1
|
Sno RC, Culbard G, Adhin MR. First Reported Case of Integrase Strand Transfer Inhibitor Resistance in Suriname: Unusual Drug Resistance Mutations Following Exposure to Dolutegravir. Viruses 2025; 17:245. [PMID: 40007000 PMCID: PMC11860197 DOI: 10.3390/v17020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Contemporary ART as Dolutegravir (DTG) has significantly advanced antiretroviral therapy, but relatively few data are available on its impact on the emergence of HIV-1 drug resistance mutations (DRMs). Monitoring the emergence of INSTI-associated DRMs following the introduction of DTG in Suriname will provide general insight and guide national HIV treatment strategies. All people living with HIV (PLHIV) in Suriname, for whom an INSTI drug resistance test was requested between September 2019 and February 2024 (n = 20), were included. HIV-1 integrase gene sequences were determined using Sanger sequencing. INSTI-associated mutations were identified using the Stanford HIV Drug Resistance Database program. The majority of the participants (66.7%) harbored HIV-1 subtype B, and 33.3% were B-recombinant forms. In addition to the INSTI wildtype, a strain was revealed carrying E157EQ and one person harbored a highly INSTI-resistant strain (E138K, G140S, Q148H and N155H). The emergence of a highly INSTI-resistant HIV-1 strain in Suriname, with unusual mutations for ART-experienced PLHIV exposed to DTG as the only INSTI, accentuates the need for continuous monitoring of the emergence of INSTI drug resistance mutations, not only to enable timely interventions and optimized treatment outcomes for PLHIV, but also to steer the decision making for ART protocols, especially for second generation INSTIs.
Collapse
Affiliation(s)
- Rachel C. Sno
- “Prof. Dr. Paul C. Flu” Institute for Biomedical Sciences, Kernkampweg 5, Paramaribo, Suriname;
| | - Gracia Culbard
- Academic Hospital Suriname, Flustraat 29, Paramaribo, Suriname
| | - Malti R. Adhin
- Faculty of Medical Sciences, Department of Biochemistry, Anton de Kom Universiteit van Suriname, Kernkampweg 5, Paramaribo, Suriname
| |
Collapse
|
2
|
Fofana DB, Diarra H, Guindo I, Savadogo MK, d’Almeida M, Diallo FI, Baldé A, Soulié C, Kone A, Marcelin AG, Maiga AI, Lambert-Niclot S, Maiga M, McFall S, Hawkins CA, Murphy RL, Sylla M, Katlama C, Holl JL, Calvez V, Morand-Joubert L. Prevalence of HIV-1 Natural Polymorphisms and Integrase-Resistance-Associated Mutations in African Children. Viruses 2023; 15:v15020546. [PMID: 36851760 PMCID: PMC9964382 DOI: 10.3390/v15020546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Integrase inhibitors (INIs) are a potent option for HIV treatment. Limited data exist on INI resistance in West Africa, particularly in children living with HIV/AIDS. We determined the prevalence of integrase gene polymorphisms and the frequency of naturally occurring amino acid (aa) substitutions at positions associated with INI resistance. Dried blood spot (DBS) samples were obtained from one hundred and seven (107) HIV-1-infected children aged less than 15 years old in two West African countries, Benin and Mali. All children were naïve to INI treatment, 56 were naïve to anti-retroviral therapy (ART), and 51 had received ART. Genetic sequencing of HIV integrase was successful in 75 samples. The aa changes at integrase positions associated with INI resistance were examined according to the Stanford HIV Genotypic Resistance database. The median ages were 2.6 and 10 years for ART-naïve and -treated children, respectively. The most common subtypes observed were CRF02_AG (74.7%) followed by CRF06_cpx (20%). No major INI-resistance mutations at positions 66, 92, 121, 143, 147, 148, 155, and 263 were detected. The most prevalent INI accessory resistance mutations were: L74I/M (14/75, 18.6%) followed by E157Q (8/75, 10.6%), G163E/N/T/Q (5/75, 6.6%), Q95A/H/P (2/75, 2.6%), and T97A (4/75, 5.3%). Other substitutions observed were M50I/L/P, H51E/P/S/Q, I72V, T112V, V201I, and T206S. Polymorphisms at positions which may influence the genetic barrier and/or drive the selection of specific INI-resistance pathways were detected. However, no transmitted drug resistance (TDR) to INI was detected among samples of INI-naïve patients. These findings support the use of this treatment class for children with HIV-1, particularly in West Africa.
Collapse
Affiliation(s)
- Djeneba B. Fofana
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
- Department of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, F-75012 Paris, France
- Correspondence:
| | - Houdou Diarra
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
| | - Ibrahima Guindo
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
| | | | - Marceline d’Almeida
- Département Mère Enfant, Faculté Des Sciences De La Santé, Université Abomey-Calavi, CNHU—HKM, Cotonou 229, Benin
| | - Fatoumata I. Diallo
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
| | - Aliou Baldé
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
| | - Cathia Soulié
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
- Department of Virology, Assistance Publique-HÔpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Amadou Kone
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
- Department of Virology, Assistance Publique-HÔpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Almoustapha I. Maiga
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
| | - Sidonie Lambert-Niclot
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
- Department of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, F-75012 Paris, France
| | - Mamoudou Maiga
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
- Institute for Global Health, Northwestern University, Chicago, IL 60208, USA
| | - Sally McFall
- Institute for Global Health, Northwestern University, Chicago, IL 60208, USA
| | - Claudia A. Hawkins
- Institute for Global Health, Northwestern University, Chicago, IL 60208, USA
| | - Robert L. Murphy
- Institute for Global Health, Northwestern University, Chicago, IL 60208, USA
| | - Mariam Sylla
- Faculty of Medicine, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako E 423, Mali
| | - Christine Katlama
- Service des Maladies Infectieuses, Hôpital Pitié-Salpêtrière APHP, F-75013 Paris, France
| | - Jane L. Holl
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
- Department of Virology, Assistance Publique-HÔpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, F-75013 Paris, France
| | - Laurence Morand-Joubert
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), F-75012 Paris, France
- Department of Virology, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, F-75012 Paris, France
| |
Collapse
|
3
|
Vergni D, Santoni D, Bouba Y, Lemme S, Fabeni L, Carioti L, Bertoli A, Gennari W, Forbici F, Perno CF, Gagliardini R, Ceccherini-Silberstein F, Santoro MM. Evaluation of HIV-1 integrase variability by combining computational and probabilistic approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105294. [PMID: 35513162 DOI: 10.1016/j.meegid.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
This study aimed at updating previous data on HIV-1 integrase variability, by using effective bioinformatics methods combining different statistical instruments from simple entropy and mutation rate to more specific approaches such as Hellinger distance. A total of 2133 HIV-1 integrase sequences were analyzed in: i) 1460 samples from drug-naïve [DN] individuals; ii) 386 samples from drug-experienced but INI-naïve [IN] individuals; iii) 287 samples from INI-experienced [IE] individuals. Within the three groups, 76 amino acid positions were highly conserved (≤0.2% variation, Hellinger distance: <0.25%), with 35 fully invariant positions; while, 80 positions were conserved (>0.2% to <1% variation, Hellinger distance: <1%). The H12-H16-C40-C43 and D64-D116-E152 motifs were all well conserved. Some residues were affected by dramatic changes in their mutation distributions, especially between DN and IE samples (Hellinger distance ≥1%). In particular, 15 positions (D6, S24, V31, S39, L74, A91, S119, T122, T124, T125, V126, K160, N222, S230, C280) showed a significant decrease of mutation rate in IN and/or IE samples compared to DN samples. Conversely, 8 positions showed significantly higher mutation rate in samples from treated individuals (IN and/or IE) compared to DN. Some of these positions, such as E92, T97, G140, Y143, Q148 and N155, were already known to be associated with resistance to integrase inhibitors; other positions including S24, M154, V165 and D270 are not yet documented to be associated with resistance. Our study confirms the high conservation of HIV-1 integrase and identified highly invariant positions using robust and innovative methods. The role of novel mutations located in the critical region of HIV-1 integrase deserves further investigation.
Collapse
Affiliation(s)
- Davide Vergni
- Istituto per le Applicazioni del Calcolo "Mauro Picone" - CNR, Rome, Italy.
| | - Daniele Santoni
- Istituto di Analisi dei Sistemi ed. Informatica "Antonio Ruberti" - CNR, Rome, Italy
| | - Yagai Bouba
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Saverio Lemme
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, IRCCS, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Virology, University Hospital "Tor Vergata", Rome, Italy
| | - William Gennari
- Microbiology and Virology Unit, University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Forbici
- Laboratory of Virology, IRCCS, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Carlo Federico Perno
- Multimodal Laboratory Research Department, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Roberta Gagliardini
- HIV/AIDS Department, IRCCS, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | | | | | | |
Collapse
|
4
|
Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses 2022; 14:v14040729. [PMID: 35458459 PMCID: PMC9029575 DOI: 10.3390/v14040729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Dolutegravir-based antiretroviral therapy (ART) has been scaled up in many developing countries, including Ethiopia. However, subtype-dependent polymorphic differences might influence the occurrence of HIV-drug-resistance mutations (HIVDRMs). We analyzed the prevalence of pre-treatment integrase strand transfer inhibitor (INSTI) HIVDRMs and naturally occurring polymorphisms (NOPs) of the integrase gene, using plasma samples collected as part of the national HIVDR survey in Ethiopia in 2017. We included a total of 460 HIV-1 integrase gene sequences from INSTI-naïve (n = 373 ART-naïve and n = 87 ART-experienced) patients. No dolutegravir-associated HIVDRMs were detected, regardless of previous exposure to ART. However, we found E92G in one ART-naïve patient specimen and accessory mutations in 20/460 (4.3%) of the specimens. Moreover, among the 288 integrase amino acid positions of the subtype C, 187/288 (64.9%) were conserved (<1.0% variability). Analysis of the genetic barrier showed that the Q148H/K/R dolutegravir resistance pathway was less selected in subtype C. Docking analysis of the dolutegravir showed that protease- and reverse-transcriptase-associated HIVDRMs did not affect the native structure of the HIV-1 integrase. Our results support the implementation of a wide scale-up of dolutegravir-based regimes. However, the detection of polymorphisms contributing to INSTI warrants the continuous surveillance of INSTI resistance.
