1
|
Tao Y, Du R, Mao H. Tropheryma whipplei pneumonia revealed by Metagenomic next-generation sequencing: Report of two cases. Diagn Microbiol Infect Dis 2024; 110:116427. [PMID: 39024936 DOI: 10.1016/j.diagmicrobio.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Tropheryma whipplei is the causative agent of Whipple's disease, which is a rare multiorgan systemic disease. We report two cases of Tropheryma whipplei infection, all routine tests were negative and it was finally detected by mNGS. This may help clinicians increase awareness of the diagnosis and treatment of acute severe pneumonia and interstitial pneumonia caused by Tropheryma whipplei.
Collapse
Affiliation(s)
- Yuhan Tao
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rao Du
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Mao
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Liu Y, Jia Y, Yang K, Li R, Xiao X, Zhu K, Wang Z. Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902227. [PMID: 32596101 PMCID: PMC7312304 DOI: 10.1002/advs.201902227] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/29/2020] [Indexed: 05/22/2023]
Abstract
Highly persistent incidence of multidrug resistant (MDR) bacterial pathogens constitutes a global burden for public health. An alternative strategy to alleviate such a crisis is to identify promising compounds to restore antibiotics activity against MDR bacteria. It is reported that the antidiabetic drug metformin exhibits the potentiation effect on tetracycline antibiotics, particularly doxycycline and minocycline, against MDR S. aureus, E. faecalis, E. coli, and S. enteritidis. Mechanistic studies demonstrate that metformin promotes intracellular accumulation of doxycycline in tetracycline-resistant E. coli. In addition, metformin boosts the immune response and alleviates the inflammatory responses in vitro. Last, metformin fully restores the activity of doxycycline in three animal infection models. Collectively, these results reveal the potential of metformin as a novel tetracyclines adjuvant to circumvent MDR bacterial pathogens and to improve the treatment outcome of recalcitrant infections.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| | - Yuqian Jia
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
| | - Kangni Yang
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
| | - Ruichao Li
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| | - Xia Xiao
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhiqiang Wang
- Institute of Comparative MedicineCollege of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouJiangsu225009China
| |
Collapse
|
3
|
Wecke T, Mascher T. Antibiotic research in the age of omics: from expression profiles to interspecies communication. J Antimicrob Chemother 2011; 66:2689-704. [DOI: 10.1093/jac/dkr373] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
4
|
Muñoz Sanz A, Vera Tomé A, Rodríguez-Vidigal FF, Nogales Muñoz N. Tratamiento de la endocarditis por Tropheryma whipplei en paciente con grave intolerancia al cotrimoxazol. Med Clin (Barc) 2011; 137:380-1. [DOI: 10.1016/j.medcli.2010.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/20/2010] [Accepted: 11/23/2010] [Indexed: 12/01/2022]
|
5
|
Schmidt A, Beck M, Malmström J, Lam H, Claassen M, Campbell D, Aebersold R. Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol Syst Biol 2011; 7:510. [PMID: 21772258 PMCID: PMC3159967 DOI: 10.1038/msb.2011.37] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/18/2011] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has evolved into the main proteome discovery technology. Up to several thousand proteins can now be reliably identified from a sample and the relative abundance of the identified proteins can be determined across samples. However, the remeasurement of substantially similar proteomes, for example those generated by perturbation experiments in systems biology, at high reproducibility and throughput remains challenging. Here, we apply a directed MS strategy to detect and quantify sets of pre-determined peptides in tryptic digests of cells of the human pathogen Leptospira interrogans at 25 different states. We show that in a single LC-MS/MS experiment around 5000 peptides, covering 1680 L. interrogans proteins, can be consistently detected and their absolute expression levels estimated, revealing new insights about the proteome changes involved in pathogenic progression and antibiotic defense of L. interrogans. This is the first study that describes the absolute quantitative behavior of any proteome over multiple states, and represents the most comprehensive proteome abundance pattern comparison for any organism to date.
