1
|
Gomes VMS, Bulla ACS, Torres PHM, Leal da Silva M. RND/HAE-1 members in the Pseudomonadota phylum: exploring multidrug resistance. Biophys Rev 2025; 17:687-699. [PMID: 40376394 PMCID: PMC12075780 DOI: 10.1007/s12551-025-01297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/24/2025] [Indexed: 05/18/2025] Open
Abstract
The hydrophobe/amphiphile efflux-1 (HAE-1) family, part of the Resistance-Nodulation-Division (RND) superfamily, plays a critical role in the development of multidrug resistance (MDR) in bacteria. Known for its broad substrate transport capacity, this family of efflux pumps can actively expel a wide range of molecules, including antibiotics, salts, and dyes, thereby reducing the intracellular concentration of toxic substances. These transporters, which form efflux systems, are primarily found in bacteria within the phylum Pseudomonadota (Proteobacteria), where they are strongly associated with increased resistance and enhanced virulence, thus contributing to bacterial survival in hostile environments. In addition, efflux systems are composed of two other protein components: Membrane Fusion Proteins (MFPs) and Outer Membrane Factors (OMFs). Notably, several bacterial species identified by the World Health Organization (WHO) as urgent priorities for new antibiotic development, such as Escherichia coli and Pseudomonas aeruginosa, have well-studied HAE-1 efflux systems, such as AcrAB-TolC and MexAB-OprM. These systems efficiently transport molecules from the periplasm to the extracellular space, facilitating bacterial persistence. In this review, we examined the current knowledge of HAE-1 efflux transporters and their roles in the physiology and survival of bacteria in the Pseudomonadota phylum.
Collapse
Affiliation(s)
- Vinnícius Machado Schelk Gomes
- Programa de Pós-Graduação Em Biologia Computacional E Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
| | - Ana Carolina Silva Bulla
- Programa de Pós-Graduação Em Biologia Computacional E Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
| | - Pedro Henrique Monteiro Torres
- Programa de Pós-Graduação em Ciências Biológicas – Biofísica, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho 373 - CCS - Bloco G1-19, Cidade Universitária, Rio de Janeiro, RJ 21941-902 Brazil
| | - Manuela Leal da Silva
- Programa de Pós-Graduação Em Biologia Computacional E Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas, Instituto de Biodiversidade E Sustentabilidade NUPEM, Universidade Federal Do Rio de Janeiro, Avenida São José Do Barreto, 764. Centro, Macaé, RJ 27965-045 Brazil
| |
Collapse
|
2
|
Sulieman AME, Idriss H, Alshammari M, Almuzaini NAM, Ibrahim NA, Dahab M, Alhudhaibi AM, Alrushud HMA, Saleh ZA, Abdallah EM. Comprehensive In Vitro Evaluation of Antibacterial, Antioxidant, and Computational Insights into Blepharis ciliaris (L.) B. L. Burtt from Hail Mountains, Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2024; 13:3491. [PMID: 39771189 PMCID: PMC11728784 DOI: 10.3390/plants13243491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
The arid mountainous region of Hail in Saudi Arabia has a variety of desert vegetation, some of which are conventionally used in Bedouin traditional medicine. These plants need scientific examination. This research seeks to examine Blepharis ciliaris using a thorough multi-analytical methodology that includes antibacterial and antioxidant assessments as well as computational modeling. GC-MS analysis of the methanolic extract revealed 17 organic compounds, including pentadecanoic acid, ethyl methyl ester (2.63%); hexadecanoic acid, methyl ester (1.00%); 9,12-octadecadienoic acid (Z,Z)-, methyl ester (2.74%); 9-octadecenoic acid, methyl ester (E) (2.78%); octadecanoic acid (5.88%); 9-tetradecenoic acid (Z) (3.22%); and undec-10-enoic acid, undec-2-n-1-yl ester (5.67%). The DPPH test evaluated antioxidant activity, revealing a notable increase with higher concentrations of the methanolic extract, achieving maximum inhibition of 81.54% at 1000 µg/mL. The methanolic extract exhibited moderate antibacterial activity, with average inhibition zones of 10.33 ± 1.53 mm, 13.33 ± 1.53 mm, 10.67 ± 1.53 mm, and 10.00 ± 2.00 mm against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Serratia marcescens, respectively, as determined by the disk diffusion method. The minimum inhibitory concentration (MIC) values were 500 µg/mL for S. aureus and B. subtilis, whereas E. coli and S. marcescens showed susceptibility at 1000 µg/mL. Computational simulations were employed to assess the toxicity, drug-likeness, and ADMET profiles of compounds derived from Blepharis ciliaris. Thirteen bioactive compounds were assessed in silico against Staphylococcus aureus sortase A (PDB: 1T2O), Bacillus subtilis BsFabHb (PDB: 8VDB), Escherichia coli LPS assembly protein (LptD) (PDB: 4RHB), and a modeled Serratia marcescens outer-membrane protein TolC, focusing on cell wall and membrane structures. Compound 3, (+)-Ascorbic acid 2,6-dihexadecanoate, shown significant binding affinities to B. subtilis BsFabHb, E. coli LPS assembly protein, and S. marcescens TolC.