Collapse
|
5
|
Sayan M, Yildirim FS, Akhan S, Karaoglan I, Akalin H. Integrase Strand Transfer Inhibitor (INSTI) Genotypic Resistance Analysis in Treatment-nNaive, INSTI Free Antiretroviral-Experienced and INSTI-Experienced Turkish Patients Infected with HIV-1. Curr HIV Res 2022; 20:184-192. [PMID: 35240975 DOI: 10.2174/1570162x20666220303104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Integrase strand transfer inhibitors (INSTIs) are currently the standard of practice for first-line HIV therapy for most patients. We evaluated the mutations associated with INSTI resistance in naive HIV-1 infected patients and treated them with antiretrovirals (ART). METHODS The study, conducted in the 2018 - 2020 period, included 50 ART-naïve patients, 69 INSTI free ART-experienced patients, and 82 INSTI-experienced patients. INSTI resistance mutations were interpreted using the Stanford University HIVdb Program algorithm. RESULTS INSTI resistance was not detected in ART naïve patients. At least one INSTI resistance mutation was detected in 10% of the INSTI-free patients and 29% of the INSTI-treated patients. Major INSTI-mutations E138K, Y143R, S147G, Q148R, N155H, and E157Q were found in raltegravir. Additional mutations, E92Q, E138K, G140A, S147G, and Q148R were found in elvitegravir; E192Q, E138K/T, G140A/S, S147G, Q148H/R, N155H, E157Q were found in dolutegravir (DTG) experienced patients. According to all drug classes, drug resistance mutation prevalences were determined at the rate of 60%, 46%, and 46% in the RAL, EVG, and DTG groups, respectively. CONCLUSION Our findings provide data for treatment and resistance management of INSTIs and may provide feedback for INSTIs resistance surveillance consensus-building efforts. In viral rebound under INSTI treatment, INSTI-resistant mutations follow typical INSTI resistance pathways and high resistance rates. INSTI resistance genotypic analysis should be considered before any DTG-based regimes can be initiated in the future, and reduced DTG susceptibility should be carefully monitored and investigated.
Collapse
Affiliation(s)
- Murat Sayan
- Kocaeli University, Research and Education Hospital, PCR Laboratory, Kocaeli, Turkey
- Near East University, DESAM Research Institute, Nicosia, Northern Cyprus
| | - Figen Sarigul Yildirim
- Health Sciences University, Antalya Research and Education Hospital, Department of Infectious Diseases, Antalya, Turkey
| | - Sila Akhan
- Kocaeli University, Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Kocaeli, Turkey
| | - Ilkay Karaoglan
- Gaziantep University, Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Gaziantep, Turkey
| | - Halis Akalin
- Uludağ University, Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Bursa, Turkey
| |
Collapse
|
6
|
Yang J, Hao M, Khan MA, Rehman MT, Highbarger HC, Chen Q, Goswami S, Sherman BT, Rehm CA, Dewar RL, Chang W, Imamichi T. A Combination of M50I and V151I Polymorphic Mutations in HIV-1 Subtype B Integrase Results in Defects in Autoprocessing. Viruses 2021; 13:2331. [PMID: 34835137 PMCID: PMC8625782 DOI: 10.3390/v13112331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
We have recently reported that a recombinant HIV-1NL4.3 containing Met-to-Ile change at codon 50 of integrase (IN) (IN:M50I) exhibits suppression of the virus release below 0.5% of WT HIV, and the released viral particles are replication-incompetent due to defects in Gag/GagPol processing by inhibition of the initiation of autoprocessing of GagPol polyproteins in the virions and leads to replication-incompetent viruses. The coexisting Ser-to-Asn change at codon 17 of IN or Asn-to-Ser mutation at codon 79 of RNaseH (RH) compensated the defective IN:M50I phenotype, suggesting that both IN and RH regulate an HIV infectability. In the current study, to elucidate a distribution of the three mutations during anti-retroviral therapy among patients, we performed a population analysis using 529 plasma virus RNA sequences obtained through the MiSeq. The result demonstrated that 14 plasma HIVs contained IN:M50I without the compensatory mutations. Comparing the sequences of the 14 viruses with that of the defective virus illustrated that only Val-to-Ile change at codon 151 of IN (IN:V151I) existed in the recombinant virus. This IN:V151I is known as a polymorphic mutation and was derived from HIVNL4.3 backbone. A back-mutation at 151 from Ile-to-Val in the defective virus recovered HIV replication capability, and Western Blotting assay displayed that the back-mutation restored Gag/GagPol processing in viral particles. These results demonstrate that a combination of IN:M50I and IN:V151I mutations, but not IN:M50I alone, produces a defective virus.
Collapse
Affiliation(s)
- Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Muhammad A. Khan
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Muhammad T. Rehman
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Helene C. Highbarger
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Catherine A. Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA;
| | - Robin L. Dewar
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| |
Collapse
|
7
|
Imamichi T, Bernbaum JG, Laverdure S, Yang J, Chen Q, Highbarger H, Hao M, Sui H, Dewar R, Chang W, Lane HC. Natural Occurring Polymorphisms in HIV-1 Integrase and RNase H Regulate Viral Release and Autoprocessing. J Virol 2021; 95:e0132321. [PMID: 34523971 PMCID: PMC8577372 DOI: 10.1128/jvi.01323-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy-naive patients reported that 14 naturally occurring nonsynonymous single-nucleotide polymorphisms (SNPs) in HIV derived from antiretrovirus drug-naive patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing a Met-to-Ile change at codon 50 in integrase [HIV(IN:M50I)] was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P < 0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster resonance energy transfer (FRET) assay displayed that GagPol containing IN:M50I forms a homodimer with a similar efficiency with GagPol (wild type). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase and Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are regulated by not only integrase but also RNase H. IMPORTANCE Nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging nonsynonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Other coexisting SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - John G. Bernbaum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Helene Highbarger
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Pereira-Vaz J, Crespo P, Mocho L, Martinho P, Fidalgo T, Correia L, Rodrigues F, Duque V. Identification of a new 2-amino acid insertion in the integrase coding region of HIV-1 subtype G isolates. J Med Virol 2021; 93:6388-6392. [PMID: 34260070 DOI: 10.1002/jmv.27205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022]
Abstract
Amino acid insertions have been rarely found in the integrase (IN) coding region of Human immunodeficiency virus 1 (HIV-1), and have been considered as natural polymorphisms. It is still unclear the potential impact of these insertion mutations on the viral replication capacity and/or susceptibility to integrase strand transfer inhibitors (INSTIs). The objective of this study was to describe a previously unreported amino acid insertion in the IN coding region of HIV-1 isolates obtained from antiretroviral treatment-naïve infected individuals. Nucleotide sequences of HIV-1 isolates obtained from two infected individuals were analyzed for genotypic resistance to antiretroviral drugs. Phylogenetic inference was carried out for HIV-1 genetic variant identification. An unreported insertion of a threonine (T) and an asparagine (N) between codon 255 and 256 (S255N_TN) was identified in the IN C-terminal domain of HIV-1 subtype G isolates. No resistance-associated mutations to INSTIs were detected in the inserted sequences. Both individuals maintained undetectable HIV-1 RNA viral load, 24 months after undergoing antiretroviral treatment with an INSTI containing regimen. The results demonstrated the possibility of transmission of this insertion mutation and suggested that the codon 255 insert by itself may not affect susceptibility to INSTIs.
Collapse
Affiliation(s)
- João Pereira-Vaz
- Laboratory of Virology, Clinical Pathology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Crespo
- Infectious Diseases Unit, Centro Hospitalar Tondela Viseu, Viseu, Portugal
| | - Luísa Mocho
- Infectious Diseases Unit, Centro Hospitalar Tondela Viseu, Viseu, Portugal
| | - Patrícia Martinho
- Molecular Hematology Laboratory, Clinical Hematology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Fidalgo
- Molecular Hematology Laboratory, Clinical Hematology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lurdes Correia
- Laboratory of Virology, Clinical Pathology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Rodrigues
- Clinical Pathology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vítor Duque
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Infectious Diseases Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Semengue ENJ, Armenia D, Inzaule S, Santoro MM, Dambaya B, Takou D, Teto G, Nka AD, Yagai B, Fabeni L, Chenwi C, Angong Beloumou G, Djupsa Ndjeyep SC, Colizzi V, Perno CF, Ceccherini-Silberstein F, Fokam J. Baseline integrase drug resistance mutations and conserved regions across HIV-1 clades in Cameroon: implications for transition to dolutegravir in resource-limited settings. J Antimicrob Chemother 2021; 76:1277-1285. [PMID: 33501504 DOI: 10.1093/jac/dkab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Transition to dolutegravir-based regimens in resource-limited settings (RLS) requires prior understanding of HIV-1 integrase variants and conserved regions. Therefore, we evaluated integrase drug resistance mutations (DRMs) and conserved regions amongst integrase strand transfer inhibitor (INSTI)-naive patients harbouring diverse HIV-1 clades in Cameroon. METHODS A cross-sectional study was conducted amongst 918 INSTI-naive patients from Cameroon (89 ART-naive and 829 ART-experienced patients). HIV-1 sequences were interpreted regarding INSTI-DRMs using the Stanford HIVdb v8.9-1 and the 2019 IAS-USA list. Amino acid positions with <1% variability were considered as highly conserved. Subtyping was performed by phylogeny. RESULTS Overall prevalence (95% CI) of INSTI-DRMs was 0.8% (0.4-1.7), with 0.0% (0.0-4.0) amongst ART-naive versus 0.9% (0.5-1.9) amongst ART-experienced patients; P = 0.44. Accessory mutations (95% CI) were found in 33.8% (30.9-37.0), with 38.2% (28.1-49.1) amongst ART-naive versus 33.4% (30.4-36.7) amongst ART-experienced patients; P = 0.21. Of 288 HIV-1 integrase amino acid positions, 58.3% were highly conserved across subtypes in the following major regions: V75-G82, E85-P90, H114-G118, K127-W132, E138-G149, Q168-L172, T174-V180, W235-A239 and L241-D253. Wide genetic diversity was found (37 clades), including groups M (92.3%), N (1.4%), O (6.2%) and P (0.1%). Amongst group M, CRF02_AG was predominant (47.4%), with a significantly higher frequency (95% CI) of accessory mutations compared with non-AG [41.4% (36.8-46.0) versus 27.1% (23.3-31.2) respectively; P < 0.001]. CONCLUSIONS The low baseline of INSTI-DRMs (<1%) in Cameroon suggests effectiveness of dolutegravir-based regimens. In spite of high conservation across clades, the variability of accessory mutations between major circulating strains underscores the need for monitoring the selection of INSTI-DRMs while scaling up dolutegravir-based regimens in RLS.
