1
|
Amirkhanov NV, Bardasheva AV, Tikunova NV, Pyshnyi DV. Synthetic Antimicrobial Peptides: IV. Effect of Cationic Groups of Lysine, Arginine, and Histidine on Antimicrobial Activity of Peptides with a ‘Circular’ Type of Amphipathicity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
3
|
The Effect of Neutrophil-Derived Products on the Function of Leukocytes Obtained after Titanium Implantation in the Ovine Model. Animals (Basel) 2021; 11:ani11123569. [PMID: 34944343 PMCID: PMC8698126 DOI: 10.3390/ani11123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Titanium is one of the most commonly used biomaterials for implantation as a part of the orthopedic procedures. However, this biomaterial can cause an excessive inflammatory response, even leading to rejection of the implant. Therefore, the aim of our study was to assess the overall organism response after insertion of Ti implant and the activity of neutrophils and monocyte-derived macrophages (MDM), to evaluate the possible negative effect of this biomaterial on the host cells. Our study revealed that insertion of the Ti implant did not evoke systemic inflammatory response or activation of leukocytes. Additionally, we evaluated the activity of neutrophils and MDM after stimulation with autologous neutrophil products, namely, antimicrobial neutrophil extract and neutrophil degranulation product as two potential regulators of inflammatory response. Antimicrobial neutrophil extract appeared to be a factor causing the decrease of secretory neutrophil response and polarization of MDM towards pro-resolving phenotype, whereas the neutrophil degranulation product acted as pro-inflammatory. Abstract Titanium (Ti) is currently the most common biomaterial used for orthopedic implants; however, these implants may cause deleterious immune response. To investigate the possible mechanisms involved in excessive inflammation, we assessed the activity of neutrophils and monocyte-derived macrophages (MDMs) during the insertion of the Ti implant in a sheep model. The study was conducted on 12 sheep, 4 of which were control animals and 8 were in the experimental group with inserted Ti implant. Neutrophil secretory response was estimated at two time points T0 before surgery and T1 1 h after implantation and was based on the release of enzymes from neutrophil granules and reactive oxygen and nitrogen species (RONS) generation. MDM function was evaluated 5 months after implantation, on the basis of RONS generation arginase activity and morphological changes. Moreover, the influence of some autologous neutrophil derived products, namely, antimicrobial neutrophil extract (ANE) and neutrophil degranulation products (DGP) on leukocytes was estimated. Our study revealed that Ti implant insertion did not cause any adverse effects up to 5 months after surgical procedure. Stimulation of neutrophil cultures with ANE decreased the enzyme release as well as superoxide generation. Treatment of MDM with ANE diminished superoxide and NO generation and increased arginase activity. On the other hand, MDM stimulated with DGP showed elevated superoxide and NO generation as well as decreased arginase activity. To summarize, ANE exerted an anti-inflammatory and pro-resolving effect on studied leukocytes, whereas DGP acted as pro-inflammatory.
Collapse
|
4
|
Felgueiras HP. An Insight into Biomolecules for the Treatment of Skin Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13071012. [PMID: 34371704 PMCID: PMC8309093 DOI: 10.3390/pharmaceutics13071012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022] Open
Abstract
In assigning priorities, skin infectious diseases are frequently classified as minor when compared to infectious diseases of high mortality rates, such as tuberculosis or HIV. However, skin infections are amongst the most common and prevalent diseases worldwide. Elderly individuals present an increased susceptibility to skin infections, which may develop atypical signs and symptoms or even complicate pre-existing chronic disorders. When the skin fails to correct or inhibit the action of certain pathogenic microorganisms, biomolecules endowed with antimicrobial features are frequently administered topically or systemically to assist or treat such conditions. (1) Antibiotics, (2) antimicrobial peptides, or (3) natural extracts display important features that can actively inhibit the propagation of these pathogens and prevent the evolution of infectious diseases. This review highlights the properties and mechanisms of action of these biomolecules, emphasizing their effects on the most prevalent and difficult to treat skin infections caused by pathogenic bacteria, fungi, and viruses. The versatility of biomolecules’ actions, their symbiotic effects with skin cells and other inherent antimicrobial components, and their target-directed signatures are also explored here.
