1
|
Silva KPT, Sundar G, Khare A. Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic. Nat Commun 2023; 14:3402. [PMID: 37296157 PMCID: PMC10256781 DOI: 10.1038/s41467-023-38507-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
Antibiotics that have multiple cellular targets theoretically reduce the frequency of resistance evolution, but adaptive trajectories and resistance mechanisms against such antibiotics are understudied. Here we investigate these in methicillin resistant Staphylococcus aureus (MRSA) using experimental evolution upon exposure to delafloxacin (DLX), a novel fluoroquinolone that targets both DNA gyrase and topoisomerase IV. We show that selection for coding sequence mutations and genomic amplifications of the gene encoding a poorly characterized efflux pump, SdrM, leads to high DLX resistance, circumventing the requirement for mutations in both target enzymes. In the evolved populations, sdrM overexpression due to genomic amplifications containing sdrM and two adjacent genes encoding efflux pumps results in high DLX resistance, while the adjacent hitchhiking efflux pumps contribute to streptomycin cross-resistance. Further, lack of sdrM necessitates mutations in both target enzymes to evolve DLX resistance, and sdrM thus increases the frequency of resistance evolution. Finally, sdrM mutations and amplifications are similarly selected in two diverse clinical isolates, indicating the generality of this DLX resistance mechanism. Our study highlights that instead of reduced rates of resistance, evolution of resistance to multi-targeting antibiotics can involve alternate high-frequency evolutionary paths, that may cause unexpected alterations of the fitness landscape, including antibiotic cross-resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesh Sundar
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Molecular Characterization of Clinical Rel Mutations and Consequences for Resistance Expression and Fitness in Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0093822. [PMID: 36346240 PMCID: PMC9764984 DOI: 10.1128/aac.00938-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The stringent response (SR) is a universal stress response that acts as a global regulator of bacterial physiology and virulence, and is a contributor to antibiotic tolerance and resistance. In most bacteria, the SR is controlled by a bifunctional enzyme, Rel, which both synthesizes and hydrolyzes the alarmone (p)ppGpp via two distinct catalytic domains. The balance between these antagonistic activities is fine-tuned to the needs of the cell and, in a "relaxed" state, the hydrolase activity of Rel dominates. We have previously shown that two single amino acid substitutions in Rel (that were identified in clinical isolates from persistent infections) confer elevated basal concentrations of (p)ppGpp and consequent multidrug tolerance in Staphylococcus aureus. Here, we explore the molecular details of how these mutations bring about this increase in cellular (p)ppGpp and investigate the wider cellular consequences in terms of resistance expression, resistance development, and bacterial fitness. Using enzyme assays, we show that both these mutations drastically reduce the hydrolase activity of Rel, thereby shifting the balance of Rel activity in favor of (p)ppGpp synthesis. We also demonstrate that these mutations induce high-level, homogeneous expression of β-lactam resistance and confer a significant fitness advantage in the presence of bactericidal antibiotics (but a fitness cost in the absence of antibiotic). In contrast, these mutations do not appear to accelerate the emergence of endogenous resistance mutations in vitro. Overall, our findings reveal the complex nature of Rel regulation and the multifaceted implications of clinical Rel mutations in terms of antibiotic efficacy and bacteria survival.
Collapse
|
3
|
Galarion LH, Mohamad M, Alzeyadi Z, Randall CP, O'Neill AJ. A platform for detecting cross-resistance in antibacterial drug discovery. J Antimicrob Chemother 2021; 76:1467-1471. [PMID: 33755133 PMCID: PMC8843079 DOI: 10.1093/jac/dkab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background To address the growing antibiotic resistance problem, new antibacterial drugs must exert activity against pathogens resistant to agents already in use. With a view to providing a rapid means for deselecting antibacterial drug candidates that fail to meet this requirement, we report here the generation and application of a platform for detecting cross-resistance between established and novel antibacterial agents. Methods This first iteration of the cross-resistance platform (CRP) consists of 28 strains of defined resistance genotype, established in a uniform genetic background (the SH1000 strain of the clinically significant pathogen Staphylococcus aureus). Most CRP members were engineered through introduction of constitutively expressed resistance determinants on a low copy-number plasmid, with a smaller number selected as spontaneous resistant mutants. Results Members of the CRP collectively exhibit resistance to many of the major classes of antibacterial agent in use. We employed the CRP to test two antibiotics that have been proposed in the literature as potential drug candidates: γ-actinorhodin and batumin. No cross-resistance was detected for γ-actinorhodin, whilst a CRP member resistant to triclosan exhibited a 32-fold reduction in susceptibility to batumin. Thus, a resistance phenotype that already exists in clinical strains mediates profound resistance to batumin, implying that this compound is not a promising antibacterial drug candidate. Conclusions By detecting cross-resistance between established and novel antibacterial agents, the CRP offers the ability to deselect compounds whose activity is substantially impaired by existing resistance mechanisms. The CRP therefore represents a useful addition to the antibacterial drug discovery toolbox.