Collapse
Affiliation(s)
- Ezechiel Ngoufack Jagni Semengue
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Daniele Armenia
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Seth Inzaule
- Department of Global Health, Academic Medical Center of the University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Béatrice Dambaya
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Désiré Takou
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Georges Teto
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Alex Durand Nka
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Bouba Yagai
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Collins Chenwi
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Grâce Angong Beloumou
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Sandrine Claire Djupsa Ndjeyep
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Vittorio Colizzi
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Carlo-Federico Perno
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | | | - Joseph Fokam
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,National HIV Drug Resistance Working Group, Ministry of Public Health, Cameroon.,Faculty of Health Sciences, University of Buea, Buea, Cameroon
| |
Collapse
|
10
|
Jung EJ, Lee SH, Lee S, Lee JE, Lee SO, Park S, Kim HH, Kang JS, Woo HJ. Short Communication: Trends in Transmitted Drug Resistance in Treatment-Naive HIV Patients in Korea. AIDS Res Hum Retroviruses 2020; 36:905-909. [PMID: 32791842 DOI: 10.1089/aid.2020.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transmitted drug resistance (TDR) in treatment-naive HIV patients can contribute to failure of initial antiretroviral therapy. In Korea, there has been a gradual increase in TDR, but the recent increase in the use of integrase strand transfer inhibitors (INSTIs) could affect TDR trends and INSTI resistance mutations. We evaluated the patterns of TDR in newly diagnosed HIV patients over time from 2011 to 2019. We analyzed the genotypic resistance of strains in 336 patients and sequenced the integrase gene in 71 among 336 subjects. The overall prevalence of TDR was 5.9% (20 of 336 patients), and it showed a tendency to increase over time (5.1% in 2011-2013, 6.1% in 2014-2016, and 7.2% in 2017-2019; p = .3018). Furthermore, non-nucleoside reverse transcriptase inhibitor resistance showed a marginally significant increase over time (1.45% in 2011-2013, 3.48% in 2014-2016, and 6.02% in 2017-2019; p = .0505). Regarding transmitted INSTI resistance mutation, there were no major INSTI resistance mutations but several accessory INSTI resistance mutations and predominant natural polymorphisms. This study shows several significant changes in TDR and suggests the importance of continuous surveillance of TDR and genetic variation in the integrase region.
Collapse
Affiliation(s)
- Eun Ju Jung
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sun Hee Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Shinwon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jeong Eun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Soon Ok Lee
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sohee Park
- Division of Infectious Diseases, Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine, BioMedical Informatics Unit, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jin Suk Kang
- Division of Infectious Diseases, Department of Internal Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Heung jung Woo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
11
|
Kirichenko A, Lapovok I, Baryshev P, van de Vijver DAMC, van Kampen JJA, Boucher CAB, Paraskevis D, Kireev D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses 2020; 12:v12080838. [PMID: 32752001 PMCID: PMC7472261 DOI: 10.3390/v12080838] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The increasing use of the integrase strand transfer inhibitor (INSTI) class for the treatment of HIV-infection has pointed to the importance of analyzing the features of HIV-1 subtypes for an improved understanding of viral genetic variability in the occurrence of drug resistance (DR). In this study, we have described the prevalence of INSTI DR in a Russian cohort and the genetic features of HIV-1 integrase sub-subtype A6. We included 408 HIV infected patients who were not exposed to INSTI. Drug resistance mutations (DRMs) were detected among 1.3% of ART-naïve patients and among 2.7% of INSTI-naïve patients. The prevalence of 12 polymorphic mutations was significantly different between sub-subtypes A6 and A1. Analysis of the genetic barriers determined two positions in which subtype A (A1 and A6) showed a higher genetic barrier (G140C and V151I) compared with subtype B, and one position in which subtypes A1 and B displayed a higher genetic barrier (L74M and L74I) than sub-subtype A6. Additionally, we confirmed that the L74I mutation was selected at the early stage of the epidemic and subsequently spread as a founder effect in Russia. Our data have added to the overall understanding of the genetic features of sub-subtype A6 in the context of drug resistance.
Collapse
Affiliation(s)
- Alina Kirichenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
- Correspondence:
| | - Ilya Lapovok
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
| | - Pavel Baryshev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
| | - David A. M. C. van de Vijver
- Viroscience Department, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands; (D.A.M.C.v.d.V.); (J.J.A.v.K.); (C.A.B.B.)
| | - Jeroen J. A. van Kampen
- Viroscience Department, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands; (D.A.M.C.v.d.V.); (J.J.A.v.K.); (C.A.B.B.)
| | - Charles A. B. Boucher
- Viroscience Department, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands; (D.A.M.C.v.d.V.); (J.J.A.v.K.); (C.A.B.B.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Goudi, Athens, Greece;
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (I.L.); (P.B.); (D.K.)
| |
Collapse
|
12
|
Pham HT, Labrie L, Wijting IEA, Hassounah S, Lok KY, Portna I, Goring ME, Han Y, Lungu C, van der Ende ME, Brenner BG, Boucher CA, Rijnders BJA, van Kampen JJA, Mesplède T, Wainberg MA. The S230R Integrase Substitution Associated With Virus Load Rebound During Dolutegravir Monotherapy Confers Low-Level Resistance to Integrase Strand-Transfer Inhibitors. J Infect Dis 2019; 218:698-706. [PMID: 29617824 DOI: 10.1093/infdis/jiy175] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 01/24/2023] Open
Abstract
Background Dolutegravir (DTG) is an integrase strand-transfer inhibitor (INSTI) used for treatment of human immunodeficiency virus (HIV)-infected individuals. Owing to its high genetic barrier to resistance, DTG has been clinically investigated as maintenance monotherapy to maintain viral suppression and to reduce complication and healthcare costs. Our study aims to explain the underlying mechanism related to the emergence of a S230R substitution in patients who experienced virologic failure while using DTG monotherapy. Methods We evaluated the effect of the S230R substitution in regard to integrase enzyme activity, viral infectivity, replicative capacity, and susceptibility to different INSTIs by biochemical and cell-based assays. Results The S230R substitution conferred a 63% reduction in enzyme efficiency. S230R virus was 1.29-fold less infectious than wild-type virus but could replicate in PM1 cells without significant delay. Resistance levels against DTG, cabotegravir, raltegravir, and elvitegravir in tissue culture were 3.85-, 3.72-, 1.52-, and 1.21-fold, respectively, in virus with the S230R substitution. Conclusions Our data indicate that the S230R substitution is comparable to the previously reported R263K substitution in some respects. Virologic failure during DTG monotherapy can occur through the development of the S230R or R263K mutation, without the need for high-level DTG resistance.
Collapse
Affiliation(s)
- Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Lydia Labrie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Ingeborg E A Wijting
- Department of Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Said Hassounah
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| | - Ka Yee Lok
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Inna Portna
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mark E Goring
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| | - Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Cynthia Lungu
- Department of Viroscience, Erasmus University, Rotterdam, Netherlands
| | - Marchina E van der Ende
- Department of Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Faculty of Surgery, McGill University, Montreal, Canada
| | - Charles A Boucher
- Department of Viroscience, Erasmus University, Rotterdam, Netherlands
| | - Bart J A Rijnders
- Department of Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Wijting IEA, Lungu C, Rijnders BJA, van der Ende ME, Pham HT, Mesplede T, Pas SD, Voermans JJC, Schuurman R, van de Vijver DAMC, Boers PHM, Gruters RA, Boucher CAB, van Kampen JJA. HIV-1 Resistance Dynamics in Patients With Virologic Failure to Dolutegravir Maintenance Monotherapy. J Infect Dis 2019; 218:688-697. [PMID: 29617822 DOI: 10.1093/infdis/jiy176] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2018] [Indexed: 11/14/2022] Open
Abstract
Background A high genetic barrier to resistance to the integrase strand transfer inhibitor (INSTI) dolutegravir has been reported in vitro and in vivo. We describe the dynamics of INSTI resistance-associated mutations (INSTI-RAMs) and mutations in the 3'-polypurine tract (3'-PPT) in relation to virologic failure (VF) observed in the randomized Dolutegravir as Maintenance Monotherapy for HIV-1 study (DOMONO, NCT02401828). Methods From 10 patients with VF, plasma samples were collected before the start of cART and during VF, and were used to generate Sanger sequences of integrase, the 5' terminal bases of the 3' long terminal repeat (LTR), and the 3'-PPT. Results Median human immunodeficiency virus RNA load at VF was 3490 copies/mL (interquartile range 1440-4990 copies/mL). INSTI-RAMs (S230R, R263K, N155H, and E92Q+N155H) were detected in 4 patients, no INSTI-RAMs were detected in 4 patients, and sequencing of the integrase gene was unsuccessful in 2 patients. The time to VF ranged from 4 weeks to 72 weeks. In 1 patient, mutations developed in the highly conserved 3'-PPT. No changes in the terminal bases of the 3'-LTR were observed. Conclusions The genetic barrier to resistance is too low to justify dolutegravir maintenance monotherapy because single INSTI-RAMs are sufficient to cause VF. The large variation in time to VF suggests that stochastic reactivation of a preexisting provirus containing a single INSTI-RAM is the mechanism for failure. Changes in the 3'-PPT point to a new dolutegravir resistance mechanism in vivo. Clinical Trials Registration NCT02401828.