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
5
|
Amirkhanov NV, Bardasheva AV, Tikunova NV, Pyshnyi DV. Synthetic Antimicrobial Peptides: III—Effect of Cationic Groups of Lysine, Arginine, and Histidine on Antimicrobial Activity of Peptides with a Linear Type of Amphipathicity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202103002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
We have studied the antimicrobial and hemolytic activity of synthetic antimicrobial peptides (SAMPs), i.e., Arg9Phe2 (P1-Arg), Lys9Phe2 (P2-Lys), and His9Phe2 (P3-His), which have a “linear” type of amphipathicity and contain the cationic amino acid residues of arginine, lysine, or histidine. In this study, we have used various pathogenic microorganism strains of gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica), gram-positive bacteria (Staphylococcus aureus), and the conditionally pathogenic yeast fungus (Candida albicans). It has been shown that the replacement of the arginine residues by lysine or histidine residues in the tested SAMPs significantly degrades their antibacterial properties in the series: P1-Arg > P2-Lys $$ \gg $$P3-His. The cationic analog of SAMP, P1-Arg, has the highest antibacterial activity (MIC50 = 43–76 μM), while peptide P3-His does not exhibit this activity (MIC50 > 100 μM). The P1-Arg and P2-Lys peptides were 6–10 times more active against the opportunistic fungus C. albicans (MIC50 6.7 and 10.9 μM, respectively) and the P3-His peptide has 100-times increased antimycotic activity (MIC50 0.6 μM) compared with their effect on bacterial cells. All of the tested peptides with the linear type of amphipathicity and low hydrophobicity, i.e., P1-Arg, P2-Lys, and P3-His, that contain only two Phe residues regardless of the presence of cationic amino acids (Arg, Lys, or His) exhibit a relatively low hemolytic activity (not more than 4% hemolysis at 1000 μM peptide concentration). Thus, considering the same synthesis efficiency (56–63%) and approximately the same low toxicity of the tested SAMPs with a linear type of amphipathicity, it is recommended to use those that contain the cationic arginine or histidine residues to create antibacterial or antifungal peptide agents, respectively.
Collapse
|
6
|
Håkansson J, Cavanagh JP, Stensen W, Mortensen B, Svendsen JS, Svenson J. In vitro and in vivo antibacterial properties of peptide AMC-109 impregnated wound dressings and gels. J Antibiot (Tokyo) 2021; 74:337-345. [PMID: 33495549 DOI: 10.1038/s41429-021-00406-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic mimics of antimicrobial peptides (AMPs) is a promising class of molecules for a variety of antimicrobial applications. Several hurdles must be passed before effective systemic infection therapies with AMPs can be achieved, but the path to effective topical treatment of skin, nail, and soft tissue infections appears less challenging to navigate. Skin and soft tissue infection is closely coupled to the emergence of antibiotic resistance and represents a major burden to the healthcare system. The present study evaluates the promising synthetic cationic AMP mimic, AMC-109, for treatment of skin infections in vivo. The compound is evaluated both in impregnated cotton wound dressings and in a gel formulation against skin infections caused by Staphylococcus aureus and methicillin resistant S. aureus. Both the ability to prevent colonization and formation of an infection, as well as eradicate an ongoing infection in vivo with a high bacterial load, were evaluated. The present work demonstrates that AMC-109 displays a significantly higher antibacterial activity with up to a seven-log reduction in bacterial loads compared to current clinical standard therapy; Altargo cream (1% retapamulin) and Fucidin cream (2% fusidic acid) in the in vivo wound models. It is thus concluded that AMC-109 represents a promising entry in the development of new and effective remedies for various skin infections.