Collapse
Affiliation(s)
- Alexander Schmidt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Martin Beck
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johan Malmström
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- BiognoSYS AG, c/o IMSB ETH Zurich, Zurich, Switzerland
| | - Henry Lam
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
- Department of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Wu J, Gao W, Zhang W, Meldrum DR. Optimization of whole-transcriptome amplification from low cell density deep-sea microbial samples for metatranscriptomic analysis. J Microbiol Methods 2010; 84:88-93. [PMID: 21044647 DOI: 10.1016/j.mimet.2010.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 12/01/2022]
Abstract
Limitation in sample quality and quantity is one of the big obstacles for applying metatranscriptomic technologies to explore gene expression and functionality of microbial communities in natural environments. In this study, several amplification methods were evaluated for whole-transcriptome amplification of deep-sea microbial samples, which are of low cell density and high impurity. The best amplification method was identified and incorporated into a complete protocol to isolate and amplify deep-sea microbial samples. In the protocol, total RNA was first isolated by a modified method combining Trizol (Invitrogen, CA) and RNeasy (QIAGEN, CA) method, amplified with a WT-Ovation™ Pico RNA Amplification System (NuGEN, CA), and then converted to double-strand DNA from single-strand cDNA with a WT-Ovation™ Exon Module (NuGEN, CA). The products from the whole-transcriptome amplification of deep-sea microbial samples were assessed first through random clone library sequencing. The BLAST search results showed that marine-based sequences are dominant in the libraries, consistent with the ecological source of the samples. The products were then used for next-generation Roche GS FLX Titanium sequencing to obtain metatranscriptome data. Preliminary analysis of the metatranscriptomic data showed good sequencing quality. Although the protocol was designed and demonstrated to be effective for deep-sea microbial samples, it should be applicable to similar samples from other extreme environments in exploring community structure and functionality of microbial communities.
Collapse
Affiliation(s)
- Jieying Wu
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-6501, USA
| | | | | | | |
Collapse
|
7
|
Leroy Q, Raoult D. Review of microarray studies for host-intracellular pathogen interactions. J Microbiol Methods 2010; 81:81-95. [PMID: 20188126 DOI: 10.1016/j.mimet.2010.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/17/2022]
Abstract
Obligate intracellular bacteria are privileged soldiers on the battlefield that represent host-pathogen interactions. Microarrays are a powerful technology that can increase our knowledge about how bacteria respond to and interact with their hosts. This review summarizes the limitations inherent to host-pathogen interaction studies and essential strategies to improve microarray investigations of intracellular bacteria. We have compiled the comparative genomic and gene expression analyses of obligate intracellular bacteria currently available from microarrays. In this review we explore ways in which microarrays can be used to identify polymorphisms in different obligate intracellular bacteria such as Coxiella burnetii, Chlamydia trachomatis, Ehrlichia chaffeensis, Rickettsia prowazekii and Tropheryma whipplei. These microarray studies reveal that, while genomic content is highly conserved in obligate intracellular bacteria, genetic polymorphisms can potentially occur to increase bacterial pathogenesis. Additionally, changes in the gene expression of C. trachomatis throughout its life cycle, as well as changes in the gene expression profile of the pathogens R. prowazekii, Rickettsia rickettsii, Rickettsia typhi, T. whipplei and C. trachomatis following environmental changes, are discussed. Finally, an in vivo model of Rickettsia conorii within the skin is discussed. The gene expression analyses highlight the capacity of obligate intracellular bacteria to adapt to environmental changes and potentially to thwart the host response.
Collapse
Affiliation(s)
- Quentin Leroy
- Université de la Méditerranée, URMITE IRD-CNRS 6236, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | |
Collapse
|
8
|
Fourteen years of severe arthralgia in a man without gastrointestinal symptoms: atypical Whipple's disease. J Clin Microbiol 2008; 47:492-5. [PMID: 19091811 DOI: 10.1128/jcm.01833-08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report here the case of Whipple's disease in a 60-year-old man with severe arthralgia and systemic disorders but without gastrointestinal manifestations. The patient had different clinical diagnoses over a period of 14 years. We identified Tropheryma whipplei by real-time PCR. Molecular typing was also performed by sequencing the 16S-23S rRNA intergenic spacer region and domain III of the 23S rRNA gene.