Collapse
Affiliation(s)
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mamdouh Alshammari
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
| | - Nujud A. M. Almuzaini
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
| | - Nosyba A. Ibrahim
- Department of Public Health, College of Public Health & Health Informatics, University of Hail, Hail 2440, Saudi Arabia;
| | - Mahmoud Dahab
- Faculty of Pharmacy, University of Malaya, Wilayah Persekutuan Kuala Lumpur 50603, Malaysia;
| | | | | | - Zakaria Ahmed Saleh
- Department of Research and Training, Research and Training Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Emad M. Abdallah
- Department of Biology, College of Science, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
3
|
Wang Z, Li H. The tigecycline resistance mechanisms in Gram-negative bacilli. Front Cell Infect Microbiol 2024; 14:1471469. [PMID: 39635040 PMCID: PMC11615727 DOI: 10.3389/fcimb.2024.1471469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Tigecycline, hailed as a pivotal agent in combating multidrug-resistant bacterial infections, confronts obstacles posed by the emergence of resistance mechanisms in Gram-negative bacilli. This study explores the complex mechanisms of tigecycline resistance in Gram-negative bacilli, with a particular focus on the role of efflux pumps and drug modification in resistance. By summarizing these mechanisms, our objective is to provide a comprehensive understanding of tigecycline resistance in Gram-negative bacilli, thereby illuminating the evolving landscape of antimicrobial resistance. This review contributes to the elucidation of current existing tigecycline resistance mechanisms and provides insights into the development of effective strategies to manage the control of antimicrobial resistance in the clinical setting, as well as potential new targets for the treatment of tigecycline-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
4
|
Su W, Wang W, Li L, Zhang M, Xu H, Fu C, Pang X, Wang M. Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review. ENGINEERING MICROBIOLOGY 2024; 4:100165. [PMID: 39629109 PMCID: PMC11610970 DOI: 10.1016/j.engmic.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 12/06/2024]
Abstract
Tigecycline serves as a critical "final-resort" antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.
Collapse
Affiliation(s)
- Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
5
|
Tavares-Carreon F, De Anda-Mora K, Rojas-Barrera IC, Andrade A. Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: a literature review. PeerJ 2023; 11:e14399. [PMID: 36627920 PMCID: PMC9826615 DOI: 10.7717/peerj.14399] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Serratia marcescens is a ubiquitous bacterium from order Enterobacterales displaying a high genetic plasticity that allows it to adapt and persist in multiple niches including soil, water, plants, and nosocomial environments. Recently, S. marcescens has gained attention as an emerging pathogen worldwide, provoking infections and outbreaks in debilitated individuals, particularly newborns and patients in intensive care units. S. marcescens isolates recovered from clinical settings are frequently described as multidrug resistant. High levels of antibiotic resistance across Serratia species are a consequence of the combined activity of intrinsic, acquired, and adaptive resistance elements. In this review, we will discuss recent advances in the understanding of mechanisms guiding resistance in this opportunistic pathogen.