Collapse
Affiliation(s)
- Ingeborg E A Wijting
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Cynthia Lungu
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Marchina E van der Ende
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Suzan D Pas
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Rob Schuurman
- Division of Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Rob A Gruters
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | |
Collapse
|
14
|
Margot NA, Ram RR, White KL, Abram ME, Callebaut C. Antiviral activity of HIV-1 integrase strand-transfer inhibitors against mutants with integrase resistance-associated mutations and their frequency in treatment-naïve individuals. J Med Virol 2019; 91:2188-2194. [PMID: 31389026 DOI: 10.1002/jmv.25564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022]
Abstract
The development of resistance to human immunodeficiency virus 1 (HIV-1) integrase strand-transfer inhibitors (INSTI) has been documented; however, knowledge of the impact of pre-existing integrase (IN) mutations on INSTI resistance (INSTI-R) is still evolving. The frequency of HIV-1 IN mutations in 2177 treatment-naïve subjects was investigated, along with the INSTI susceptibility of site-directed mutant viruses containing major and minor INSTI-R mutations. Total 6 of 39 minor INSTI-R mutations (M50I, S119P/G/T/R, and E157Q) were found in >1% of IN-treatment-naïve subjects with no impact on INSTI susceptibility. When each combined with major INSTI-R mutation, M50I, S119P, and E157Q led to decreased susceptibility to elvitegravir but remained sensitive to dolutegravir and bictegravir.
Collapse
Affiliation(s)
- Nicolas A Margot
- Gilead Sciences, Inc., Clinical virology, Foster City, California
| | - Renee R Ram
- Gilead Sciences, Inc., Clinical virology, Foster City, California
| | - Kirsten L White
- Gilead Sciences, Inc., Clinical virology, Foster City, California
| | - Michael E Abram
- Gilead Sciences, Inc., Clinical virology, Foster City, California
| | | |
Collapse
|
15
|
Alaoui N, El Alaoui MA, El Annaz H, Farissi FZ, Alaoui AS, El Fahime E, Mrani S. HIV-1 Integrase Resistance among Highly Antiretroviral Experienced Patients from Morocco. Intervirology 2019; 62:65-71. [PMID: 31307042 DOI: 10.1159/000501016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We aimed to analyze for the first time in Morocco the integrase (IN) sequence variability among highly experienced HIV-1-infected patients with no prior IN strand transfer inhibitor (INSTI) exposure who failed on reverse transcriptase inhibitors and protease inhibitors. METHODS The HIV-1 IN region was sequenced from plasma samples of all 78 recruited patients. The amino acid IN sequences were HIV-1 subtyped and screened for the presence of polymorphisms against the HxB2 clade B consensus sequence by the geno2pheno subtyping tool and interpreted for drug resistance according to the Stanford algorithm. RESULTS The viral subtypes were subtype B (88.4%), CRF02_AG (8.9%), CRF01_AE (1.28%), and subtype C (1.28%). The major INSTI resistance mutations at positions 66, 92, 118, 138, 140, 143, 147, 148, 155, and 263 were absent, while two accessory mutations, L74M/I, known to have no clinical impact to INSTIs in the absence of the major resistance mutations, were detected in three samples (3.84%; two CRF02_AG and one CRF01_AE). Others specific substitutions with an uncertain role on the HIV-1 susceptibility to INSTIs at positions 72, 101, 119, 124, 156, 165, 193, 201, 203, 206, 230, 232, and 249 were found to be relatively common. CONCLUSION This study demonstrated that INSTIs should be an excellent alternative for salvage therapy in highly experienced patients with multidrug resistant viruses in Morocco.
Collapse
Affiliation(s)
- Najwa Alaoui
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, .,Research Team in Molecular Virology and Oncobiology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco,
| | - Moulay Abdelaziz El Alaoui
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco.,Laboratory of Genetics and Biometry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Annaz
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Research Team in Molecular Virology and Oncobiology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Fatima Zahra Farissi
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Research Team in Molecular Virology and Oncobiology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Amine Sanaâ Alaoui
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco
| | - Elmostapha El Fahime
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco
| | - Saad Mrani
- Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Research Team in Molecular Virology and Oncobiology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,National Reference Laboratory, Mohammed VI University of Science, Casablanca, Morocco
| |
Collapse
|
16
|
Noncovalent SUMO-interaction motifs in HIV integrase play important roles in SUMOylation, cofactor binding, and virus replication. Virol J 2019; 16:42. [PMID: 30940169 PMCID: PMC6446281 DOI: 10.1186/s12985-019-1134-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background HIV integrase (IN) and its cellular cofactors, including lens-epithelium-derived growth factor (LEDGF/p75), Ku70, p300, and Rad52, are subject to small ubiquitin-like modifier (SUMO) modification. In addition to covalent SUMOylation, SUMO paralogs can also noncovalently bind proteins through SUMO-interacting motifs (SIMs). However, little is known about whether HIV IN contains SIMs and the roles of these motifs. Results We searched for the amino acid sequence of HIV IN and investigated three putative SIMs of IN: SIM1 72VILV75, SIM2 200IVDI203 and SIM3 257IKVV260. Our mutational analysis showed that 200IVDI203 and 257IKVV260 are two bona fide SIMs that mediate IN-SUMO noncovalent interactions. Additionally, a cell-based SUMOylation assay revealed that IN SIMs negatively regulate the SUMOylation of IN, as well as the interaction between IN and SUMO E2 conjugation enzyme Ubc9. Conversely, IN SIMs are required for its interactions with LEDGF/p75 but not with Ku70. Furthermore, our study reveals that SIM2 and SIM3 are required for the nuclear localization of IN. Finally, we investigated the impact of IN SIM2 and SIM3 on HIV single cycle replication in CD4+ C8166 T cells, and the results showed that viruses carrying IN SIM mutants are replication defective at the steps of the early viral life cycle, including reverse transcription, nuclear import and integration. Conclusion Our data suggested that the INSIM-SUMO interaction constitutes a new regulatory mechanism of IN functions and might be important for HIV-1 replication.
Collapse
|
17
|
De Francesco MA, Izzo I, Properzi M, Gargiulo F, Caccuri F, Quiros-Roldan E, Castelli F, Caruso A, Focà E. Prevalence of Integrase Strand Transfer Inhibitors Resistance Mutations in Integrase Strand Transfer Inhibitors-Naive and -Experienced HIV-1 Infected Patients: A Single Center Experience. AIDS Res Hum Retroviruses 2018; 34:570-574. [PMID: 29631420 DOI: 10.1089/aid.2018.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integrase strand transfer inhibitor (InSTI) resistance rates are low. However, genotypic resistance test (GRT) is not routinely performed in many centers. The aim of this study is to evaluate the prevalence of InSTI-related mutations in our large cohort. We examined all integrase GRTs performed as part of routine clinical practice at Spedali Civili General Hospital, University of Brescia from 2011 to 2016. Analysis was performed through the Stanford HIV Drug Resistance Database. A total of 341 patients were included. Genotypic resistance assays were performed in naive (48), ART-experienced but InSTI-naive (114), and both ART-experienced/InSTI-experienced (179) patients. No major resistance-associated mutations (RAMs) were detected in patients never exposed to InSTIs. Of 179 samples from patients exposed to InSTIs (mostly to raltegravir [RAL]), the overall prevalence of major RAMs was 11.7%. Among them, 10 harbored N155H, 4 Q148H, 2 Q148R, 2 Y143C/S, and 2 T66A/I/T, respectively. A novel mutation at a recognized resistance site (E92K) was identified in one RAL-experienced patient. The overall prevalence of InSTI mutations in our cohort was low, particularly in naive patients indicating no transmitted RAMs, although in InSTIs-experienced patients the rate of RAMs was high (11.7%). We support an implementation of surveillance of InSTI resistance.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, Brescia, Italy
| | - Ilaria Izzo
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Martina Properzi
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Franco Gargiulo
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, Brescia, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, Brescia, Italy
| | - Eugenia Quiros-Roldan
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Francesco Castelli
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, Brescia, Italy
| | - Emanuele Focà
- University Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy
| |
Collapse
|
18
|
Kim Y, Chin BS, Kim G, Shin HS. Integrase Strand Transfer Inhibitor Resistance Mutations in Antiretroviral Treatment-naïve Patients in Korea: a Prospective, Observational Study. J Korean Med Sci 2018; 33:e173. [PMID: 29915524 PMCID: PMC6000596 DOI: 10.3346/jkms.2018.33.e173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 01/02/2023] Open
Abstract
The present study investigated prevalence of integrase strand transfer inhibitors (INSTI) resistance mutations in HIV-1-infected antiretroviral therapy (ART)-naïve patients in Korea. From 106 plasma samples, amplification and sequencing of integrase genes was performed, and major or minor mutations were calculated by the Stanford HIV drug resistance mutation interpretation algorithm. No major INSTI resistance mutations were found, and 14 minor mutations were detected in 13 (12.3%) patients. The present data support the recommendation that routine testing for INSTI resistance mutations before starting ART is not necessary.