Collapse
Affiliation(s)
- Joakim Håkansson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, Gothenburg, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Sandvika, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - John-Sigurd Svendsen
- Amicoat A/S, Sandvika, Norway.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, Biomaterial & Textile, RISE Research Institutes of Sweden, Borås, Sweden. .,Cawthron Institute, Nelson, New Zealand.
| |
Collapse
|
7
|
Klietz ML, Kückelhaus M, Kaiser HW, Raschke MJ, Hirsch T, Aitzetmüller M. Stammzellen in der Regenerativen Medizin – Translationale Hürden und Möglichkeiten zur Überwindung. HANDCHIR MIKROCHIR P 2020; 52:338-349. [DOI: 10.1055/a-1122-8916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ZusammenfassungDer Einsatz von mesenchymalen Stammzellen in der regenerativen Medizin wird immer populärer. Nichtsdestotrotz ist ihre Anwendung im klinischen Alltag noch immer limitiert. Zahlreiche ethische, rechtliche und translationale Probleme sowie Ungewissheit bzgl. der Sicherheit hemmen noch immer die Entstehung von entsprechenden Therapien aus vielversprechenden wissenschaftlichen Ansätzen.Diese Arbeit soll die Hauptprobleme bei der Translation von stammzellbasierten Therapien aus der Grundlagenforschung und Präklinik in den klinischen Alltag darstellen, sowie Ansätze aufzeigen, diese zu überwinden.
Collapse
Affiliation(s)
- Marie-Luise Klietz
- Abteilung für Plastische-, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| | - Maximilian Kückelhaus
- Abteilung für Plastische-, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| | | | - Michael J. Raschke
- Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
| | - Tobias Hirsch
- Abteilung für Plastische-, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Fachklinik Hornheide, Münster
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| | - Matthias Aitzetmüller
- Sektion Plastische Chirurgie an der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster, Münster
- Abteilung für Plastische und Rekonstruktive Chirurgie, Institut für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster
| |
Collapse
|
8
|
Amirkhanov NV, Tikunova NV, Pyshnyi DV. Synthetic Antimicrobial Peptides. II. Antimicrobial and Hemolytic Activity of Cationic Peptides Containing Cysteine Residues with Free Sulfhydryl Groups. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Amirkhanov NV, Tikunova NV, Pyshnyi DV. Synthetic Antimicrobial Peptides: I. Antimicrobial Activity of Amphiphilic and Nonamphiphilic Cationic Peptides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018050035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhang JA, Liu J, Wu HJ, Xu Y, Si CC, Zhou BR, Luo D. The effects of Antimicrobial Peptides and Hyaluronic Acid compound mask on wound healing after ablative fractional Carbon Dioxide laser resurfacing. J COSMET LASER THER 2018; 21:217-224. [PMID: 30198801 DOI: 10.1080/14764172.2018.1516886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jia-an Zhang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China
| | - Juan Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong-jin Wu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen-cheng Si
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing-rong Zhou
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Luo
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis. Antimicrob Agents Chemother 2013; 58:978-85. [PMID: 24277028 DOI: 10.1128/aac.01167-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Host defense peptides (HDPs) are short antimicrobial peptides of the innate immune system. Deficiencies in HDPs contribute to enhanced susceptibility to infections, e.g., in cystic fibrosis (CF). Exogenous HDPs can compensate for these deficiencies, but their development as antimicrobials is limited by cytotoxicity. Three HDP prodrugs were designed so their net positive charge is masked by a promoiety containing a substrate for the enzyme neutrophil elastase (NE). This approach can confine activation to sites with high NE levels. Enzyme-labile peptides were synthesized, and their activation was investigated using purified NE. Susceptibilities of Pseudomonas aeruginosa to parent and prodrug peptides in the presence and absence of NE-rich CF human bronchoalveolar lavage (BAL) fluid and different NaCl concentrations were compared. The effect of the HDP promoiety on cytotoxicity was determined with cystic fibrosis bronchial epithelial (CFBE41o-) cells. NE in CF BAL fluids activated the HDP prodrugs, restoring bactericidal activity against reference and clinical isolates of P. aeruginosa. However, activation also required the addition of 300 mM NaCl. Under these conditions, the bactericidal activity levels of the HDP prodrugs differed, with pro-P18 demonstrating the greatest activity (90% to 100% of that of the parent, P18, at 6.25 μg/ml). Cytotoxic effects on CFBE41o- cells were reduced by the addition of the promoiety to HDPs. We demonstrate here for the first time the selective activation of novel HDP prodrugs by a host disease-associated enzyme at in vivo concentrations of the CF lung. This approach may lead to the development of novel therapeutic agents with low toxicity that are active under the challenging conditions of the CF lung.