Collapse
Affiliation(s)
- Luiza H Galarion
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Merianne Mohamad
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zeyad Alzeyadi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher P Randall
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alex J O'Neill
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Touati A, Bellil Z, Barache D, Mairi A. Fitness Cost of Antibiotic Resistance in Staphylococcus aureus: A Systematic Review. Microb Drug Resist 2021; 27:1218-1231. [PMID: 33417813 DOI: 10.1089/mdr.2020.0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Recent reports have shown the potential of Staphylococcus aureus for acquiring resistance to last-resort antibiotics. However, most antibiotic resistance mechanisms were associated with a fitness cost that was typically observed as a reduced bacterial growth rate. This systematic review aimed to address the fitness cost of antibiotic resistance in S. aureus that emerged by mutations. Methods: A systematic review was conducted after searching in two databases (PubMed and Scopus) using specific keywords. We included peer-reviewed articles published only in English. All studies describing the fitness cost associated with antibiotic resistance in S. aureus were selected. For each article, the results of fitness testing, minimum inhibition concentrations of mutants, the position of mutation, and the appearance of compensatory mutations were recorded. Results: At all, 35 articles were recorded in the final analysis examining the fitness cost associated with antibiotic resistance in S. aureus that conferred by mutations. Analysis of the data showed that 26 studies reported that the emergence of antibiotic resistance was frequently associated with a fitness cost. Conclusion: This review summarized that the antibiotic resistance selection caused in the majority of cases a substantial fitness cost. Further in vivo experiments revealed that these mutations affected bacterial virulence and the ability to establish a successful infection.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Zahra Bellil
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Damia Barache
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
5
|
Nyerges A, Tomašič T, Durcik M, Revesz T, Szili P, Draskovits G, Bogar F, Skok Ž, Zidar N, Ilaš J, Zega A, Kikelj D, Daruka L, Kintses B, Vasarhelyi B, Foldesi I, Kata D, Welin M, Kimbung R, Focht D, Mašič LP, Pal C. Rational design of balanced dual-targeting antibiotics with limited resistance. PLoS Biol 2020; 18:e3000819. [PMID: 33017402 PMCID: PMC7561186 DOI: 10.1371/journal.pbio.3000819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 μg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Akos Nyerges
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Tamas Revesz
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Gabor Draskovits
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Ferenc Bogar
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Hungary
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Balint Kintses
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary
| | - Balint Vasarhelyi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Dorota Focht
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Csaba Pal
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
6
|
Korsak D, Krawczyk-Balska A. Identification of the Molecular Mechanism of Trimethoprim Resistance inListeria monocytogenes. Foodborne Pathog Dis 2017; 14:696-700. [PMID: 28910155 DOI: 10.1089/fpd.2017.2323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dorota Korsak
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agata Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Azam MA, Thathan J, Jubie S. Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: A review. Bioorg Chem 2015; 62:41-63. [PMID: 26232660 DOI: 10.1016/j.bioorg.2015.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
GyrB and ParE are type IIA topoisomerases and found in most bacteria. Its function is vital for DNA replication, repair and decatenation. The highly conserved ATP-binding subunits of DNA GyrB and ParE are structurally related and have been recognized as prime candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, no natural product or small molecule inhibitors targeting ATPase catalytic domain of both GyrB and ParE enzymes have succeeded in the clinic. Moreover, no inhibitors of these enzymes with broad-spectrum antibacterial activity against Gram-negative pathogens have been reported. Availability of high resolution crystal structures of GyrB and ParE made it possible for the design of many different classes of inhibitors with dual mechanism of action. Among them benzimidazoles, benzothiazoles, thiazolopyridines, imidiazopyridazoles, pyridines, indazoles, pyrazoles, imidazopyridines, triazolopyridines, pyrrolopyrimidines, pyrimidoindoles as well as related structures are disclosed in literatures. Unfortunately most of these inhibitors are found to be active against Gram-positive pathogens. In the present review we discuss about studies on novel dual targeting ATPase inhibitors.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India.