Collapse
Affiliation(s)
- Yeonjae Kim
- Center for Infectious Diseases Research, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Bum Sik Chin
- Center for Infectious Diseases Research, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Gayeon Kim
- Center for Infectious Diseases Research, Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Hyoung-Shik Shin
- Center for Infectious Diseases Research, Department of Internal Medicine, National Medical Center, Seoul, Korea
| |
Collapse
|
19
|
Alaoui N, El Alaoui MA, Touil N, El Annaz H, Melloul M, Tagajdid R, Hjira N, Boui M, El Fahime EM, Mrani S. Prevalence of resistance to integrase strand-transfer inhibitors (INSTIs) among untreated HIV-1 infected patients in Morocco. BMC Res Notes 2018; 11:369. [PMID: 29884219 PMCID: PMC5994051 DOI: 10.1186/s13104-018-3492-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
Objective The integrase strand-transfer inhibitors (INSTIs) are an important class in the arsenal of antiretroviral drugs designed to block the integration of HIV-1 cDNA into the host DNA through the inhibition of DNA strand transfer. In this study for the first time in Morocco, the complete HIV-1 integrase gene was analysed from newly diagnosed patients to evaluate the prevalence of natural polymorphisms and INSTIs resistance-associated mutations in the integrase gene. Results The 864pb IN coding region was successfully sequenced from plasma sample for 77 among 80 antiretroviral naïve patients. The sequences were interpreted for drug resistance according to the Stanford algorithm. Sixty samples were HIV-1 subtype B (78%), fourteen CRF02_AG (18%), two subtype C and one subtype A. Overall 81 of 288 (28%) amino acid IN positions presented at least one polymorphism each. We found 18 (36.73%), 42 (25.76%) and 21 (27.27%) of polymorphic residues assigned to the N-Terminal Domain, Catalytic Core Domaine and the C-Terminal Domain positions respectively. Primary INSTIs resistance mutation were absent, however secondary mutations L74IM, T97A were detected in four samples (5.2%). These results demonstrate that untreated HIV-1 infected Moroccans will be susceptible to INSTIs. Electronic supplementary material The online version of this article (10.1186/s13104-018-3492-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Najwa Alaoui
- Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco.
| | - Moulay Abdelaziz El Alaoui
- Functional Genomic Platform, UATRS, Center for Scientific and Technical Research [CNRST], 10000, Rabat, Morocco
| | - Nadia Touil
- Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - Hicham El Annaz
- Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - Marouane Melloul
- Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences of Oujda, University Mohammed Premier, 60000, Oujda, Morocco
| | - Reda Tagajdid
- Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - Naoufal Hjira
- Department of Dermatology and Venereology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - Mohamed Boui
- Department of Dermatology and Venereology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| | - El Mostapha El Fahime
- Functional Genomic Platform, UATRS, Center for Scientific and Technical Research [CNRST], 10000, Rabat, Morocco
| | - Saad Mrani
- Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Av. Mohamed Belarbi El Alaoui, 6203, Rabat, Morocco
| |
Collapse
|
20
|
HIV-1 integrase strand-transfer inhibitor resistance in southern Taiwan. Oncotarget 2018; 9:24927-24935. [PMID: 29861843 PMCID: PMC5982757 DOI: 10.18632/oncotarget.24837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/11/2018] [Indexed: 01/04/2023] Open
Abstract
The use of antiretroviral therapy has reduced rates of mortality and morbidity in patients with human immunodeficiency virus/acquired immune deficiency syndrome(HIV/AIDS). However, transmission of drug-resistant strains poses a challenge to control the spread of HIV-1. Primary resistance to integrase strand-transfer inhibitors (INSTIs) is rare despite their increased use. The prevalence of transmitted drug resistance (TDR) to INSTIs was 0.9% in northern Taiwan. This study was to analyse the prevalence and risk factors of TDR to INSTIs in southern Taiwan. In this study, we enrolled antiretroviral treatment-naïve HIV-1-infected subjects who underwent voluntary counselling and testing from 2013 to 2016 in southern Taiwan. Genotypic drug resistance, coreceptor tropism (CRT) and INSTI resistance were determined. Logistic regression was used to analyse the risk factors for INSTI polymorphic substitution. Sequences were obtained from 184 consecutive individuals, of whom 96.7% were men who have sex with men and 3.3% were heterosexual. Of the patients, 10% (19/183) had hepatitis B and 33.3% (61/183) had syphilis infection. Subtype B HIV-1 strains were found in 96.1% of the patients. Fifteen patients (8.4%, 15/178) harboured nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors or protease inhibitors resistance. CCR-5 coreceptors were used by 71.4% (130/184) of the patients. None of the patients had INSTI resistance-associated mutations, however 16 patients had INSTI polymorphic substitutions, and they were associated with a higher HIV viral load (p = 0.03, OR 2.4, CI 1.1–5.3) and syphilis infection (p = 0.03, OR 3.7, CI 1.1–12.0). In conclusion, no signature INSTI resistance-associated mutations were detected in our cohort. Continued monitoring of TDR to INSTI is needed due to the increased use of INSTIs.
Collapse
|
21
|
Meixenberger K, Yousef KP, Smith MR, Somogyi S, Fiedler S, Bartmeyer B, Hamouda O, Bannert N, von Kleist M, Kücherer C. Molecular evolution of HIV-1 integrase during the 20 years prior to the first approval of integrase inhibitors. Virol J 2017; 14:223. [PMID: 29137637 PMCID: PMC5686839 DOI: 10.1186/s12985-017-0887-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Detailed knowledge of the evolutionary potential of polymorphic sites in a viral protein is important for understanding the development of drug resistance in the presence of an inhibitor. We therefore set out to analyse the molecular evolution of the HIV-1 subtype B integrase at the inter-patient level in Germany during a 20-year period prior to the first introduction of integrase strand inhibitors (INSTIs). METHODS We determined 337 HIV-1 integrase subtype B sequences (amino acids 1-278) from stored plasma samples of antiretroviral treatment-naïve individuals newly diagnosed with HIV-1 between 1986 and 2006. Shannon entropy was calculated to determine the variability at each amino acid position. Time trends in the frequency of amino acid variants were identified by linear regression. Direct coupling analysis was applied to detect covarying sites. RESULTS Twenty-two time trends in the frequency of amino acid variants demonstrated either single amino acid exchanges or variation in the degree of polymorphy. Covariation was observed for 17 amino acid variants with a temporal trend. Some minor INSTI resistance mutations (T124A, V151I, K156 N, T206S, S230 N) and some INSTI-selected mutations (M50I, L101I, T122I, T124 N, T125A, M154I, G193E, V201I) were identified at overall frequencies >5%. Among these, the frequencies of L101I, T122I, and V201I increased over time, whereas the frequency of M154I decreased. Moreover, L101I, T122I, T124A, T125A, M154I, and V201I covaried with non-resistance-associated variants. CONCLUSIONS Time-trending, covarying polymorphisms indicate that long-term evolutionary changes of the HIV-1 integrase involve defined clusters of possibly structurally or functionally associated sites independent of selective pressure through INSTIs at the inter-patient level. Linkage between polymorphic resistance- and non-resistance-associated sites can impact the selection of INSTI resistance mutations in complex ways. Identification of these sites can help in improving genotypic resistance assays, resistance prediction algorithms, and the development of new integrase inhibitors.
Collapse
Affiliation(s)
| | - Kaveh Pouran Yousef
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Maureen Rebecca Smith
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Sybille Somogyi
- HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Stefan Fiedler
- HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Barbara Bartmeyer
- HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | - Osamah Hamouda
- HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Claudia Kücherer
- HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
22
|
Bradley-Stewart A, Urcia C, MacLean A, Aitken C, Gunson R. HIV-1 integrase inhibitor resistance among treatment naïve patients in the West of Scotland. J Clin Virol 2017; 92:7-10. [PMID: 28494325 DOI: 10.1016/j.jcv.2017.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/14/2017] [Accepted: 04/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Transmitted integrase inhibitor resistance is rare, with only a small number of cases reported world-wide to date. OBJECTIVES The aim of this study was to assess whether transmitted integrase inhibitor resistance has occurred in Scotland and if so, could there be a case for performing genotypic integrase resistance testing at baseline. STUDY DESIGN The study population consisted of 106 treatment naïve, newly diagnosed, HIV positive patients. The patient samples were collected between October 2015 and March 2016 at the time of HIV diagnosis and prior to initiation of anti-retroviral therapy. The integrase region was amplified and sequenced. RESULTS We detected integrase inhibitor resistance (T66I/T) at baseline in one patient sample. This is a non-polymorphic mutation seen in patients receiving elvitegravir which confers high-level resistance to elvitegravir and intermediate resistance to raltegravir. A further 10 patients had accessory mutations which have minimal or no effect on susceptibility to integrase inhibitors. CONCLUSIONS Transmitted integrase inhibitor resistance remains rare. The results of the present study do not support performing integrase resistance testing at baseline.
Collapse
Affiliation(s)
- A Bradley-Stewart
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom.
| | - C Urcia
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| | - A MacLean
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| | - C Aitken
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| | - R Gunson
- West of Scotland Specialist Virology Centre, Level 5, New Lister Building, 10-16 Alexandra Parade, Glasgow G31 2ER, United Kingdom
| |
Collapse
|
23
|
Lack of impact of pre-existing T97A HIV-1 integrase mutation on integrase strand transfer inhibitor resistance and treatment outcome. PLoS One 2017; 12:e0172206. [PMID: 28212411 PMCID: PMC5315389 DOI: 10.1371/journal.pone.0172206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
T97A is an HIV-1 integrase polymorphism associated with integrase strand transfer inhibitor (INSTI) resistance. Using pooled data from 16 clinical studies, we investigated the prevalence of T97A (pre-existing and emergent) and its impact on INSTI susceptibility and treatment response in INSTI-naive patients who enrolled on elvitegravir (EVG)- or raltegravir (RAL)-based regimens. Prior to INSTI-based therapy, primary INSTI resistance-associated mutations (RAMs) were absent and T97A pre-existed infrequently (1.4%; 47 of 3367 integrase sequences); most often among non-B (5.3%) than B (0.9%) HIV-1 subtypes. During INSTI-based therapy, few patients experienced virologic failure with emergent INSTI RAMs (3%; 122 of 3881 patients), among whom T97A emerged infrequently in the presence (n = 6) or absence (n = 8) of primary INSTI RAMs. A comparison between pre-existing and emergent T97A patient populations (i.e., in the absence of primary INSTI RAMs) showed no significant differences in EVG or RAL susceptibility in vitro. Furthermore, among all T97A-containing viruses tested, only 38-44% exhibited reduced susceptibility to EVG and/or RAL (all of low magnitude; <11-fold), while all maintained susceptibility to dolutegravir. Of the patients with pre-existing T97A, 17 had available clinical follow-up: 16 achieved virologic suppression and 1 maintained T97A and INSTI sensitivity without further resistance development. Overall, T97A is an infrequent integrase polymorphism that is enriched among non-B HIV-1 subtypes and can confer low-level reduced susceptibility to EVG and/or RAL. However, detection of T97A does not affect response to INSTI-based therapy with EVG or RAL. These results suggest a very low risk of initiating INSTI-based therapy in patients with pre-existing T97A.