Collapse
|
13
|
R-thanatin inhibits growth and biofilm formation of methicillin-resistant Staphylococcus epidermidis in vivo and in vitro. Antimicrob Agents Chemother 2013; 57:5045-52. [PMID: 23917310 DOI: 10.1128/aac.00504-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is one of the most frequent causes of device-associated infections, because it is known to cause biofilms that grow on catheters or other surgical implants. The persistent increasing resistance of S. epidermidis and other coagulase-negative staphylococci (CoNS) has driven the need for newer antibacterial agents with innovative therapeutic strategies. Thanatin is reported to display potent antibiotic activities, especially against extended-spectrum-beta-lactamase-producing Escherichia coli. The present study aimed to investigate whether a shorter derivative peptide (R-thanatin) could be used as a novel antibacterial agent. We found that R-thanatin was highly potent in vitro against coagulase-negative staphylococci, such as S. epidermidis, S. haemolyticus, and S. hominis, and inhibited biofilm formation at subinhibitory concentrations. Properties of little toxicity to human red blood cells (hRBCs) and human umbilical vein endothelial cells, a low incidence of resistance, and relatively high stability in plasma were confirmed. Excellent in vivo protective effects were also observed using a methicillin-resistant S. epidermidis (MRSE)-induced urinary tract infection rat model. Electron microscopy and confocal laser-scanning microscopy analyses suggested that R-thanatin disturbed cell division of MRSE severely, which might be the reason for inhibition of MRSE growth. These findings indicate that R-thanatin is active against the growth and biofilm formation of MRSE in vitro and in vivo. R-thanatin might be considered as a specific drug candidate for treating CoNS infections.
Collapse
|
14
|
Korting H, Schöllmann C, Stauss-Grabo M, Schäfer-Korting M. Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine. Skin Pharmacol Physiol 2012; 25:323-34. [DOI: 10.1159/000341990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 07/19/2012] [Indexed: 12/11/2022]
|
15
|
Gibson AL, Thomas-Virnig CL, Centanni JM, Schlosser SJ, Johnston CE, Van Winkle KF, Szilagyi A, He LK, Shankar R, Allen-Hoffmann BL. Nonviral human beta defensin-3 expression in a bioengineered human skin tissue: a therapeutic alternative for infected wounds. Wound Repair Regen 2012; 20:414-24. [PMID: 22564233 DOI: 10.1111/j.1524-475x.2012.00786.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The innate immune system differentially regulates the expression of host defense peptides to combat infection during wound healing. We enhanced the expression of a host defense peptide, human beta defensin-3 (hBD-3), in keratinocytes to generate a three-dimensional biologic dressing to improve healing of infected wounds. The NIKS human keratinocyte cell line was stably transfected ex vivo with a construct containing an epidermis-specific promoter driving hBD-3 (NIKS(hBD) (-3) ) using nonviral methods. Levels of hBD-3 mRNA and protein in three-dimensional skin tissue produced from NIKS(hBD) (-3) were determined using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Tissue architecture was characterized by hematoxylin and eosin staining and by indirect immunofluorescence using proliferation and keratinocyte differentiation markers. Antimicrobial activity was assessed using an in vitro bacterial growth assay and in vivo using a murine burn infection model. Three-dimensional full thickness skin tissues containing epidermal NIKS(hBD) (-3) or control NIKS possessed histologic features of interfollicular epidermis and exhibited normal tissue growth and differentiation. NIKS(hBD) (-3) tissue contained approximately fivefold more hBD-3 protein than tissue containing unmodified control NIKS. In vitro studies showed that NIKS(hBD) (-3) tissue produced a significant reduction in the growth of Staphylococcus aureus multiple peptide resistance factor (mprF) compared with control tissue. In an in vivo infected murine burn model, NIKS(hBD) (-3) tissue resulted in a 90% reduction in bacterial growth. These results demonstrate that sustained delivery of hBD-3 by a bioengineered skin tissue results in a therapeutically relevant reduction in growth of a S. aureus strain in an animal model of infected third-degree burn wounds.
