1
|
Ndashimye E, Avino M, Kyeyune F, Nankya I, Gibson RM, Nabulime E, Poon AF, Kityo C, Mugyenyi P, Quiñones-Mateu ME, Arts EJ. Absence of HIV-1 Drug Resistance Mutations Supports the Use of Dolutegravir in Uganda. AIDS Res Hum Retroviruses 2018; 34:404-414. [PMID: 29353487 DOI: 10.1089/aid.2017.0205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To screen for drug resistance and possible treatment with Dolutegravir (DTG) in treatment-naive patients and those experiencing virologic failure during first-, second-, and third-line combined antiretroviral therapy (cART) in Uganda. Samples from 417 patients in Uganda were analyzed for predicted drug resistance upon failing a first- (N = 158), second- (N = 121), or third-line [all 51 involving Raltegravir (RAL)] treatment regimen. HIV-1 pol gene was amplified and sequenced from plasma samples. Drug susceptibility was interpreted using the Stanford HIV database algorithm and SCUEAL was used for HIV-1 subtyping. Frequency of resistance to nucleoside reverse transcriptase inhibitors (NRTIs) (95%) and non-NRTI (NNRTI, 96%) was high in first-line treatment failures. Despite lack of NNRTI-based treatment for years, NNRTI resistance remained stable in 55% of patients failing second-line or third-line treatment, and was also at 10% in treatment-naive Ugandans. DTG resistance (n = 366) was not observed in treatment-naive individuals or individuals failing first- and second-line cART, and only found in two patients failing third-line cART, while 47% of the latter had RAL- and Elvitegravir-resistant HIV-1. Secondary mutations associated with DTG resistance were found in 2%-10% of patients failing third-line cART. Of 14 drugs currently available for cART in Uganda, resistance was readily observed to all antiretroviral drugs (except for DTG) in Ugandan patients failing first-, second-, or even third-line treatment regimens. The high NNRTI resistance in first-line treatment in Uganda even among treatment-naive patients calls for the use of DTG to reach the UNAIDS 90:90:90 goals.
Collapse
Affiliation(s)
- Emmanuel Ndashimye
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Mariano Avino
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Fred Kyeyune
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Immaculate Nankya
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Richard M. Gibson
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Eva Nabulime
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Art F.Y. Poon
- Department of Microbiology and Immunology, Western University, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Cissy Kityo
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Peter Mugyenyi
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Miguel E. Quiñones-Mateu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Eric J. Arts
- Department of Microbiology and Immunology, Western University, London, Canada
| |
Collapse
|
2
|
Abstract
OBJECTIVE We sought to define the prevalence of pretreatment integrase strand transfer inhibitor (INSTI) resistance and assess the transmission networks of those with pretreatment INSTI resistance. DESIGN A retrospective cohort study of HIV-positive patients with genotypic resistance testing sent to a single referral laboratory in North Carolina between 2010 and 2016. METHODS We linked genotype and public health data for in-care HIV-positive individuals to determine the prevalence of INSTI resistance among treatment-naive (defined as those with a first genotype ≤3 months after diagnosis) and treatment-experienced (defined as those with a first genotype >3 months after diagnosis) patients. We performed molecular and phylogenetic analyses to assess whether pretreatment INSTI resistance mutations represented clustered HIV transmission. RESULTS Of 8825 individuals who contributed sequences for protease, reverse transcriptase, or INSTI genotypic resistance testing during the study period, 2784 (31%) contributed at least one sequence for INSTI resistance testing. Of these, 840 were treatment-naive individuals and 20 [2.4%, 95% confidence interval (CI): 1.5, 3.6%] had INSTI mutations; only two (0.2%, 95% CI: 0.02, 0.9%) had major mutations. Of 1944 treatment-experienced individuals, 9.6% (95% CI: 8.3, 11.0%) had any INSTI mutation and 7.0% (95% CI: 5.9, 8.3%) had major mutations; the prevalence of INSTI mutations among treatment-experienced patients decreased overtime (P < 0.001). In total 12 of 20 individuals with pretreatment INSTI mutations were part of 10 molecular transmission clusters; only one cluster shared identical minor mutations. CONCLUSION The prevalence of major pretreatment INSTI resistance is very low. Pretreatment INSTI mutations do not appear to represent clustered HIV transmission.