Collapse
Affiliation(s)
- Faviola Tavares-Carreon
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Karla De Anda-Mora
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Idalia C. Rojas-Barrera
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, Plön, Germany,Christian-Albrechts-University Kiel, Kiel, Germany
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
6
|
Celejewski-Marciniak P, Wolinowska R, Wróblewska M. Molecular Characterization of Class 1, 2 and 3 Integrons in Serratia spp. Clinical Isolates in Poland - Isolation of a New Plasmid and Identification of a Gene for a Novel Fusion Protein. Infect Drug Resist 2021; 14:4601-4610. [PMID: 34764657 PMCID: PMC8575446 DOI: 10.2147/idr.s325943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Gram-negative rods of the genus Serratia play an increasing role as etiological agents of healthcare-associated infections (HAI) in humans. These bacteria are characterized by natural and acquired resistance to several groups of antibacterial agents. The aim of the study was to characterize class 1, 2 and 3 integrons in the clinical isolates of Serratia spp. in Poland. Methods The study comprised 112 clinical strains of Serratia, isolated from patients hospitalized in Poland in 2010-2012. Identification of strains was confirmed using MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) system. Detection of class 1, 2 and 3 integrase DNA sequence was performed by multiplex-PCR. Amplicons obtained in the PCR reactions were purified and then sequenced bidirectionally. Results Among the analyzed strains, Serratia marcescens was a predominant species (103/112, 92.0%). All three classes of integrase DNA sequence were detected in the analyzed strains of Serratia spp. DNA sequence of class 3 integron, besides integrase gene, revealed three gene cassettes (dfrB3, bla GES-7,bla OXA/aac(6')-Ib-cr). BLAST analysis of DNA sequence revealed that class 3 integron was carried on 9448 bp plasmid which was named pPCMI3 - whole sequence of its DNA was submitted to GenBank NCBI (National Center for Biotechnology Information) - NCBI MH569711. Conclusion In this study, we identified a new plasmid pPCMI3 harboring class 3 integron. This is the first report of a gene oxa/aac(6')-Ib-cr coding for a novel fusion protein, which consists of OXA β-lactamase and acetyltransferase aac(6')-Ib-cr. In the analyzed strains, class 1 and 2 integrons were also detected. Among the strains with class 1 integron, nine contained cassette array 5'CS-aadA2-ORF-dfrA12-3'CS, and two - cassette array 5'CS-aacC1-ORF-ORF-aadA1-3'CS, which were not previously reported in Serratia spp.
Collapse
Affiliation(s)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wróblewska
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland.,Department of Microbiology, Central Clinical Hospital, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
8
|
Rapid Genome Modification in Serratia marcescens Through Red Homologous Recombination. Appl Biochem Biotechnol 2021; 193:2916-2931. [PMID: 33970425 DOI: 10.1007/s12010-021-03576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Despite the great potential of Serratia marcescens in industrial applications, lack of powerful genetic modification tools limits understanding of the regulatory networks of the useful metabolites and therefore restricts their mass production. To meet the urgent demand, we established a genome-editing strategy for S. marcescens based on Red recombineering in this study. Without host modification in advance, nucA and pigA were substituted by PCR-amplified resistance genes. No long homologous arms were required at the two sides of resistance genes. Using this procedure, the fragment at the S. marcescens as large as 20 kb was easily deleted. Then we constructed a counter-selection gene kil constructed under the control of inducible PBAD operon, which demonstrates obvious lethality to S. marcescens. Subsequently, GmR-kil double selection cassette was inserted into the CDS of pigA gene. Using single-stranded DNA-mediated recombination, this insertion mutation was efficiently repaired through kil counter-selection. A powerful genetic modification platform based on Red recombineering system was successfully established for S. marcescens. Multiple types of modification and multiple recombination strategies can all be performed easily in this species. We hope this study will be useful for the theoretical research and the research of metabolic engineering in S. marcescens.
Collapse
|
9
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 2021; 41:1003-1022. [PMID: 33403565 PMCID: PMC7785128 DOI: 10.1007/s10096-020-04121-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russian Federation, Trubetskaya st., 8-2, 119991, Moscow, Russia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran. .,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran.
| |
Collapse
|
10
|
Li J, Xu Q, Ogurek S, Li Z, Wang P, Xie Q, Sheng Z, Wang M. Efflux Pump AcrAB Confers Decreased Susceptibility to Piperacillin-Tazobactam and Ceftolozane-Tazobactam in Tigecycline-Non-Susceptible Klebsiella pneumoniae. Infect Drug Resist 2020; 13:4309-4319. [PMID: 33273833 PMCID: PMC7705282 DOI: 10.2147/idr.s279020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction Drug efflux pumps are critical for resistance in Gram-negative organisms, but there are limited data on the role they play in decreased susceptibility to β-lactam/β-lactamase inhibitor combinations. In this study, we aimed to investigate the impact of efflux pump AcrAB on piperacillin–tazobactam (TZP) and ceftolozane–tazobactam (C/T) susceptibility in tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains. Methods A tigecycline gradient was used to obtain various TNSKP strains, and in conjunction with the gradient derived strains, a TNSKP clinical strain (TNSKP24) was also included. Minimum inhibitory concentrations (MICs) of antibiotics were determined by the broth microdilution method, and whole-genome sequencing (WGS) was carried out to analyze genomic changes. PCR and sequencing were performed to confirm mutations in ramR, acrR, and the intergenic region of ramR-romA, and qRT-PCR was applied to evaluate levels of gene expression. In-frame acrB knockout and complementation were performed in 3 TNSKP strains. Results Two derivatives of K. pneumoniae K2606 (K2606-4 and K2606-16) and TNSKP24 overexpressed efflux pump AcrAB were obtained for further study. The MICs of TZP and C/T exhibited a 4- to 8-fold increase in K2606-4 and K2606-16, respectively, when compared with K2606 (TZP, 2/4 μg/mL; C/T, 0.25/4 μg/mL). Deletion of acrB decreased the MICs of TZP and C/T by 4- to 16-fold in TNSKP24, K2606-4, and K2606-16, respectively, and complementation of acrB increased the MICs of these agents. MICs of clavulanate, sulbactam, and avibactam in the presence of β-lactam compounds did not change after acrB deletion and subsequent introduction of complementation mutants. Conclusion This study highlights that decreased susceptibility to TZP and C/T could be caused by the multidrug efflux pump AcrAB in TNSKP strains.