Collapse
|
9
|
Schneider T, Moos V, Loddenkemper C, Marth T, Fenollar F, Raoult D. Whipple's disease: new aspects of pathogenesis and treatment. THE LANCET. INFECTIOUS DISEASES 2008; 8:179-90. [PMID: 18291339 DOI: 10.1016/s1473-3099(08)70042-2] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
100 years after its first description by George H Whipple, the diagnosis and treatment of Whipple's disease is still a subject of controversy. Whipple's disease is a chronic multisystemic disease. The infection is very rare, although the causative bacterium, Tropheryma whipplei, is ubiquitously present in the environment. We review the epidemiology of Whipple's disease and the recent progress made in the understanding of its pathogenesis and the biology of its agent. The clinical features of Whipple's disease are non-specific and sensitive diagnostic methods such as PCR with sequencing of the amplification products and immunohistochemistry to detect T whipplei are still not widely distributed. The best course of treatment is not completely defined, especially in relapsing disease, neurological manifestations, and in cases of immunoreconstitution after initiation of antibiotic treatment. Patients without the classic symptoms of gastrointestinal disease might be misdiagnosed or insufficiently treated, resulting in a potentially fatal outcome or irreversible neurological damage. Thus, we suggest procedures for the improvement of diagnosis and an optimum therapeutic strategy.
Collapse
Affiliation(s)
- Thomas Schneider
- Medical Department I, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The availability of and advantages in molecular technology and immunology have led to an improved understanding of the etiology and pathogenesis of Whipple disease. As this rare infection represents a model disease reflecting the input of novel findings into clinical medicine and therapy, this review intends to highlight newer findings and put them in context. RECENT FINDINGS Sequencing of 16S rRNA allowed the phylogeny of the bacterium to be determined. The culture and subsequent genome analysis have led to improved diagnosis and monitoring of the disease, for example by PCR or immunohistochemistry. New experimental approaches hint of defects in T-cell and macrophage immunity in patients. Antibiotic therapy will soon be based on data from the first prospective therapy study. SUMMARY Within a few years the findings from molecular genetics and immunology as well as concerted research activities from the European Consortium on Whipple Disease which established a data and material bank could be translated into clinical medicine. Thus, for patients with Whipple disease an improved basis for diagnosis and therapy have been achieved.
Collapse
|
11
|
Adam M, Murali B, Glenn NO, Potter SS. Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol Biol 2008; 8:52. [PMID: 18282299 PMCID: PMC2262874 DOI: 10.1186/1471-2148-8-52] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 02/18/2008] [Indexed: 04/04/2024] Open
Abstract
Background The evolution of antibiotic resistance in bacteria is a topic of major medical importance. Evolution is the result of natural selection acting on variant phenotypes. Both the rigid base sequence of DNA and the more plastic expression patterns of the genes present define phenotype. Results We investigated the evolution of resistant E. coli when exposed to low concentrations of antibiotic. We show that within an isogenic population there are heritable variations in gene expression patterns, providing phenotypic diversity for antibiotic selection to act on. We studied resistance to three different antibiotics, ampicillin, tetracycline and nalidixic acid, which act by inhibiting cell wall synthesis, protein synthesis and DNA synthesis, respectively. In each case survival rates were too high to be accounted for by spontaneous DNA mutation. In addition, resistance levels could be ramped higher by successive exposures to increasing antibiotic concentrations. Furthermore, reversion rates to antibiotic sensitivity were extremely high, generally over 50%, consistent with an epigenetic inheritance mode of resistance. The gene expression patterns of the antibiotic resistant E. coli were characterized with microarrays. Candidate genes, whose altered expression might confer survival, were tested by driving constitutive overexpression and determining antibiotic resistance. Three categories of resistance genes were identified. The endogenous β-lactamase gene represented a cryptic gene, normally inactive, but when by chance expressed capable of providing potent ampicillin resistance. The glutamate decarboxylase gene, in contrast, is normally expressed, but when overexpressed has the incidental capacity to give an increase in ampicillin resistance. And the DAM methylase gene is capable of regulating the expression of other genes, including multidrug efflux pumps. Conclusion In this report we describe the evolution of antibiotic resistance in bacteria mediated by the epigenetic inheritance of variant gene expression patterns. This provides proof in principle that epigenetic inheritance, as well as DNA mutation, can drive evolution.