Collapse
|
24
|
Chang SY, Lin PH, Cheng CL, Chen MY, Sun HY, Hsieh SM, Sheng WH, Su YC, Su LH, Chang SF, Liu WC, Hung CC, Chang SC. Prevalence of Integrase Strand Transfer Inhibitors (INSTI) Resistance Mutations in Taiwan. Sci Rep 2016; 6:35779. [PMID: 27779200 PMCID: PMC5078839 DOI: 10.1038/srep35779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy containing an integrase strand transfer inhibitor (INSTI) plus two NRTIs has become the recommended treatment for antiretroviral-naive HIV-1-infected patients in the updated guidelines. We aimed to determine the prevalence of INSTI-related mutations in Taiwan. Genotypic resistance assays were performed on plasma from ARV-naïve patients (N = 948), ARV-experienced but INSTI-naive patients (N = 359), and raltegravir-experienced patients (N = 63) from 2006 to 2015. Major INSTI mutations were defined according to the IAS-USA list and other substitutions with a Stanford HIVdb score ≧ 10 to at least one INSTI were defined as minor mutations. Of 1307 HIV-1 samples from patients never exposed to INSTIs, the overall prevalence of major resistance mutations to INSTIs was 0.9% (n = 12), with an increase to 1.2% in 2013. Of these 12 sequences, 11 harboured Q148H/K/R, one Y143R, and none N155H. Of 30 sequences (47.6%) with INSTI-resistant mutations from raltegravir-experienced patients, 17 harboured Q148H/K/R, 8 N155H, and 6 Y143C/R. Other than these major mutations, the prevalence of minor mutations were 5.3% and 38.1%, respectively, in ARV-naive and raltegravir-experienced patients. The overall prevalence of INSTI mutations remains low in Taiwan. Surveillance of INSTI resistance is warranted due to circulation of polymorphisms contributing to INSTI resistance and expected increasing use of INSTIs.
Collapse
Affiliation(s)
- Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Han Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Lin Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mao-Yuan Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ching Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Hsin Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Fang Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chun Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,China Medical University, Taichung, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
25
|
Sachithanandham J, Konda Reddy K, Solomon K, David S, Kumar Singh S, Vadhini Ramalingam V, Alexander Pulimood S, Cherian Abraham O, Rupali P, Sridharan G, Kannangai R. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data. Bioinformation 2016; 12:221-230. [PMID: 28149058 PMCID: PMC5267967 DOI: 10.6026/97320630012221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 01/12/2023] Open
Abstract
The degree of sequence variation in HIV-1 integrase genes among infected patients and their impact on clinical response to Anti retroviral therapy (ART) is of interest. Therefore, we collected plasma samples from 161 HIV-1 infected individuals for subsequent integrase gene amplification (1087 bp). Thus, 102 complete integrase gene sequences identified as HIV-1 subtype-C was assembled. This sequence data was further used for sequence analysis and multiple sequence alignment (MSA) to assess position specific frequency of mutations within pol gene among infected individuals. We also used biophysical geometric optimization technique based molecular modeling and docking (Schrodinger suite) methods to infer differential function caused by position specific sequence mutations towards improved inhibitor selection. We thus identified accessory mutations (usually reduce susceptibility) leading to the resistance of some known integrase inhibitors in 14% of sequences in this data set. The Stanford HIV-1 drug resistance database provided complementary information on integrase resistance mutations to deduce molecular basis for such observation. Modeling and docking analysis show reduced binding by mutants for known compounds. The predicted binding values further reduced for models with combination of mutations among subtype C clinical strains. Thus, the molecular basis implied for the consequence of mutations in different variants of integrase genes of HIV-1 subtype C clinical strains from South India is reported. This data finds utility in the design, modification and development of a representative yet an improved inhibitor for HIV-1 integrase.
Collapse
Affiliation(s)
| | - Karnati Konda Reddy
- SNHRC Vellore and Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics Alagappa University, Karaikudi, Tamil Nadu, India
| | - King Solomon
- Departments of Clinical Virology Alagappa University, Karaikudi, Tamil Nadu, India
| | - Shoba David
- Departments of Clinical Virology Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- SNHRC Vellore and Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | | | - Pricilla Rupali
- Departments of Internal Medicine, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Gopalan Sridharan
- Christian Medical College, Vellore, Sri Sakthi Amma Institute of Biomedical Research Institute
| | - Rajesh Kannangai
- Departments of Clinical Virology Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
26
|
Abstract
BACKGROUND HIV-1 group O (HIV-O) is a rare variant that is characterized by a high number of natural polymorphisms in the integrase coding region that may impact on susceptibility to integrase strand transfer inhibitors (INSTIs) and on the emergence of resistance substitutions. We previously reported that HIV-O is more susceptible to RAL than HIV-1 group M (HIV-M). METHODS The aim of this study was to assess pathways of resistance to INSTIs in group 0 variants. Accordingly, we selected for resistance to each of raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) in cord blood mononuclear cells using HIV group O subtypes A and B, an HIV-O divergent isolate, and HIV-1 group M (subtype B, which served as a reference). Site-directed mutagenesis was performed on the pCOM2.5 HIV group 0 infectious clone to ascertain the impact of INSTI resistance substitutions at positions Q148R, N155H, and R263K within integrase on susceptibility to INSTIs and infectiousness. RESULTS Cell culture selections of group O variants yielded similar patterns of resistance to RAL, EVG, and DTG as observed for subtype B. In the DTG selections, subtype B yielded S153Y, whereas a natural S153A polymorphism sometimes led to A153V in group O. The pCMO2.5/Q148R and pCMO2.5/N155H variants displayed far higher levels of resistance to DTG (>1000 FC) than was seen for group M viruses. CONCLUSIONS HIV-O harboring Q148R and N155H shows higher resistance to DTG compared with HIV-M subtype B.
Collapse
|
27
|
Demeulemeester J, De Rijck J, Gijsbers R, Debyser Z. Retroviral integration: Site matters: Mechanisms and consequences of retroviral integration site selection. Bioessays 2015; 37:1202-14. [PMID: 26293289 PMCID: PMC5053271 DOI: 10.1002/bies.201500051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Here, we review genomic target site selection during retroviral integration as a multistep process in which specific biases are introduced at each level. The first asymmetries are introduced when the virus takes a specific route into the nucleus. Next, by co‐opting distinct host cofactors, the integration machinery is guided to particular chromatin contexts. As the viral integrase captures a local target nucleosome, specific contacts introduce fine‐grained biases in the integration site distribution. In vivo, the established population of proviruses is subject to both positive and negative selection, thereby continuously reshaping the integration site distribution. By affecting stochastic proviral expression as well as the mutagenic potential of the virus, integration site choice may be an inherent part of the evolutionary strategies used by different retroviruses to maximise reproductive success.
Collapse
Affiliation(s)
- Jonas Demeulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Drug Discovery, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Viral Vector Technology and Gene Therapy, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Chemistry, Laboratory for Biomolecular Modeling, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jan De Rijck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Drug Discovery, KU Leuven-University of Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Viral Vector Technology and Gene Therapy, KU Leuven-University of Leuven, Leuven, Belgium
| | - Zeger Debyser
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Drug Discovery, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Hachiya A, Ode H, Matsuda M, Kito Y, Shigemi U, Matsuoka K, Imamura J, Yokomaku Y, Iwatani Y, Sugiura W. Natural polymorphism S119R of HIV-1 integrase enhances primary INSTI resistance. Antiviral Res 2015; 119:84-8. [PMID: 25956162 DOI: 10.1016/j.antiviral.2015.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
Integrase strand transfer inhibitors (INSTIs), which block proviral DNA integration into the host chromosome, are clinically effective against HIV-1 isolates exhibiting resistance to other classes of antiretroviral agents. Although naturally occurring amino acid variation has been less frequently observed in the integrase region, the functional constraints of this variation on primary INSTI resistance-associated mutations are not fully understood. In the present study, we focused on the S119G/R/P/T (S119X) polymorphisms, which are frequently observed in HIV-1 sequences derived from clinical specimens (naïve, n=458, 26%). The frequency of the S119X polymorphism together with Q148H/R (n=8, 63%) or N155H (n=12, 83%) was relatively high compared with that of naïve group. Our in vitro assays revealed that S119G/P/T alone exerted no effect on the susceptibility to INSTIs, whereas S119R enhanced the level of INSTI resistance induced by well-known INSTI resistance-associated mutations (Y143C, Q148H or N155H). Notably, the S119R polymorphism contributed to a significant (5.9-fold) increase in dolutegravir resistance caused by G140S/Q148H. Analysis of two cases of virological failure during raltegravir-based therapy showed that the accumulation and the rapid evolution of primary INSTI resistance-associated mutations coincided with the S119R mutation. These data highlight the role of the S119X polymorphism in INSTI resistance, and this polymorphism might be linked to the potential treatment outcome with INSTI-based therapy.