Collapse
|
3
|
Sayan M, Sargin F, Inan D, Sevgi DY, Celikbas AK, Yasar K, Kaptan F, Kutlu S, Fisgin NT, Inci A, Ceran N, Karaoglan I, Cagatay A, Celen MK, Koruk ST, Ceylan B, Yildirmak T, Akalın H, Korten V, Willke A. HIV-1 Transmitted Drug Resistance Mutations in Newly Diagnosed Antiretroviral-Naive Patients in Turkey. AIDS Res Hum Retroviruses 2016; 32:26-31. [PMID: 26414663 PMCID: PMC4692107 DOI: 10.1089/aid.2015.0110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 replication is rapid and highly error-prone. Transmission of a drug-resistant HIV-1 strain is possible and occurs within the HIV-1-infected population. In this study, we aimed to determine the prevalence of transmitted drug resistance mutations (TDRMs) in 1,306 newly diagnosed untreated HIV-1-infected patients from 21 cities across six regions of Turkey between 2010 and 2015. TDRMs were identified according to the criteria provided by the World Health Organization's 2009 list of surveillance drug resistance mutations. The HIV-1 TDRM prevalence was 10.1% (133/1,306) in Turkey. Primary drug resistance mutations (K65R, M184V) and thymidine analogue-associated mutations (TAMs) were evaluated together as nucleos(t)ide reverse transcriptase inhibitor (NRTI) mutations. NRTI TDRMs were found in 8.1% (107/1,306) of patients. However, TAMs were divided into three categories and M41L, L210W, and T215Y mutations were found for TAM1 in 97 (7.4%) patients, D67N, K70R, K219E/Q/N/R, T215F, and T215C/D/S mutations were detected for TAM2 in 52 (3.9%) patients, and M41L + K219N and M41L + T215C/D/S mutations were detected for the TAM1 + TAM2 profile in 22 (1.7%) patients, respectively. Nonnucleoside reverse transcriptase inhibitor-associated TDRMs were detected in 3.3% (44/1,306) of patients (L100I, K101E/P, K103N/S, V179F, Y188H/L/M, Y181I/C, and G190A/E/S) and TDRMs to protease inhibitors were detected in 2.3% (30/1,306) of patients (M46L, I50V, I54V, Q58E, L76V, V82A/C/L/T, N83D, I84V, and L90M). In conclusion, long-term and large-scale monitoring of regional levels of HIV-1 TDRMs informs treatment guidelines and provides feedback on the success of HIV-1 prevention and treatment efforts.
Collapse
Affiliation(s)
- Murat Sayan
- Faculty of Medicine, Clinical Laboratory, PCR Unit, University of Kocaeli, Kocaeli, Turkey
- Research Center of Experimental Health Sciences, University of Near East, Nicosia, Northern Cyprus
| | - Fatma Sargin
- Goztepe Educational and Research Hospital, Clinic of Infectious Diseases, Medeniyet University, Istanbul, Turkey
| | - Dilara Inan
- Faculty of Medicine, Department of Infectious Diseases, University of Akdeniz, Antalya, Turkey
| | - Dilek Y. Sevgi
- Educational and Research Hospital, Clinic of Infectious Diseases, Sisli Etfal, Istanbul, Turkey
| | - Aysel K. Celikbas
- Educational and Research Hospital, Clinic of Infectious Diseases, Ankara Numune, Ankara, Turkey
| | - Kadriye Yasar
- Educational and Research Hospital, Clinic of Infectious Diseases, Bakırkoy Dr. Sadi Konuk, Istanbul,Turkey
| | - Figen Kaptan
- Educational and Research Hospital, Department of Infectious Diseases, University of Katip Celebi, İzmir, Turkey
| | - Selda Kutlu
- Faculty of Medicine, Department of Infectious Diseases, University of Pamukkale, Denizli, Turkey
| | - Nuriye T. Fisgin
- Faculty of Medicine, Department of Infectious Diseases, University of 19 Mayıs, Samsun, Turkey
| | - Ayse Inci
- Educational and Research Hospital, Clinic of Infectious Diseases, Istanbul Kanuni Sultan Süleyman, Istanbul, Turkey
| | - Nurgul Ceran
