DUE) is also provided each month. With a subscription, the monographs are sent to you in print and CD-ROM forms and are available online. Monographs can be customized to meet the needs of your facility. Subscribers to the The Formulary Monograph Service also receive access to a pharmacy bulletin board, The Formulary Information Exchange (The F.I.X.). All topics pertinent to clinical and hospital pharmacy are discussed on The F.I.X. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. If you would like information about The Formulary Monograph Service or The F.I.X., call The Formulary at 800-322-4349. The January 2007 monograph topics are telbivudine, budesonide/formoterol inhalation aerosol, ciclesonide nasal spray, eculizumab, ceftobiprole medocaril. The DUE is telbivudine.
Collapse
Affiliation(s)
| | - Terri Levien
- Drug Information Pharmacist, Drug Information Center, Washington State University Spokane
| | - Danial E. Baker
- Drug Information Center and College of Pharmacy, Washington State University Spokane, PO Box 1495, Spokane, WA 99210-1495
| |
Collapse
|
18
|
Aperis G, Myriounis N, Spanakis EK, Mylonakis E. Developments in the treatment of candidiasis: more choices and new challenges. Expert Opin Investig Drugs 2006; 15:1319-36. [PMID: 17040194 DOI: 10.1517/13543784.15.11.1319] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The incidence of oesophageal candidiasis, candidaemia and disseminated candidiasis has increased dramatically. In addition to the amphotericin B formulations and fluconazole, the echinocandins anidulafungin, caspofungin and micafungin and the newer triazoles posaconazole and voriconazole are in the last stages of development and are becoming available for the management of candidiasis. This review presents these new agents and addresses their role in the treatment of candidiasis. All new antifungal agents exhibit potent activity against Candida spp. and echinocandins are fungicidal against most Candida spp. but appear to be less potent against certain species, such as Candida parapsilosis and C. guilliermondii. Systemic antifungal therapy can now be individualised based on the severity of the infection, comorbid conditions and the Candida spp. causing the infection. Studies are needed to investigate the possible development of resistance and the efficacy of these antifungal agents against the more resistant Candida spp.
Collapse
Affiliation(s)
- George Aperis
- Massachusetts General Hospital, Division of Infectious Diseases, Gray-Jackson 504, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Buitrago MJ, Monzon A, Rodriguez-Tudela JL. Head-to-head comparison of the activities of currently available antifungal agents against 3,378 Spanish clinical isolates of yeasts and filamentous fungi. Antimicrob Agents Chemother 2006; 50:917-21. [PMID: 16495251 PMCID: PMC1426453 DOI: 10.1128/aac.50.3.917-921.2006] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/10/2005] [Accepted: 01/03/2006] [Indexed: 11/20/2022] Open
Abstract
We have compared the activities of posaconazole and other currently available antifungal agents against a collection of 3,378 clinical isolates of yeasts and filamentous fungi. A total of 1,997 clinical isolates of Candida spp., 359 of other yeast species, 697 strains of Aspergillus spp., and 325 nondermatophyte non-Aspergillus spp. were included. The average geometric means of the MICs of agents that were tested against Candida spp. were 0.23 microg/ml for amphotericin B, 0.29 microg/ml for flucytosine, 0.97 microg/ml for fluconazole, 0.07 microg/ml for itraconazole, 0.04 microg/ml for voriconazole, 0.15 microg/ml for caspofungin, and 0.03 microg/ml for posaconazole. Voriconazole and posaconazole were active in vitro against the majority of isolates, with resistance to fluconazole and itraconazole, and against Cryptococcus neoformans and other Basidiomycota yeasts. Posaconazole was the most active of antifungal agents tested against Aspergillus spp., with an average geometric mean of 0.10 microg/ml. It was active against Paecilomyces spp., Penicillium spp., Scedosporium apiospermum, and some black fungi, such as Alternaria spp. Multiresistant filamentous fungi, such as Scedosporium prolificans, Scopulariopsis brevicaulis, and Fusarium solani, were also resistant to voriconazole, caspofungin, and posaconazole. Amphotericin B and posaconazole were found to be active against most of the Mucorales strains tested. Posaconazole and currently available antifungal agents exhibit a potent activity in vitro against the majority of pathogenic fungal species.
Collapse
Affiliation(s)
- Manuel Cuenca-Estrella
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo Km 2, 28220 Majadahonda (Madrid), Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II. Posaconazole: a broad-spectrum triazole antifungal. THE LANCET. INFECTIOUS DISEASES 2005; 5:775-85. [PMID: 16310149 DOI: 10.1016/s1473-3099(05)70297-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Posaconazale is a new triazole drug being investigated in phase III clinical trials for the treatment and prevention of invasive fungal infections. In-vitro and in-vivo studies showed that posaconazole has broad-spectrum activity against most Candida species, Cryptococcus neoformans, Aspergillus species, Fusarium species, zygomycetes, and endemic fungi. Posaconazole is given orally two to four times daily. This triazole is widely distributed in the body, metabolised mainly by the liver, and is well tolerated, even in long-term courses. Adverse events are generally mild and include headache and gastrointestinal complaints. Posaconazole has shown promising clinical efficacy against life-threatening fungal infections that are often refractory to the currently available antifungal therapies-eg, invasive aspergillosis, fusariosis, and the emerging zygomycosis.
Collapse
Affiliation(s)
- Harrys A Torres
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M D Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | |
Collapse
|