Collapse
Affiliation(s)
- Junjie Li
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Peiyun Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zike Sheng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, Leonardecz E, de Góes FR, Campanini EB, Malavazi I, da Cunha AF, Pranchevicius MCDS. Characterization of KPC-Producing Serratia marcescens in an Intensive Care Unit of a Brazilian Tertiary Hospital. Front Microbiol 2020; 11:956. [PMID: 32670210 PMCID: PMC7326048 DOI: 10.3389/fmicb.2020.00956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Serratia marcescens has emerged as an important opportunistic pathogen responsible for nosocomial and severe infections. Here, we determined phenotypic and molecular characteristics of 54 S. marcescens isolates obtained from patient samples from intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54) were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were classified as MDR. The presence of resistance and virulence genes were examined by PCR and sequencing. All isolates carried KPC-carbapenemase (blaKPC) and extended spectrum beta-lactamase blaTEM genes, 14.8% carried blaOXA–1, and 16.7% carried blaCTX–M–1group genes, suggesting that bacterial resistance to β-lactam antibiotics found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF that are associated with efflux pump mediated drug extrusion to fluoroquinolones and tigecycline, respectively, were found in 88.9%. The aac(6′)-Ib-cr variant gene that can simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in 24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii) phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production (PigP) were present in 98.2%. The genetic relationship among the isolates determined by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic similarity to each other, suggesting that the S. marcescens that circulate in this ICU are closely related. Our results suggest that the antimicrobial resistance to many drugs currently used to treat ICU and NIUC patients, associated with the high frequency of resistance and virulence genes is a worrisome phenomenon. Our findings emphasize the importance of active surveillance plans for infection control and to prevent dissemination of these strains.
Collapse
Affiliation(s)
- Roumayne L Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Graziela S Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Mariana Oliveira-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - André Pitondo-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Márcia C A Brito
- Laboratório Central de Saúde Pública do Tocantins, Palmas, Brazil
| | - Eduardo Leonardecz
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fabiana R de Góes
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Anderson F da Cunha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
12
|
Yoon EJ, Oh Y, Jeong SH. Development of Tigecycline Resistance in Carbapenemase-Producing Klebsiella pneumoniae Sequence Type 147 via AcrAB Overproduction Mediated by Replacement of the ramA Promoter. Ann Lab Med 2020; 40:15-20. [PMID: 31432634 PMCID: PMC6713659 DOI: 10.3343/alm.2020.40.1.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenem-resistant K. pneumoniae 2297, isolated from a patient treated with tigecycline for pneumonia, developed tigecycline resistance, in contrast to carbapenem-resistant isolate 1215, which was collected four months prior to the 2297 isolate. Mechanisms underlying tigecycline resistance were elucidated for the clinical isolates. Methods The tigecycline minimum inhibitory concentration (MIC) was determined using the broth microdilution method, with or without phenylalanine-arginine β-naphthylamide (PABN), and whole-genome sequencing was carried out by single-molecule real-time sequencing. The expression levels of the genes acrA,oqxA,ramA,rarA, and rpoB were determined by reverse-transcription quantitative PCR. Results Both isolates presented identical antibiograms, except for tigecycline, which showed an MIC of 0.5 mg/L in 1215 and 2 mg/L in 2297. The addition of PABN to tigecycline-resistant 2297 caused a four-fold decrease in the tigecycline MIC to 0.5 mg/L, although acrA expression (encoding the AcrAB efflux pump) was upregulated by 2.5 fold and ramA expression (encoding the pump activator RamA) was upregulated by 1.4 fold. We identified a 6,096-bp fragment insertion flanking direct TATAT repeats that disrupted the romA gene located upstream of ramA in the chromosome of K. pneumoniae 2297; the insertion led the ramA gene promoter replacement resulting in stronger activation of the gene. Conclusions The K. pneumoniae isolate developed tigecycline resistance during tigecycline treatment. It was related to the overexpression of the AcrAB resistance-nodulation-cell division efflux system due to promoter replacement.