Collapse
Affiliation(s)
- Angela L Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Steinstraesser L, Hauk J, Al-Benna S, Langer S, Ring A, Kesting M, Sudhoff H, Becerikli M, Käfferlein H, Jacobsen F. Genotoxic and cytotoxic activity of host defense peptides against human soft tissue sarcoma in anin vitromodel. Drug Chem Toxicol 2011; 35:96-103. [DOI: 10.3109/01480545.2011.589441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Wessely-Szponder J, Majer-Dziedzic B, Smolira A. Analysis of antimicrobial peptides from porcine neutrophils. J Microbiol Methods 2010; 83:8-12. [PMID: 20643166 DOI: 10.1016/j.mimet.2010.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 11/30/2022]
Abstract
Cationic host defence peptides are important components of innate immunity in pigs and other mammalians. Most of these peptides have a direct antimicrobial activity and they also have a broad spectrum of effects on the host immune system, which may be taken into account in the introduction of novel therapeutics. Our method permits simultaneous isolation of six antibacterial peptides, i.e. prophenin-1, prophenin-2, PR-39, and protegrins 1-3 from a porcine neutrophil crude extract and characterisation of them. Among the obtained peptides the greatest bactericidal activity expressed as MBC was seen in protegrins (10 μg/ml), whereas in the other studied peptides MBC was on the level of 20 μg/ml. Minimal inhibitory concentrations (MIC) reached 10 μg/ml for protegrins 1-3 and 20 μg/ml for prophenins, and PR-39. Within the bactericidal range all isolated peptides didn't show cytotoxicity on cell lines used in our experiment.
Collapse
Affiliation(s)
- Joanna Wessely-Szponder
- Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
18
|
Dai T, Huang YY, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR. Topical antimicrobials for burn wound infections. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2010; 5:124-51. [PMID: 20429870 PMCID: PMC2935806 DOI: 10.2174/157489110791233522] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/01/2010] [Indexed: 01/22/2023]
Abstract
Throughout most of history, serious burns occupying a large percentage of body surface area were an almost certain death sentence because of subsequent infection. A number of factors such as disruption of the skin barrier, ready availability of bacterial nutrients in the burn milieu, destruction of the vascular supply to the burned skin, and systemic disturbances lead to immunosuppression combined together to make burns particularly susceptible to infection. In the 20th century the introduction of antibiotic and antifungal drugs, the use of topical antimicrobials that could be applied to burns, and widespread adoption of early excision and grafting all helped to dramatically increase survival. However the relentless increase in microbial resistance to antibiotics and other antimicrobials has led to a renewed search for alternative approaches to prevent and combat burn infections. This review will cover patented strategies that have been issued or filed with regard to new topical agents, preparations, and methods of combating burn infections. Animal models that are used in preclinical studies are discussed. Various silver preparations (nanocrystalline and slow release) are the mainstay of many approaches but antimicrobial peptides, topical photodynamic therapy, chitosan preparations, new iodine delivery formulations, phage therapy and natural products such as honey and essential oils have all been tested. This active area of research will continue to provide new topical antimicrobials for burns that will battle against growing multidrug resistance.
Collapse
Affiliation(s)
- Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, P.R China
| | - Sulbha K. Sharma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
| | - Javad T. Hashmi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
| | - Divya B. Kurup
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
19
|
Abstract
Host defense peptides (HDPs) are relatively small, mostly cationic, amphipathic, and of variable length, sequence, and structure. The majority of these peptides exhibit broad-spectrum antimicrobial activity and often activity against viruses and some cancer cell lines. In addition, HDPs also provide a range of immunomodulatory activities related to innate immunity defense, inflammation, and wound healing. The development of these multi-faceted molecules and their bioactivities into clinically important therapeutics is being pursued using a number of different approaches. Here we review the role of HDPs in nature and application of this role to the development of novel therapeutics.