- Educational and Research Hospital, Clinic of Infectious Diseases, Haydarpasa Numune, Istanbul, Turkey
| | - Ilkay Karaoglan
- Faculty of Medicine, Department of Infectious Diseases, University of Gaziantep, Gaziantep, Turkey
| | - Atahan Cagatay
- Faculty of Medicine, Department of Infectious Diseases, University of Istanbul, Istanbul, Turkey
| | - Mustafa K. Celen
- Faculty of Medicine, Department of Infectious Diseases, University of Dicle, Diyarbakır, Turkey
| | - Suda T. Koruk
- Faculty of Medicine, Department of Infectious Diseases, University of Harran, Urfa, Turkey
| | - Bahadir Ceylan
- Faculty of Medicine, Department of Infectious Diseases, University of Bezm-i Alem, Istanbul, Turkey
| | - Taner Yildirmak
- Educational and Research Hospital, Clinic of Infectious Diseases, Istanbul Okmeydani, Istanbul, Turkey
| | - Halis Akalın
- Faculty of Medicine, Department of Infectious Diseases, University of Uludag, Bursa, Turkey
| | - Volkan Korten
- Faculty of Medicine, Department of Infectious Diseases, University of Marmara, Istanbul, Turkey
| | - Ayse Willke
- Faculty of Medicine, Department of Infectious Diseases, University of Kocaeli, Kocaeli, Turkey
| |
Collapse
|
4
|
Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations. Nucleic Acids Res 2015; 43:3256-71. [PMID: 25765644 PMCID: PMC4381058 DOI: 10.1093/nar/gkv128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 01/03/2023] Open
Abstract
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.
Collapse
Affiliation(s)
- Sushama Telwatte
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Adam Johnson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Katie Moore
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul Agius
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Mary Tachedjian
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z1Y6, Canada
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Iarikov DE, Irizarry-Acosta M, Martorell C, Hoffman RP, Skiest DJ. Low prevalence of primary HIV resistance in western Massachusetts. ACTA ACUST UNITED AC 2010; 9:227-31. [PMID: 20798402 DOI: 10.1177/1545109710374998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most studies of primary antiretroviral (ARV) resistance have been conducted in large metropolitan areas with reported rates of 8% to 25%. We collected data on 99 HIV-1-infected antiretroviral-naive patients from several sites in Springfield, MA, who underwent genotypic resistance assay between 2004 and 2008. Only major resistance mutations per International AIDS Society-USA (IAS-USA) drug resistance mutations list were considered. The prevalence of resistance was 5% (5 of 99). Three patients had one nonnucleoside reverse transcriptase inhibitor (NNRTI) mutation: 103N, 103N, and 190A, 1 patient had a protease inhibitor (PI) mutation: 90M; and 1 patient had 3-class resistance with NNRTI: 181C, 190A, PI: 90M, and nucleoside analogue reverse transcriptase inhibitor (NRTI): 41L, 210W. Mean time from HIV diagnosis to resistance testing was shorter in patients with resistance versus those without: 9 (range 0.3-42 months) versus 27 (range 0.1-418 months), P = .11. There was a trend to lower mean CD4 count in those with resistance, 170 versus 318 cells/mm(3), P = .06. No differences were noted in gender, age, HIV risk category, or HIV RNA level. The low prevalence of primary resistance may be explained by differences in demographic and risk factors or may reflect the time from infection to resistance testing. Our findings emphasize the importance of continued resistance surveillance.