Collapse
Affiliation(s)
- Eun Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yena Oh
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Park HR, Kim DM, Yun NR, Kim CM. Identifying the mechanism underlying treatment failure for Salmonella Paratyphi A infection using next-generation sequencing – a case report. BMC Infect Dis 2019; 19:191. [PMID: 30808284 PMCID: PMC6390365 DOI: 10.1186/s12879-019-3821-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/15/2019] [Indexed: 11/10/2022] Open
|
14
|
Comprehensive analysis of resistance-nodulation-cell division superfamily (RND) efflux pumps from Serratia marcescens, Db10. Sci Rep 2019; 9:4854. [PMID: 30890721 PMCID: PMC6425002 DOI: 10.1038/s41598-019-41237-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
We investigated the role of the resistance-nodulation-cell division superfamily (RND) efflux system on intrinsic multidrug resistance in Serratia marcescens. We identified eight putative RND efflux system genes in the S. marcescens Db10 genome that included the previously characterized systems, sdeXY, sdeAB, and sdeCDE. Six out of the eight genes conferred multidrug resistance on KAM32, a drug hypersensitive strain of Escherichia coli. Five out of the eight genes conferred resistance to benzalkonium, suggesting the importance of RND efflux systems in biocide resistance in S. marcescens. The energy-dependent efflux activities of five of the pumps were examined using a rhodamine 6 G efflux assay. When expressed in the tolC-deficient strain of E. coli, KAM43, none of the genes conferred resistance on E. coli. When hasF, encoding the S. marcescens TolC ortholog, was expressed in KAM43, all of the genes conferred resistance on E. coli, suggesting that HasF is a major outer membrane protein that is used by all RND efflux systems in this organism. We constructed a sdeXY deletion mutant from a derivative strain of the clinically isolated multidrug-resistant S. marcescens strain and found that the sdeXY deletion mutant was sensitive to a broad spectrum of antimicrobial agents.
Collapse
|
15
|
What an Escherichia coli Mutant Can Teach Us About the Antibacterial Effect of Chlorophyllin. Microorganisms 2019; 7:microorganisms7020059. [PMID: 30813305 PMCID: PMC6406390 DOI: 10.3390/microorganisms7020059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Due to the increasing development of antibiotic resistances in recent years, scientists search intensely for new methods to control bacteria. Photodynamic treatment with porphyrins such as chlorophyll derivatives is one of the most promising methods to handle bacterial infestation, but their use is dependent on illumination and they seem to be more effective against Gram-positive bacteria than against Gram-negatives. In this study, we tested chlorophyllin against three bacterial model strains, the Gram-positive Bacillus subtilis 168, the Gram-negative Escherichia coli DH5α and E. coli strain NR698 which has a deficient outer membrane, simulating a Gram-negative "without" its outer membrane. Illuminated with a standardized light intensity of 12 mW/cm², B. subtilis showed high sensitivity already at low chlorophyllin concentrations (≤10⁵ cfu/mL: ≤0.1 mg/L, 10⁶⁻10⁸ cfu/mL: 0.5 mg/L), whereas E. coli DH5α was less sensitive (≤10⁵ cfu/mL: 2.5 mg/L, 10⁶ cfu/mL: 5 mg/L, 10⁷⁻10⁸ cfu/mL: ineffective at ≤25 mg/L chlorophyllin). E. coli NR698 was almost as sensitive as B. subtilis against chlorophyllin, pointing out that the outer membrane plays a significant role in protection against photodynamic chlorophyllin impacts. Interestingly, E. coli NR698 and B. subtilis can also be inactivated by chlorophyllin in darkness, indicating a second, light-independent mode of action. Thus, chlorophyllin seems to be more than a photosensitizer, and a promising substance for the control of bacteria, which deserves further investigation.
Collapse
|
16
|
Dabul ANG, Avaca-Crusca JS, Van Tyne D, Gilmore MS, Camargo ILBC. Resistance in In Vitro Selected Tigecycline-Resistant Methicillin-Resistant Staphylococcus aureus Sequence Type 5 Is Driven by Mutations in mepR and mepA Genes. Microb Drug Resist 2017; 24:519-526. [PMID: 29039719 DOI: 10.1089/mdr.2017.0279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A tigecycline-susceptible (TGC-S) Sequence Type (ST) 5 clinical methicillin-resistant Staphylococcus aureus (MRSA) strain was cultured in escalating levels of tigecycline, yielding mutants eightfold more resistant. Their genomes were sequenced to identify genetic alterations, resulting in resistance. Alterations in rpsJ, commonly related to tigecycline resistance, were also investigated. Tigecycline resistance was mediated by loss-of-function mutations in the transcriptional repressor mepR, resulting in derepression of the efflux pump mepA. Increased levels of resistance were obtained by successive mutations in mepA itself. No alterations in RpsJ were observed in selected strains, but we observed a K57M substitution, previously correlated with resistance, among TGC-S clinical strains. Thus, the pathway to tigecycline resistance in CC5 MRSA in vitro appears to be derepression of mep operon as the result of mepR loss-of-function mutation, followed by alterations in MepA efflux pump. This shows that other evolutionary pathways, besides mutation of rpsJ, are available for evolving tigecycline resistance in CC5 MRSA.