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India
| | - Selvaraj Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of JSS University, Mysore), Udhagamandalam 643001, Tamil Nadu, India
| |
Collapse
|
8
|
Bisacchi GS, Manchester JI. A New-Class Antibacterial-Almost. Lessons in Drug Discovery and Development: A Critical Analysis of More than 50 Years of Effort toward ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. ACS Infect Dis 2015; 1:4-41. [PMID: 27620144 DOI: 10.1021/id500013t] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The introduction into clinical practice of an ATPase inhibitor of bacterial DNA gyrase and topoisomerase IV (topo IV) would represent a new-class agent for the treatment of resistant bacterial infections. Novobiocin, the only historical member of this class, established the clinical proof of concept for this novel mechanism during the late 1950s, but its use declined rapidly and it was eventually withdrawn from the market. Despite significant and prolonged effort across the biopharmaceutical industry to develop other agents of this class, novobiocin remains the only ATPase inhibitor of gyrase and topo IV ever to progress beyond Phase I. In this review, we analyze the historical attempts to discover and develop agents within this class and highlight factors that might have hindered those efforts. Within the last 15 years, however, our technical understanding of the molecular details of the inhibition of the gyrase and topo IV ATPases, the factors governing resistance development to such inhibitors, and our knowledge of the physical properties required for robust clinical drug candidates have all matured to the point wherein the industry may now address this mechanism of action with greater confidence. The antibacterial spectrum within this class has recently been extended to begin to include serious Gram negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. In spite of this recent technical progress, adverse economics associated with antibacterial R&D over the last 20 years has diminished industry's ability to commit the resources and perseverance needed to bring new-class agents to launch. Consequently, a number of recent efforts in the ATPase class have been derailed by organizational rather than scientific factors. Nevertheless, within this context we discuss the unique opportunity for the development of ATPase inhibitors of gyrase and topo IV as new-class antibacterial agents with broad spectrum potential.
Collapse
Affiliation(s)
- Gregory S. Bisacchi
- AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - John I. Manchester
- AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
9
|
|
10
|
Biological evaluation of benzothiazole ethyl urea inhibitors of bacterial type II topoisomerases. Antimicrob Agents Chemother 2013; 57:5977-86. [PMID: 24041906 DOI: 10.1128/aac.00719-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type II topoisomerases DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) are well-validated targets for antibacterial drug discovery. Because of their structural and functional homology, these enzymes are amenable to dual targeting by a single ligand. In this study, two novel benzothiazole ethyl urea-based small molecules, designated compound A and compound B, were evaluated for their biochemical, antibacterial, and pharmacokinetic properties. The two compounds inhibited the ATPase activity of GyrB and ParE with 50% inhibitory concentrations of <0.1 μg/ml. Prevention of DNA supercoiling by DNA gyrase was also observed. Both compounds potently inhibited the growth of a range of bacterial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged from 0.015 μg/ml for Streptococcus pneumoniae to 0.25 μg/ml for Staphylococcus aureus. No cross-resistance with common drug resistance phenotypes was observed. In addition, no synergistic or antagonistic interactions between compound A or compound B and other antibiotics, including the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard experiments. The frequencies of spontaneous resistance for S. aureus were <2.3 × 10(-10) with compound A and <5.8 × 10(-11) with compound B at concentrations equivalent to 8× the MICs. These values indicate a multitargeting mechanism of action. The pharmacokinetic properties of both compounds were profiled in rats. Following intravenous administration, compound B showed approximately 3-fold improvement over compound A in terms of both clearance and the area under the concentration-time curve. The measured oral bioavailability of compound B was 47.7%.