Collapse
Affiliation(s)
- Dmitri E Iarikov
- Division of Infectious Diseases, Baystate Medical Center, Tufts University School of Medicine, Springfield, MA, USA.
| | | | | | | | | |
Collapse
|
6
|
Bartmeyer B, Kuecherer C, Houareau C, Werning J, Keeren K, Somogyi S, Kollan C, Jessen H, Dupke S, Hamouda O, on behalf of the German HIV-1 Seroconverter Study Group. Prevalence of transmitted drug resistance and impact of transmitted resistance on treatment success in the German HIV-1 Seroconverter Cohort. PLoS One 2010; 5:e12718. [PMID: 20949104 PMCID: PMC2951346 DOI: 10.1371/journal.pone.0012718] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/10/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aim of this study is to analyse the prevalence of transmitted drug resistance, TDR, and the impact of TDR on treatment success in the German HIV-1 Seroconverter Cohort. METHODS Genotypic resistance analysis was performed in treatment-naïve study patients whose sample was available 1,312/1,564 (83.9% October 2008). A genotypic resistance result was obtained for 1,276/1,312 (97.3%). The resistance associated mutations were identified according to the surveillance drug resistance mutations list recommended for drug-naïve patients. Treatment success was determined as viral suppression below 500 copies/ml. RESULTS Prevalence of TDR was stable at a high level between 1996 and 2007 in the German HIV-1 Seroconverter Cohort (N = 158/1,276; 12.4%; CI(wilson) 10.7-14.3; p(for trend) = 0.25). NRTI resistance was predominant (7.5%) but decreased significantly over time (CI(Wilson): 6.2-9.1, p(for trend) = 0.02). NNRTI resistance tended to increase over time (NNRTI: 3.5%; CI(Wilson): 2.6-4.6; p(for trend)= 0.07), whereas PI resistance remained stable (PI: 3.0%; CI(Wilson): 2.1-4.0; p(for trend) = 0.24). Resistance to all drug classes was frequently caused by singleton resistance mutations (NRTI 55.6%, PI 68.4%, NNRTI 99.1%). The majority of NRTI-resistant strains (79.8%) carried resistance-associated mutations selected by the thymidine analogues zidovudine and stavudine. Preferably 2NRTI/1PIr combinations were prescribed as first line regimen in patients with resistant HIV as well as in patients with susceptible strains (susceptible 45.3%; 173/382 vs. resistant 65.5%; 40/61). The majority of patients in both groups were treated successfully within the first year after ART-initiation (susceptible: 89.9%; 62/69; resistant: 7/9; 77.8%). CONCLUSION Overall prevalence of TDR remained stable at a high level but trends of resistance against drug classes differed over time. The significant decrease of NRTI-resistance in patients newly infected with HIV might be related to the introduction of novel antiretroviral drugs and a wider use of genotypic resistance analysis prior to treatment initiation.
Collapse
Affiliation(s)
- Barbara Bartmeyer
- HIV/AIDS, STD Unit, Department Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Claudia Kuecherer
- Project HIV Variability and Molecular Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Claudia Houareau
- HIV/AIDS, STD Unit, Department Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Johanna Werning
- HIV/AIDS, STD Unit, Department Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Kathrin Keeren
- Project HIV Variability and Molecular Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Sybille Somogyi
- Project HIV Variability and Molecular Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Christian Kollan
- HIV/AIDS, STD Unit, Department Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | - Heiko Jessen
- Gemeinschaftspraxis Jessen-Jessen-Stein, Berlin, Germany
| | - Stephan Dupke
- Gemeinschaftspraxis Dupke, Baumgarten, Carganico, Berlin, Germany
| | - Osamah Hamouda
- HIV/AIDS, STD Unit, Department Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany
| | | |
Collapse
|
7
|
|
8
|
Booth CL, Geretti AM. Prevalence and determinants of transmitted antiretroviral drug resistance in HIV-1 infection. J Antimicrob Chemother 2007; 59:1047-56. [PMID: 17449483 DOI: 10.1093/jac/dkm082] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of drug-resistant HIV-1 variants from antiretroviral treatment-experienced persons has been documented to occur through multiple routes, including sexual intercourse, intravenous drug use and vertically from mother to child. Newly infected persons with transmitted drug resistance (TDR) also act as a source for the onward transmission of resistant variants. Rates of virological suppression and behavioural patterns of treated populations and the relative fitness of drug-resistant variants are important determinants of the prevalence of TDR. Current estimates indicate that the prevalence is highest in regions and populations with long-established use of antiretroviral therapy. Limited data suggest that the incidence of TDR is rising in developing countries where access to therapy is increasing. There are methodological variations between studies, however, including those relative to the selection of the study population and the resistance interpretation system, which can skew prevalence estimates. TDR has important implications for the successful management of antiretroviral therapy. Routine resistance testing of drug-naive persons has been widely adopted in affluent countries and shown to effectively guide the selection of first-line regimens. Genotypic resistance tests offer a practical approach for detecting TDR. However, routine methods can only detect resistant mutants within the dominant quasi-species and fail to detect low-frequency resistant variants, which may become important once selective drug pressure is introduced. More sensitive testing methods are being evaluated but remain research tools at present. In addition, factors such as superinfection and possible differences in resistance patterns between plasma and cellular reservoirs and between anatomical compartments should be considered when evaluating TDR.