Collapse
Affiliation(s)
- Mike Adam
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
The production of (p)ppGpp by Streptococcus mutans UA159 is catalyzed by three gene products: RelA, RelP, and RelQ. Here, we investigate the role of the RelA (Rel) homologue of S. mutans in the stringent response and in the global control of gene expression. RelA of S. mutans was shown to synthesize pppGpp in vitro from GTP and ATP in the absence of added ribosomes, as well as in vivo in an Escherichia coli relA-spoT mutant. Mupirocin (MUP) was shown to induce high levels of (p)ppGpp production in S. mutans in a relA-dependent manner, with a concomitant reduction in GTP pools. Transcription profiling after MUP treatment of S. mutans revealed that 104 genes were upregulated and 130 were downregulated (P < or = 0.001); mainly, genes for macromolecular biosynthesis, translation, and energy metabolism were downregulated. When a derivative of UA159 carrying a complete deletion of the relA gene was treated with MUP, 72 genes were upregulated and 52 were downregulated (P < or = 0.001). The expression of 50 genes (P < or = 0.001) was commonly affected by MUP treatment in the two strains, suggesting that S. mutans can mount a relA-independent response to MUP. Consistent with the gene expression profiling, RelA was shown to play major roles in the regulation of phenotypic traits that are required for establishment, persistence, and virulence expression by this oral pathogen. Thus, RelA is the major (p)ppGpp synthase controlling the stringent response in S. mutans, and it coordinates the expression of genes and phenotypes that contribute to the pathogenic potential of the organism.
Collapse
|
13
|
La MV, Crapoulet N, Barbry P, Raoult D, Renesto P. Comparative genomic analysis of Tropheryma whipplei strains reveals that diversity among clinical isolates is mainly related to the WiSP proteins. BMC Genomics 2007; 8:349. [PMID: 17910761 PMCID: PMC2078596 DOI: 10.1186/1471-2164-8-349] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 10/02/2007] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to analyze the genomic diversity of several Tropheryma whipplei strains by microarray-based comparative genomic hybridization. Fifteen clinical isolates originating from biopsy samples recovered from different countries were compared with the T. whipplei Twist strain. For each isolate, the genes were defined as either present or absent/divergent using the GACK analysis software. Genomic changes were then further characterized by PCR and sequencing. Results The results revealed a limited genetic variation among the T. whipplei isolates, with at most 2.24% of the probes exhibiting differential hybridization against the Twist strain. The main variation was found in genes encoding the WiSP membrane protein family. This work also demonstrated a 19.2 kb-pair deletion within the T. whipplei DIG15 strain. This deletion occurs in the same region as the previously described large genomic rearrangement between Twist and TW08/27. Thus, this can be considered as a major hot-spot for intra-specific T. whipplei differentiation. Analysis of this deleted region confirmed the role of WND domains in generating T. whipplei diversity. Conclusion This work provides the first comprehensive genomic comparison of several T. whipplei isolates. It reveals that clinical isolates originating from various geographic and biological sources exhibit a high conservation rate, indicating that T. whipplei rarely interacts with exogenous DNA. Remarkably, frequent inter-strain variations were dicovered that affected members of the WiSP family.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | - Nicolas Crapoulet
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, F06560, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, F06560, France
| | - Didier Raoult
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | - Patricia Renesto
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| |
Collapse
|