Collapse
Affiliation(s)
- Andrei Nicoli Gebieluca Dabul
- 1 Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo , São Carlos, Brazil
| | - Juliana Sposto Avaca-Crusca
- 1 Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo , São Carlos, Brazil
| | - Daria Van Tyne
- 2 Department of Ophthalmology, Harvard Medical School , Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,3 Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts
| | - Michael S Gilmore
- 2 Department of Ophthalmology, Harvard Medical School , Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,3 Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts
| | | |
Collapse
|
17
|
Majewski P, Wieczorek P, Ojdana D, Sieńko A, Kowalczuk O, Sacha P, Nikliński J, Tryniszewska E. Altered Outer Membrane Transcriptome Balance with AmpC Overexpression in Carbapenem-Resistant Enterobacter cloacae. Front Microbiol 2016; 7:2054. [PMID: 28066375 PMCID: PMC5179509 DOI: 10.3389/fmicb.2016.02054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
The growing incidence of multidrug-resistant (MDR) bacteria is an emerging challenge in modern medicine. The utility of carbapenems, considered “last-line” agents in therapy of infections caused by MDR pathogens, is being diminished by the growing incidence of various resistance mechanisms. Enterobacter cloacae have lately begun to emerge as an important pathogen prone to exhibiting multiple drug resistance. We aimed to investigate the molecular basis of carbapenem-resistance in 44 E. cloacae clinical strains resistant to at least one carbapenem, and 21 susceptible strains. Molecular investigation of 65 E. cloacae clinical strains was based on quantitative polymerase chain reaction (qPCR) allowing for amplification of ampC, ompF, and ompC transcripts, and analysis of nucleotide sequences of alleles included in MLST scheme. Co-operation of three distinct carbapenem resistance mechanisms has been reported—production of OXA-48 (5%), AmpC overproduction (97.7%), and alterations in outer membrane (OM) transcriptome balance. Carbapenem-resistant E. cloacae were characterized by (1.) downregulation of ompF gene (53.4%), which encodes protein with extensive transmembrane channels, and (2.) the polarization of OM transcriptome-balance (79.1%), which was sloped toward ompC gene, encoding proteins recently reported to possess restrictive transmembrane channels. Subpopulations of carbapenem-susceptible strains showed relatively high degrees of sequence diversity without predominant types. ST-89 clearly dominates among carbapenem-resistant strains (88.6%) suggesting clonal spread of resistant strains. The growing prevalence of pathogens resistant to all currently available antimicrobial agents heralds the potential risk of a future “post-antibiotic era.” Great efforts need to be taken to explore the background of resistance to “last resort” antimicrobials.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok Bialystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok Bialystok, Poland
| | - Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok Bialystok, Poland
| | - Anna Sieńko
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok Bialystok, Poland
| | - Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok Bialystok, Poland
| | - Paweł Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok Bialystok, Poland
| | - Elżbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok Bialystok, Poland
| |
Collapse
|
18
|
Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int J Antimicrob Agents 2016; 48:11-18. [DOI: 10.1016/j.ijantimicag.2016.04.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/23/2022]
|
19
|
Marco F, Dowzicky MJ. Antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) in Spain, 2004-2014. J Glob Antimicrob Resist 2016; 6:50-56. [PMID: 27530839 DOI: 10.1016/j.jgar.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Here we report in vitro activity data from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) for tigecycline and comparators against Gram-positive and Gram-negative organisms collected from 27 medical centres in Spain between 2004 and 2014. Minimum inhibitory concentrations (MICs) were determined according to the broth microdilution methodology of the Clinical and Laboratory Standards Institute (CLSI) and susceptibility were determined according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretive criteria. Susceptibility was >97% for all antimicrobials tested against Enterococcus faecalis, and >98% of Enterococcus faecium tested were susceptible to tigecycline, linezolid and vancomycin. A total of 34.1% (1071/3143) of Staphylococcus aureus were meticillin-resistant S. aureus (MRSA), and all MRSA were susceptible to tigecycline and vancomycin. Among the Streptococcus pneumoniae, 5.2% (74/1430) were penicillin-resistant and all isolates were susceptible to linezolid and vancomycin. Among the Enterobacteriaceae, 17.1% (542/3167) of Escherichia coli, 2.8% (19/682) of Klebsiella oxytoca and 19.0% (441/2327) of Klebsiella pneumoniae isolates produced extend-spectrum β-lactamases (ESBLs). Against ESBL-producing E. coli and K. pneumoniae, susceptibility was highest for meropenem, amikacin and tigecycline with rates of >92% and >80%, respectively. Among the Acinetobacter baumannii, susceptibility ranged between 23.5% for levofloxacin and 51.4% for amikacin, and an MIC90 of 2mg/L was observed for tigecycline. In conclusion, monitoring of antimicrobial susceptibility among organisms such as S. aureus, Enterobacteriaceae and A. baumannii is of continuing importance as a guide to clinicians. Depending on the organism to be treated, carbapenems, linezolid, vancomycin and tigecycline continue to be active in Spain.