Collapse
Affiliation(s)
- Clare L Booth
- Royal Free Hospital and Royal Free and University College Medical School, London, UK
| | | |
Collapse
|
9
|
Booth CL, Garcia-Diaz AM, Youle MS, Johnson MA, Phillips A, Geretti AM. Prevalence and predictors of antiretroviral drug resistance in newly diagnosed HIV-1 infection. J Antimicrob Chemother 2007; 59:517-24. [PMID: 17213262 DOI: 10.1093/jac/dkl501] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine prevalence and predictors of antiretroviral drug resistance in newly diagnosed individuals with HIV-1 infection, using a systematic approach to avoid selection bias. METHODS Plasma samples from all persons diagnosed HIV-1 seropositive at a large London centre between April 2004 and February 2006 underwent sequencing of HIV-1 reverse transcriptase (RT) and protease genes. Subtype was assigned by phylogenetic analysis. Resistance was scored according to the IAS-USA list (2005) modified to include T215revertants and exclude isolated E44D or V118I and minor protease mutations. Recent seroconversion was identified by HIV antibody avidity testing. RESULTS The cohort of 239 included 169 (70.7%) males, 126 (52.7%) homosexuals, 118 (49.5%) persons of white ethnicity and 144 (60.0%) persons born outside the UK. Subtypes included B 134 (56.1%), C 46 (19.2%), A 17 (7.1%), other non-B 42 (17.6%). The prevalence of resistance mutations was 17/239 (7.1%; 95% confidence interval 4.5-11.1%), comprising 10/239 (4.2%) nucleoside/nucleotide RT inhibitor (NRTI); 4/239 (1.7%) non-nucleoside RT inhibitor (NNRTI) and 4/239 (1.7%) protease inhibitor (PI) associated mutations. Dual-class (NRTI + PI) resistance mutations were detected in 1/239 (0.4%) person. The prevalence of resistance mutations was 7/85 (8.2%) and 10/154 (6.5%) in persons with recent and established infection, respectively. In multivariate analysis, having been born in the UK and high CD4 count, but not gender, age, risk group, ethnicity or subtype, were independent predictors of resistance. CONCLUSIONS In an unselected UK cohort, subtypes other than B accounted for 43.9% of new HIV-1 diagnoses. The prevalence of resistance mutations was 7.1% and highest in those born in the UK.