Collapse
|
20
|
Vad B, Thomsen LA, Bertelsen K, Franzmann M, Pedersen JM, Nielsen SB, Vosegaard T, Valnickova Z, Skrydstrup T, Enghild JJ, Wimmer R, Nielsen NC, Otzen DE. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:806-20. [PMID: 20026432 DOI: 10.1016/j.bbapap.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/24/2009] [Accepted: 12/08/2009] [Indexed: 12/29/2022]
Abstract
Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show that there is no direct link between folding of the antimicrobial peptide Novicidin (Nc) and its membrane permeabilization. N-terminal acylation with C8-C16 alkyl chains and the inclusion of anionic lipids both increase Nc's ability to form alpha-helical structure in the presence of vesicles. Nevertheless, both acylation and anionic lipids reduce the extent of permeabilization of these vesicles and lead to slower permeabilization kinetics. Furthermore, acylation significantly decreases antimicrobial activity. Although acyl chains of increasing length also increase the tendency of the peptides to aggregate in solution, this cannot rationalize our results since permeabilization and antimicrobial activities are observed well below concentrations where aggregation occurs. This suggests that significant induction of alpha-helical structure is not a prerequisite for membrane perturbation in this class of antimicrobial peptides. Our data suggests that for Nc, induction of alpha-helical structure may inhibit rather than facilitate membrane disruption, and that a more peripheral interaction may be the most efficient permeabilization mechanism. Furthermore, acylation leads to a deeper embedding in the membrane, which could lead to an anti-permeabilizing "plugging" effect.
Collapse
Affiliation(s)
- Brian Vad
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology, Gustav Wieds Vej 10C, University of Aarhus, DK - 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 2009; 10:3951-3970. [PMID: 19865528 PMCID: PMC2769137 DOI: 10.3390/ijms10093951] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/17/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022] Open
Abstract
Host defense peptides can modulate the innate immune response and boost infection-resolving immunity, while dampening potentially harmful pro-inflammatory (septic) responses. Both antimicrobial and/or immunomodulatory activities are an integral part of the process of innate immunity, which itself has many of the hallmarks of successful anti-infective therapies, namely rapid action and broad-spectrum antimicrobial activities. This gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections. This review details the role and activities of these peptides, and examines their applicability as development candidates for use against bacterial infections.
Collapse
|
22
|
|
23
|
Transcriptional Profile of Escherichia coli in Response to Novispirin G10. Int J Pept Res Ther 2008. [DOI: 10.1007/s10989-008-9157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T. Host defense peptides in wound healing. Mol Med 2008; 14:528-37. [PMID: 18385817 DOI: 10.2119/2008-00002.steinstraesser] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/25/2008] [Indexed: 12/16/2022] Open
Abstract
Host defense peptides are effector molecules of the innate immune system. They show broad antimicrobial action against gram-positive and -negative bacteria, and they likely play a key role in activating and mediating the innate as well as adaptive immune response in infection and inflammation. These features make them of high interest for wound healing research. Non-healing and infected wounds are a major problem in patient care and health care spending. Increasing infection rates, growing bacterial resistance to common antibiotics, and the lack of effective therapeutic options for the treatment of problematic wounds emphasize the need for new approaches in therapy and pathophysiologic understanding. This review focuses on the current knowledge of host defense peptides affecting wound healing and infection. We discuss the current data and highlight the potential future developments in this field of research.
Collapse
|
25
|
Abstract
Innate immune response and its effector molecules have received growing attention in research. Host defense peptides are known to be antimicrobially active. Recently, the peptides have been recognized as potent signaling molecules for cellular effectors of both innate and adaptive immunity. Mammalian peptides in particular revealed immunomodulatory functions, including endotoxin-binding and -neutralizing capacity, chemotactic activities, induction of cytokines and chemokines, promotion of wound healing, and angiogenesis. In sepsis, they present a family of natural substances that can be used in combination with antibiotics to complete a broad-spectrum antimicrobial regimen with endotoxin-neutralizing properties. Although there are side effects, host defense peptides have the potential to be significant reinforcements to the currently available therapeutic options in the future. In this review, we analyze the role of host defense peptides in infection and immune response, and discuss recent efforts to establish host defense peptides as potent novel therapeutic agents for the treatment of sepsis.
Collapse
|