Collapse
Affiliation(s)
- Francesc Marco
- Department of Microbiology, Biomedical Diagnostic Center (CDB), ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
20
|
Abstract
Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.
Collapse
|
21
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
22
|
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:25-64. [PMID: 25232278 PMCID: PMC4159373 DOI: 10.4137/pmc.s14459] [Citation(s) in RCA: 905] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.
Collapse
Affiliation(s)
- Richard J Fair
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Berlin, Germany
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Mardanova AM, Bogomol’naya LM, Romanova YD, Sharipova MR. Efflux systems in Serratia marcescens. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Onishi M, Mizusawa M, Tsuchiya T, Kuroda T, Ogawa W. Suppression of stop codon UGA in acrB can contribute to antibiotic resistance in Klebsiella pneumoniae ATCC10031. Gene 2014. [DOI: 10.1016/j.gene.2013.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Sun Y, Cai Y, Liu X, Bai N, Liang B, Wang R. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents 2013; 41:110-6. [DOI: 10.1016/j.ijantimicag.2012.09.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 02/09/2023]
|
26
|
Briales A, Rodriguez-Martinez JM, Velasco C, Machuca J, Diaz de Alba P, Blazquez J, Pascual A. Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation. J Antimicrob Chemother 2012; 67:2854-9. [DOI: 10.1093/jac/dks326] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Bush K. Improving known classes of antibiotics: an optimistic approach for the future. Curr Opin Pharmacol 2012; 12:527-34. [PMID: 22748801 DOI: 10.1016/j.coph.2012.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/22/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
New antibiotic agents are desperately needed to treat the multidrug-resistant pathogens that continue to emerge at alarming rates. Many of the agents that have entered full clinical development since 1995 have been members of previously accepted classes of antibiotics. Among these are a new aminoglycoside (plazomicin), anti-MRSA cephalosporins (ceftobiprole and ceftaroline), a monocyclic β-lactam (BAL30072), the β-lactamase inhibitor combination of tazobactam with the anti-pseudomonal cephalosporin ceftolozane, β-lactam combinations with new non-β-lactam inhibitors (MK-7655 with imipenem, and avibactam with ceftazidime and ceftaroline), new macrolides (cethromycin and solithromycin), oxazolidinones (tedizolid phosphate and radezolid), and quinolones (delafloxacin, nemonoxacin and JNJ-Q2). Resistance and safety issues have been circumvented by some of these new agents that have well-established mechanisms of action and defined pathways leading toward regulatory approval.
Collapse
Affiliation(s)
- Karen Bush
- Biology Department, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
28
|
Abstract
Serratia species, in particular Serratia marcescens, are significant human pathogens. S. marcescens has a long and interesting taxonomic, medical experimentation, military experimentation, and human clinical infection history. The organisms in this genus, particularly S. marcescens, were long thought to be nonpathogenic. Because S. marcescens was thought to be a nonpathogen and is usually red pigmented, the U.S. military conducted experiments that attempted to ascertain the spread of this organism released over large areas. In the process, members of both the public and the military were exposed to S. marcescens, and this was uncovered by the press in the 1970s, leading to U.S. congressional hearings. S. marcescens was found to be a certain human pathogen by the mid-1960s. S. marcescens and S. liquefaciens have been isolated as causative agents of numerous outbreaks and opportunistic infections, and the association of these organisms with point sources such as medical devices and various solutions given to hospitalized patients is striking. Serratia species appear to be common environmental organisms, and this helps to explain the large number of nosocomial infections due to these bacteria. Since many nosocomial infections are caused by multiply antibiotic-resistant strains of S. marcescens, this increases the danger to hospitalized patients, and hospital personnel should be vigilant in preventing nosocomial outbreaks due to this organism. S. marcescens, and probably other species in the genus, carries several antibiotic resistance determinants and is also capable of acquiring resistance genes. S. marcescens and S. liquefaciens are usually identified well in the clinical laboratory, but the other species are rare enough that laboratory technologists may not recognize them. 16S rRNA gene sequencing may enable better identification of some of the less common Serratia species.