Collapse
|
11
|
Stokes NR, Baker N, Bennett JM, Berry J, Collins I, Czaplewski LG, Logan A, Macdonald R, Macleod L, Peasley H, Mitchell JP, Nayal N, Yadav A, Srivastava A, Haydon DJ. An improved small-molecule inhibitor of FtsZ with superior in vitro potency, drug-like properties, and in vivo efficacy. Antimicrob Agents Chemother 2013; 57:317-25. [PMID: 23114779 PMCID: PMC3535900 DOI: 10.1128/aac.01580-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023] Open
Abstract
The bacterial cell division protein FtsZ is an attractive target for small-molecule antibacterial drug discovery. Derivatives of 3-methoxybenzamide, including compound PC190723, have been reported to be potent and selective antistaphylococcal agents which exert their effects through the disruption of intracellular FtsZ function. Here, we report the further optimization of 3-methoxybenzamide derivatives towards a drug candidate. The in vitro and in vivo characterization of a more advanced lead compound, designated compound 1, is described. Compound 1 was potently antibacterial, with an average MIC of 0.12 μg/ml against all staphylococcal species, including methicillin- and multidrug-resistant Staphylococcus aureus and Staphylococcus epidermidis. Compound 1 inhibited an S. aureus strain carrying the G196A mutation in FtsZ, which confers resistance to PC190723. Like PC190723, compound 1 acted on whole bacterial cells by blocking cytokinesis. No interactions between compound 1 and a diverse panel of antibiotics were measured in checkerboard experiments. Compound 1 displayed suitable in vitro pharmaceutical properties and a favorable in vivo pharmacokinetic profile following intravenous and oral administration, with a calculated bioavailability of 82.0% in mice. Compound 1 demonstrated efficacy in a murine model of systemic S. aureus infection and caused a significant decrease in the bacterial load in the thigh infection model. A greater reduction in the number of S. aureus cells recovered from infected thighs, equivalent to 3.68 log units, than in those recovered from controls was achieved using a succinate prodrug of compound 1, which was designated compound 2. In summary, optimized derivatives of 3-methoxybenzamide may yield a first-in-class FtsZ inhibitor for the treatment of antibiotic-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Neil R Stokes
- Biota Europe Ltd., Begbroke Science Park, Oxfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Prospective screening of novel antibacterial inhibitors of dihydrofolate reductase for mutational resistance. Antimicrob Agents Chemother 2012; 56:3556-62. [PMID: 22491688 DOI: 10.1128/aac.06263-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to trimethoprim (TMP) resulting from point mutations in the enzyme drug target dihydrofolate reductase (DHFR) drives the development of new antifolate inhibitors effective against methicillin-resistant Staphylococcus aureus (MRSA). For the past several years we have used structure-based design to create propargyl-linked antifolates that are highly potent antibacterial agents. In order to focus priority on the development of lead compounds with a low propensity to induce resistance, we prospectively evaluated resistance profiles for two of these inhibitors in an MRSA strain. By selection with the lead inhibitors, we generated resistant strains that contain single point mutations F98Y and H30N associated with TMP resistance and one novel mutation, F98I, in DHFR. Encouragingly, the pyridyl propargyl-linked inhibitor selects mutants at low frequency (6.85 × 10(-10) to 1.65 × 10(-9)) and maintains a low MIC (2.5 μg/ml) and a low mutant prevention concentration (1.25 μg/ml), strongly supporting its position as a lead compound. Results from this prospective screening method inform the continued design of antifolates effective against mutations at the Phe 98 position. Furthermore, the method can be used broadly to incorporate ideas for overcoming resistance early in the development process.
Collapse
|
13
|
Kunz AN, Begum AA, Wu H, D'Ambrozio JA, Robinson JM, Shafer WM, Bash MC, Jerse AE. Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J Infect Dis 2012; 205:1821-9. [PMID: 22492860 DOI: 10.1093/infdis/jis277] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA(91/95) and parC86 mutations on gonococcal fitness. METHODS Mutant gyrA(91/95) and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR(-79) mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. RESULTS In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA(91/95) mutation conferred an in vivo fitness benefit to wild-type and mtrR(-79) mutant gonococci. The gyrA(91/95), parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA(91/95), parC86, mtrR(-79) mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (Cip(R)) mutant was selected during infection with the gyrA(91/95), parC86, mtrR(-79) mutant in which the mtrR(-79) mutation was repaired and the gyrA(91) mutation was altered. This in vivo-selected mutant grew as well as the wild-type strain in vitro. CONCLUSIONS gyrA(91/95) mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain Cip(R).