Collapse
Affiliation(s)
- Clare L Booth
- Department of Virology, Royal Free Hospital and Royal Free & University College Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
10
|
Lwembe R, Ochieng W, Panikulam A, Mongoina CO, Palakudy T, Koizumi Y, Kageyama S, Yamamoto N, Shioda T, Musoke R, Owens M, Songok EM, Okoth FA, Ichimura H. Anti-retroviral drug resistance-associated mutations among non-subtype B HIV-1-infected Kenyan children with treatment failure. J Med Virol 2007; 79:865-72. [PMID: 17516531 DOI: 10.1002/jmv.20912] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently increased availability of anti-retroviral therapy (ART) has mitigated HIV-1/AIDS prognoses especially in resource poor settings. The emergence of ART resistance-associated mutations from non-suppressive ART has been implicated as a major cause of ART failure. Reverse transcriptase inhibitor (RTI)-resistance mutations among 12 non-subtype B HIV-1-infected children with treatment failure were evaluated by genotypically analyzing HIV-1 strains isolated from plasma obtained between 2001 and 2004. A region of pol-RT gene was amplified and at least five clones per sample were analyzed. Phylogenetic analysis revealed HIV-1 subtype A1 (n = 7), subtype C (n = 1), subtype D (n = 3), and CRF02_AG (n = 1). Before treatment, 4 of 12 (33.3%) children had primary RTI-resistance mutations, K103N (n = 3, ages 5-7 years) and Y181C (n = 1, age 1 year). In one child, K103N was found as a minor population (1/5 clones) before treatment and became major (7/7 clones) 8 months after RTI treatment. In 7 of 12 children, M184V appeared with one thymidine-analogue-associated mutation (TAM) as the first mutation, while the remaining 5 children had only TAMs appearing either individually (n = 2), or as TAMs 1 (M41L, L210W, and T215Y) and 2 (D67N, K70R, and K219Q/E/R) appearing together (n = 3). These results suggest that "vertically transmitted" primary RTI-resistance mutations, K103N and Y181C, can persist over the years even in the absence of drug pressure and impact RTI treatment negatively, and that appearing patterns of RTI-resistance mutations among non-subtype B HIV-1-infected children could possibly be different from those reported in subtype B-infected children.
Collapse
Affiliation(s)
- Raphael Lwembe
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cong ME, Heneine W, García-Lerma JG. The fitness cost of mutations associated with human immunodeficiency virus type 1 drug resistance is modulated by mutational interactions. J Virol 2006; 81:3037-41. [PMID: 17192300 PMCID: PMC1865994 DOI: 10.1128/jvi.02712-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally accepted that the fitness cost of resistance mutations plays a role in the persistence of transmitted drug-resistant human immunodeficiency virus type 1 and that mutations that confer a high fitness cost are less able to persist in the absence of drug pressure. Here, we show that the fitness cost of reverse transcriptase (RT) mutations can vary within a 72-fold range. We also demonstrate that the fitness cost of M184V and K70R can be decreased or enhanced by other resistance mutations such as D67N and K219Q. We conclude that the persistence of transmitted RT mutants might range widely on the basis of fitness and that the modulation of fitness cost by mutational interactions will be a critical determinant of persistence.
Collapse
Affiliation(s)
- Mian-er Cong
- Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
12
|
Fortin C, Joly V, Yeni P. Emerging reverse transcriptase inhibitors for the treatment of HIV infection in adults. Expert Opin Emerg Drugs 2006; 11:217-30. [PMID: 16634698 DOI: 10.1517/14728214.11.2.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A combination of three or more antiretroviral drugs, commonly called 'highly active antiretroviral therapy' (HAART), has become the standard-of-care treatment for HIV-infected patients in the developed world. There are now 21 licensed anti-HIV drugs to choose from when starting a HAART regimen. The currently approved antiretroviral drugs fall into four categories: nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and fusion inhibitors. Novel compounds currently in preclinical or clinical development are either focusing on new viral proteins or the same specific viral elements targeted by the available drugs. When developing new anti-HIV drugs of an already existing class, focus should be held on maximising potency, minimising toxicity, diminishing the risk for resistance development and producing effective drugs for patients who already have resistance to currently available drugs. In addition, pill burden should be ideally reduced to once-daily dosing, thereby enhancing a patient's adherence and reducing treatment costs. The present review focuses on emerging drugs to inhibit the reverse transcriptase of HIV.
Collapse
Affiliation(s)
- Claude Fortin
- Centre Hospitalier de l'Université de Montréal, UHRESS-Département de Microbiologie médicale et Infectiologie, Hôpital Notre-Dame, 1560, rue Sherbrooke Est, Montréal (Québec), H2L 4M1, Canada.
| | | | | |
Collapse
|