Collapse
|
29
|
McIntosh EDG. Efflux: how bacteria use pumps to control their microenvironment. Handb Exp Pharmacol 2012:153-166. [PMID: 23090601 DOI: 10.1007/978-3-642-28951-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Efflux pumps are a potent and clinically important cause of antibiotic resistance. The particular focus of this chapter is on the efflux pump as a target for antimicrobial therapy and the development of new antibacterials to address the efflux problem.Tigecycline is an example of how old antibiotics, in this case tetracyclines, which have become substrates for efflux pumps, can be extensively modified to restore antimicrobial activity and clinical efficacy.
Collapse
|
30
|
Mutation in the sdeS gene promotes expression of the sdeAB efflux pump genes and multidrug resistance in Serratia marcescens. Antimicrob Agents Chemother 2011; 55:2922-6. [PMID: 21422216 DOI: 10.1128/aac.01755-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Serratia marcescens gained resistance to both biocides and antibiotics on expressing the SdeAB efflux pump, following exposure to increasingly higher concentrations of a biocide (H. Maseda et al., Antimicrob. Agents Chemother. 53:5230-5235, 2009). To reveal the regulatory mechanism of sdeAB expression, wild-type cells were subjected to transposon-mediated random mutagenesis, and a mutant with antibiotic resistance, which mimicked the phenotype of the previous biocide-resistant cells, was obtained. The transposon element was found in the chromosomal DNA downstream of the sdeAB operon. Sequencing revealed the presence of an open reading frame (ORF) encoding a protein with 159 amino acid residues that is highly similar to the BadM-type transcriptional repressor, designated sdeS. The level of sdeB::xylE reporter gene expression, undetectable in the wild-type cells, appeared to be fully comparable to that in the biocide-resistant cells. Nucleotide sequencing of the mutant revealed sdeS to have a single G-to-A base substitution at position 269 that converted Trp90 to a stop codon. Introduction of a plasmid-borne intact sdeS into the mutant cells and the biocide-resistant cells resulted in a reduction in sdeB::xylE reporter activity to an undetectable level. These results suggested that SdeS functions as a repressor of the sdeAB operon. It was concluded that the original biocide-resistant cells had an impaired sdeS and, therefore, a derepressed level of the SdeAB efflux pump.
Collapse
|
31
|
Townsend ML, Pound MW, Drew RH. Potential role of tigecycline in the treatment of community-acquired bacterial pneumonia. Infect Drug Resist 2011; 4:77-86. [PMID: 21694911 PMCID: PMC3108749 DOI: 10.2147/idr.s6030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 12/13/2022] Open
Abstract
Tigecycline is a member of the glycylcycline class of antimicrobials, which is structurally similar to the tetracycline class. It demonstrates potent in vitro activity against causative pathogens that are most frequently isolated in patients with community-acquired bacterial pneumonia (CABP), including (but not limited to) Streptococcus pneumoniae (both penicillin-sensitive and -resistant strains), Haemophilus influenzae and Moraxella catarrhalis (including β-lactamase-producing strains), Klebsiella pneumoniae, and ‘atypical organisms’ (namely Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila). Comparative randomized clinical trials to date performed in hospitalized patients receiving tigecycline 100 mg intravenous (IV) × 1 and then 50 mg IV twice daily thereafter have demonstrated efficacy and safety comparable to the comparator agent. Major adverse effects were primarily gastrointestinal in nature. Tigecycline represents a parenteral monotherapy option in hospitalized patients with CABP (especially in patients unable to receive respiratory fluoroquinolones). However, alternate and/or additional therapies should be considered in patients with more severe forms of CABP in light of recent data of increased mortality in patients receiving tigecycline for other types of severe infection.
Collapse
Affiliation(s)
- Mary L Townsend
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC, USA
| | | | | |
Collapse
|
32
|
ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010; 54:2720-3. [PMID: 20350947 DOI: 10.1128/aac.00085-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Five Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline (MIC, 2 microg/ml) were analyzed. A gene homologous to ramR of Salmonella enterica was identified in Klebsiella pneumoniae. Sequencing of ramR in the nonsusceptible Klebsiella strains revealed deletions, insertions, and point mutations. Transformation of mutants with wild-type ramR genes, but not with mutant ramR genes, restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. Thus, this study reveals a molecular mechanism for tigecycline resistance in Klebsiella pneumoniae.
Collapse
|