Collapse
Affiliation(s)
- Atsuko Hachiya
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan.
| | - Hirotaka Ode
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Masakazu Matsuda
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yumiko Kito
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Urara Shigemi
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Kazuhiro Matsuoka
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Junji Imamura
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yasumasa Iwatani
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Department of AIDS Research, Graduated School of Medicine Nagoya University, Nagoya, Aichi 460-0001, Japan
| | - Wataru Sugiura
- Department of Infectious Disease and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Department of AIDS Research, Graduated School of Medicine Nagoya University, Nagoya, Aichi 460-0001, Japan
| |
Collapse
|
29
|
Demeulemeester J, Vets S, Schrijvers R, Madlala P, De Maeyer M, De Rijck J, Ndung'u T, Debyser Z, Gijsbers R. HIV-1 integrase variants retarget viral integration and are associated with disease progression in a chronic infection cohort. Cell Host Microbe 2014; 16:651-62. [PMID: 25525795 DOI: 10.1016/j.chom.2014.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Distinct integration patterns of different retroviruses, including HIV-1, have puzzled virologists for over 20 years. A tetramer of the viral integrase (IN) assembles on the two viral cDNA ends, docks onto the target DNA (tDNA), and catalyzes viral genome insertion into the host chromatin. We identified the amino acids in HIV-1 IN that directly contact tDNA bases and affect local integration site sequence selection. These residues also determine the propensity of the virus to integrate into flexible tDNA sequences. Remarkably, natural polymorphisms INS119G and INR231G retarget viral integration away from gene-dense regions. Precisely these variants were associated with rapid disease progression in a chronic HIV-1 subtype C infection cohort. These findings link integration site selection to virulence and viral evolution, but also to the host immune response and antiretroviral therapy, since HIV-1 IN119 is under selection by HLA alleles and integrase inhibitors.
Collapse
Affiliation(s)
- Jonas Demeulemeester
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; Laboratory for Biomolecular Modeling, Department of Chemistry, KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sofie Vets
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Rik Schrijvers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Paradise Madlala
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Marc De Maeyer
- Laboratory for Biomolecular Modeling, Department of Chemistry, KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Jan De Rijck
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 4013 Durban, South Africa; KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 4013 Durban, South Africa; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Max Planck Institute for Infection Biology, Chariteplatz, 10117 Berlin, Germany
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
HIV-1 group O integrase displays lower enzymatic efficiency and higher susceptibility to raltegravir than HIV-1 group M subtype B integrase. Antimicrob Agents Chemother 2014; 58:7141-50. [PMID: 25224008 DOI: 10.1128/aac.03819-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 group O (HIV-O) is a rare HIV-1 variant characterized by a high number of polymorphisms, especially in the integrase coding region. As HIV-O integrase enzymes have not previously been studied, our aim was to assess the impact of HIV-O integrase polymorphisms on enzyme function and susceptibility to integrase inhibitors. Accordingly, we cloned and purified integrase proteins from each of HIV-1 group O clades A and B, an HIV-O divergent strain, and HIV-1 group M (HIV-M, subtype B), used as a reference. To assess enzymatic function of HIV-O integrase, we carried out strand transfer and 3' processing assays with various concentrations of substrate (DNA target and long terminal repeats [LTR], respectively) and characterized these enzymes for susceptibility to integrase strand transfer inhibitors (INSTIs) in cell-free assays and in tissue culture, in the absence or presence of various concentrations of several INSTIs. The inhibition constant (Ki) and 50% effective concentration (EC50) values were calculated for HIV-O integrases and HIV-O viruses, respectively, and compared with those of HIV-M. The results showed that HIV-O integrase displayed lower activity in strand transfer assays than did HIV-M enzyme, whereas 3' processing activities were similar to those of HIV-M. HIV-O integrases were more susceptible to raltegravir (RAL) in competitive inhibition assays and in tissue culture than were HIV-M enzymes and viruses, respectively. Molecular modeling suggests that two key polymorphic residues that are close to the integrase catalytic site, 74I and 153A, may play a role in these differences.
Collapse
|
31
|
Kotaki T, Khairunisa SQ, Sukartiningrum SD, Witaningrum AM, Rusli M, Diansyah MN, Arfijanto MV, Rahayu RP, Nasronudin, Kameoka M. Detection of drug resistance-associated mutations in human immunodeficiency virus type 1 integrase derived from drug-naive individuals in Surabaya, Indonesia. AIDS Res Hum Retroviruses 2014; 30:489-92. [PMID: 24328535 DOI: 10.1089/aid.2013.0271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although human immunodeficiency virus type 1 (HIV-1) infection causes serious health problems in Indonesia, information in regard to drug resistance is limited. We performed a genotypic study on HIV-1 integrase derived from drug-naive individuals in Surabaya, Indonesia. Sequencing analysis revealed that no primary mutations associated with drug resistance to integrase inhibitors were detected; however, secondary mutations, V72I, L74I/M, V165I, V201I, I203M, and S230N, were detected in more than 5% of samples. In addition, V201I was conserved among all samples. Most integrase genes were classified into CRF01_AE genes. Interestingly, 40% of the CRF01_AE genes had an unusual insertion in the C-terminus of integrase. These mutations and insertions were considered natural polymorphisms since these mutations coincided with previous reports, and integrase inhibitors have not been used in Indonesia. Our results indicated that further studies may be required to assess the impact of these mutations on integrase inhibitors prior to their introduction into Indonesia.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Siti Qamariyah Khairunisa
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Septhia Dwi Sukartiningrum
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Adiana Mutamsari Witaningrum
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Musofa Rusli
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | | | - M. Vitanata Arfijanto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Nasronudin
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Masanori Kameoka
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
- Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo, Japan
| |
Collapse
|
32
|
HIV-2 integrase polymorphisms and longitudinal genotypic analysis of HIV-2 infected patients failing a raltegravir-containing regimen. PLoS One 2014; 9:e92747. [PMID: 24681625 PMCID: PMC3969368 DOI: 10.1371/journal.pone.0092747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
Collapse
|
33
|
Rahman MA, Kuse N, Murakoshi H, Chikata T, Gatanaga H, Oka S, Takiguchi M. Raltegravir and elvitegravir-resistance mutation E92Q affects HLA-B*40:02-restricted HIV-1-specific CTL recognition. Microbes Infect 2014; 16:434-8. [PMID: 24657622 DOI: 10.1016/j.micinf.2014.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Interplay between drug-resistance mutations in CTL epitopes and HIV-1-specific CTLs may influence the control of HIV-1 viremia. However, the effect of integrase inhibitor (INI)-resistance mutations on the CTL recognition has not been reported. We here investigated the effect of a raltegravir and elvitegravir-resistance mutation (E92Q) on HLA-B*40:02-restricted Int92-102 (EL11: ETGQETAYFLL)-specific CTLs. EL11-specific CTLs recognized E92Q peptide-pulsed and E92Q mutant virus-infected cells less effectively than EL11 peptide-pulsed and wild-type virus-infected cells, respectively. Ex vivo ELISpot analysis showed no induction of E92Q-specific T cells in chronically HIV-1-infected individuals. Thus, we demonstrated that EL11-specific CTL recognition was affected by the INI-resistance mutation.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
34
|
Shadrina O, Krotova O, Agapkina J, Knyazhanskaya E, Korolev S, Starodubova E, Viklund A, Lukashov V, Magnani M, Medstrand P, Karpov V, Gottikh M, Isaguliants M. Consensus HIV-1 subtype A integrase and its raltegravir-resistant variants: design and characterization of the enzymatic properties. Biochimie 2014; 102:92-101. [PMID: 24594066 DOI: 10.1016/j.biochi.2014.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/21/2014] [Indexed: 11/28/2022]
Abstract
Model studies of the subtype B and non-subtype B integrases are still required to compare their susceptibility to antiretroviral drugs, evaluate the significance of resistance mutations and identify the impact of natural polymorphisms on the level of enzymatic reactivity. We have therefore designed the consensus integrase of the HIV-1 subtype A strain circulating in the former Soviet Union territory (FSU-A) and two of its variants with mutations of resistance to the strand transfer inhibitor raltegravir. Their genes were synthesized, and expressed in E coli; corresponding His-tagged proteins were purified using the affinity chromatography. The enzymatic properties of the consensus integrases and their sensitivity to raltegravir were examined in a series of standard in vitro reactions and compared to the properties of the integrase of HIV-1 subtype B strain HXB2. The consensus enzyme demonstrated similar DNA-binding properties, but was significantly more active than HXB-2 integrase in the reactions of DNA cleavage and integration. All integrases were equally susceptible to inhibition by raltegravir and elvitegravir, indicating that the sporadic polymorphisms inherent to the HXB-2 enzyme have little effect on its susceptibility to drugs. Insensitivity of the mutated enzymes to the inhibitors of strand transfer occurred at a cost of a 30-90% loss of the efficacies of both 3'-processing and strand transfer. This is the first study to describe the enzymatic properties of the consensus integrase of HIV-1 clade A and the effects of the resistance mutations when the complex actions of sporadic sequence polymorphisms are excluded.