Collapse
Affiliation(s)
- Anjali N Kunz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alt S, Mitchenall LA, Maxwell A, Heide L. Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J Antimicrob Chemother 2011; 66:2061-9. [DOI: 10.1093/jac/dkr247] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob Agents Chemother 2011; 55:2362-8. [PMID: 21300840 DOI: 10.1128/aac.01077-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lantibiotics such as nisin (NIS) are peptide antibiotics that may have a role in the chemotherapy of bacterial infections. A perceived benefit of lantibiotics for clinical use is their low propensity to select resistance, although detailed resistance studies with relevant bacterial pathogens are lacking. Here we examined the development of resistance to NIS in Staphylococcus aureus, establishing that mutants, including small-colony variants, exhibiting substantial (4- to 32-fold) reductions in NIS susceptibility could be selected readily. Comparative genome sequencing of a single NISr mutant exhibiting a 32-fold increase in NIS MIC revealed the presence of only two mutations, leading to the substitutions V229G in the purine operon repressor, PurR, and A208E in an uncharacterized protein encoded by SAOUHSC_02955. Independently selected NISr mutants also harbored mutations in the genes encoding these products. Reintroduction of these mutations into the S. aureus chromosome alone and in combination revealed that SAOUHSC_02955(A208E) made the primary contribution to the resistance phenotype, conferring up to a 16-fold decrease in NIS susceptibility. Bioinformatic analyses suggested that this gene encodes a sensor histidine kinase, leading us to designate it "nisin susceptibility-associated sensor (nsaS)." Doubling-time determinations and mixed-culture competition assays between NISr and NISs strains indicated that NIS resistance had little impact on bacterial fitness, and resistance was stable in the absence of selection. The apparent ease with which S. aureus can develop and maintain NIS resistance in vitro suggests that resistance to NIS and other lantibiotics with similar modes of action would arise in the clinic if these agents are employed as chemotherapeutic drugs.
Collapse
|
16
|
Vickers AA, Potter NJ, Fishwick CWG, Chopra I, O'Neill AJ. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J Antimicrob Chemother 2009; 63:1112-7. [DOI: 10.1093/jac/dkp090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J Clin Microbiol 2008; 46:1818-23. [PMID: 18305127 DOI: 10.1128/jcm.02255-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance.
Collapse
|
18
|
Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 2007; 52:837-45. [PMID: 18086843 DOI: 10.1128/aac.01001-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strains, which often produce Panton-Valentine leucocidin (PVL), are increasingly noted worldwide. In this study, we examined 42 MRSA strains (25 PVL-positive [PVL+] strains and 17 PVL-negative [PVL(-)] strains) isolated in Taiwan for their molecular characteristics. The PVL+ MRSA strains included CA-MRSA strains with multilocus sequence type (ST) 59 (major PVL+ MRSA in Taiwan), its variants, and worldwide CA-MRSA ST30 strains. The PVL(-) MRSA strains included the pandemic Hungarian MRSA ST239 strain, the Hungarian MRSA ST239 variant, MRSA ST59 (largely hospital-acquired MRSA strains) and its variants, the pandemic New York/Japan MRSA ST5 strain (Japanese type), and the MRSA ST8 strain. The major PVL+ CA-MRSA ST59 strain possessed a tetracycline resistance-conferring (tetK positive) penicillinase plasmid and a drug resistance gene cluster (a possible composite transposon) for multidrug resistance. Moreover, it carried a novel staphylococcal cassette chromosome mec (SCCmec) with two distinct ccrC genes (ccrC2-C8). This SCCmec (previously named SCCmec type V(T)) was tentatively designated SCCmec type VII. Sequencing of the PVL genes revealed the polymorphisms, and the PVL+ CA-MRSA ST59 strain possessed the ST59-specific PVL gene sequence. The data suggest that a significant amount of clonal spread is occurring in Taiwan and that the major PVL+ CA-MRSA ST59 Taiwan strain exhibits unique genetic characteristics, such as a novel SCCmec type and an ST59-specific PVL gene sequence.
Collapse
|
19
|
Vickers AA, Chopra I, O'Neill AJ. Intrinsic novobiocin resistance in Staphylococcus saprophyticus. Antimicrob Agents Chemother 2007; 51:4484-5. [PMID: 17876001 PMCID: PMC2167987 DOI: 10.1128/aac.00708-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intrinsic novobiocin resistance in Staphylococcus saprophyticus was associated with expression of a novobiocin-resistant form of the drug target protein (GyrB). Site-directed mutagenesis established that resistance depends upon the presence of two specific amino acid residues in GyrB: a glycine at position 85 and a lysine at position 140.
Collapse
Affiliation(s)
- Anna A Vickers
- Antimicrobial Research Centre and Research Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|