Collapse
Affiliation(s)
- Olga Shadrina
- Lomonosov Moscow State University, Belozersky Institute of Physical Chemical Biology and Chemistry Department, Leninskie gory 1/40, 119991 Moscow, Russia
| | - Olga Krotova
- Engelhardt Institute of Molecular Biology, Vavilov str 32, 119991 Moscow, Russia; Ivanovsky Institute of Virology, Gamaleja str 16, 123098 Moscow, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden
| | - Julia Agapkina
- Lomonosov Moscow State University, Belozersky Institute of Physical Chemical Biology and Chemistry Department, Leninskie gory 1/40, 119991 Moscow, Russia
| | - Ekaterina Knyazhanskaya
- Lomonosov Moscow State University, Belozersky Institute of Physical Chemical Biology and Chemistry Department, Leninskie gory 1/40, 119991 Moscow, Russia
| | - Sergey Korolev
- Lomonosov Moscow State University, Belozersky Institute of Physical Chemical Biology and Chemistry Department, Leninskie gory 1/40, 119991 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Vavilov str 32, 119991 Moscow, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden
| | - Vladimir Lukashov
- Ivanovsky Institute of Virology, Gamaleja str 16, 123098 Moscow, Russia; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino "Carla Bo", Via Saffi, 2, 61029 Urbino, Italy
| | - Patrik Medstrand
- Department of Laboratory Medicine, Lund University, Sölvegatan 19, SE-205 02 Malmö, Sweden
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Vavilov str 32, 119991 Moscow, Russia
| | - Marina Gottikh
- Lomonosov Moscow State University, Belozersky Institute of Physical Chemical Biology and Chemistry Department, Leninskie gory 1/40, 119991 Moscow, Russia.
| | - Maria Isaguliants
- Ivanovsky Institute of Virology, Gamaleja str 16, 123098 Moscow, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden.
| |
Collapse
|
35
|
Dimonte S, Babakir-Mina M, Aquaro S. HIV-1 B-subtype capsid protein: a characterization of amino acid's conservation and its significant association with integrase signatures. Virus Genes 2014; 48:429-37. [PMID: 24474329 DOI: 10.1007/s11262-014-1039-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/12/2014] [Indexed: 11/26/2022]
Abstract
The HIV-1 pre-integration phase and the subsequent integration of viral genome to the host of nuclear chromosomes are not well analyzed so far. Many studies are discussing the question of pre- and post-nuclear viral entry which is to support the assumption that HIV-1 integrase (IN) is maintained in the volume of intact conical structure's capsids through HIV entry. The aim of the current study is to identify the prevalence of capsid's (CA) signatures among drug-naïve and antiretroviral (ARV)-treated patients in a cohort of 827 HIV-1 B-subtype-infected individuals, and subsequently the relationship between IN and CA amino acid's changes was evaluated. These analyses suggest a conceivable co-evolution of IN-CA sequences, especially in relation to steps of nuclear viral entry. The frequency of mutations was calculated, and statistically has been compared between treatment-naïve and ARV-treated patients. The binomial correlation coefficient was used to assess covariation among CA and IN mutations; then, the average linkage hierarchical agglomerative clustering was performed. The results show a detailed conservation of HIV-1 CA protein both in drug-naïve and in ARV-treated patients. Moreover, the specific CA substitutions are significantly associated with different IN signatures at the amino acid level and the topology of the dendrogram has revealed the existence of two strong sub-clusters associated with hypothetical different mutational pathways. The in vitro and in vivo studies are necessary to exclude the hypothetical statistical false positive results and in order to confirm that some CA amino acid signatures are going to establish specific and precise implication in the HIV life cycle.
Collapse
|
36
|
Resistance mutations outside the integrase coding region have an effect on human immunodeficiency virus replicative fitness but do not affect its susceptibility to integrase strand transfer inhibitors. PLoS One 2013; 8:e65631. [PMID: 23776513 PMCID: PMC3679210 DOI: 10.1371/journal.pone.0065631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Most studies describing phenotypic resistance to integrase strand transfer inhibitors have analyzed viruses carrying only patient-derived HIV-1 integrase genes (INT-recombinant viruses). However, to date, many of the patients on INSTI-based treatment regimes, such as raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG) are infected with multidrug-resistant HIV-1 strains. Here we analyzed the effect of drug resistance mutations in Gag (p2/NCp7/p1/p6), protease (PR), reverse transcriptase (RT), and integrase (IN) coding regions on susceptibility to INSTIs and viral replicative fitness using a novel HIV-1 phenotyping assay. Initial characterization based on site-directed mutant INSTI-resistant viruses confirmed the effect of a series of INSTI mutations on reduced susceptibility to EVG and RAL and viral replicative fitness (0.6% to 99% relative to the HIV-1NL4-3 control). Two sets of recombinant viruses containing a 3,428-bp gag-p2/NCp7/p1/p6/pol-PR/RT/IN (p2-INT) or a 1,088 bp integrase (INT) patient-derived fragment were constructed from plasma samples obtained from 27 virologic failure patients participating in a 48-week dose-ranging study of elvitegravir, GS-US-183-0105. A strong correlation was observed when susceptibility to EVG and RAL was assayed using p2-INT- vs. INT-recombinant viruses (Pearson coefficient correlation 0.869 and 0.918, P<0.0001 for EVG and RAL, respectively), demonstrating that mutations in the protease and RT have limited effect on susceptibility to these INSTIs. On the other hand, the replicative fitness of viruses harboring drug resistance mutations in PR, RT, and IN was generally impaired compared to viruses carrying only INSTI-resistance mutations. Thus, in the absence of drug pressure, drug resistance mutations in the PR and RT contribute to decrease the replicative fitness of the virus already impaired by mutations in the integrase. The use of recombinant viruses containing most or all HIV-1 regions targeted by antiretroviral drugs might be essential to understand the collective effect of epistatic interactions in multidrug-resistant viruses.
Collapse
|
37
|
Dimonte S, Babakir-Mina M, Aquaro S, Perno CF. Natural polymorphisms of HIV-1 subtype-C integrase coding region in a large group of ARV-naïve infected individuals. Infection 2013; 41:1097-102. [PMID: 23620062 DOI: 10.1007/s15010-013-0464-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/15/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE Integrase (IN) is an enzyme produced by human immunodeficiency virus (HIV)-1 that enables its genetic material to be integrated into the DNA of the infected cell. Still now, few data are available with detailed analysis of the natural IN polymorphisms of HIV-1 subtype-C in datasets retrieved from antiretroviral-naïve patients; this study focuses on these polymorphisms. METHODS The analysis included 335 HIV-1 subtype-C IN sequences (one per patient). Multi-alignment of IN sequences was performed, and for the definition of a polymorphism, only amino acid changes with prevalence ≥3 % among treatment-naïve patients were considered. RESULTS Seventy IN amino acid positions were fully conserved. Differently, forty-six IN amino acid polymorphic positions were observed, 12 within the N-terminal domain and 13 within the C-terminal domain. In the DDE-catalytic motif, only one mutation per site (D64G/D116G/E152K) was found, while a low variability (<1 %) was observed for IN positions interacting with LEDGF/p75. A major drug resistance mutation for raltegravir (RAL) and elvitegravir (EVG), Q148H, was retrieved from one patient and another RAL primary resistance mutation, Y143H, was also retrieved from another patient. CONCLUSIONS The results from the IN sequences analyzed underlined that some unexpected baseline substitutions affecting the susceptibility to RAL/EVG could be detected in drug-naïve individuals, and, therefore, it should be genotyped before the consideration of HIV-1 IN inhibitors (INIs). The impact of these mutations on the baseline drug susceptibility of HIV-1 subtype-C to INIs may need to be addressed prior to the introduction of these drugs in some Asiatic and African countries.
Collapse
Affiliation(s)
- S Dimonte
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy,
| | | | | | | |
Collapse
|
38
|
Rusconi S, Vitiello P, Adorni F, Bruzzone B, De Luca A, Micheli V, Meraviglia P, Maserati R, Di Pietro M, Colao G, Penco G, Di Biagio A, Punzi G, Monno L, Zazzi M. Factors associated with virological success with raltegravir-containing regimens and prevalence of raltegravir-resistance-associated mutations at failure in the ARCA database. Clin Microbiol Infect 2013; 19:936-42. [PMID: 23289841 DOI: 10.1111/1469-0691.12100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/27/2012] [Accepted: 11/04/2012] [Indexed: 02/03/2023]
Abstract
Raltegravir (RAL) is the only licensed human immunodeficiency virus (HIV) integrase inhibitor. The factors associated with the virological response to RAL-containing regimens and the prevalence of integrase mutations associated with RAL failure deserve further investigation. From the Antiretroviral Resistance Cohort Analysis database, we selected triple-class-experienced subjects failing their current treatment with complete treatment history available. Selection criteria included HIV-RNA, CD4 count and HIV genotype within 3 months of RAL initiation. Factors associated with 24-week response were analysed; genotypic sensitivity scores (GSS) and weighted-GSS were evaluated. Virological response was achieved in 74.3% of 105 subjects. Mutations associated with RAL failure were detected in 12/24 subjects with an integrase genotype, with the prevalence of Q148H + G140S. Each extra unit of GSS (p 0.05, OR 2.62; 95% CI 1.00-6.87). was found to be a associated with response. Weighted-GSS had borderline statistical significance (p 0.063, OR 2.04; 95% CI 0.96-4.33) When stratifying for different cut-offs (<1 as reference, 1-1.49, ≥1.5), a borderline significant increase in the probability of response appeared for GSS ≥1.5 (p 0.053, OR 4.00; 95% CI 0.98-16.25). GSS ≥1 showed the highest sensitivity, 82.6%. Receiver operating characteristic curves depicted the widest area under the curve (0.663, p 0.054) of GSS ≥1. Unresponsiveness to RAL-containing regimens among triple-class-experienced subjects was low. The activity of the background regimen was strongly associated with response. Although few integrase genotypes were available at failure, half of these were without integrase resistance mutations. The substantial rate of RAL failure in the absence of known RAL-resistance mutations may be associated with adherence issues and this issue warrants further analysis in longer observations.
Collapse
Affiliation(s)
- S Rusconi
- Divisione Clinicizzata di Malattie Infettive, Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Parczewski M, Bander D, Urbańska A, Boroń-Kaczmarska A. HIV-1 integrase resistance among antiretroviral treatment naive and experienced patients from Northwestern Poland. BMC Infect Dis 2012; 12:368. [PMID: 23259737 PMCID: PMC3547692 DOI: 10.1186/1471-2334-12-368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 12/02/2022] Open
Abstract
Background HIV integrase inhibitor use is limited by low genetic barrier to resistance and possible cross-resistance among representatives of this class of antiretrovirals. The aim of this study was to analyse integrase sequence variability among antiretroviral treatment naive and experienced patients with no prior integrase inhibitor (InI) exposure and investigate development of the InI drug resistance mutations following the virologic failure of the raltegravir containing regimen. Methods Sequencing of HIV-1 integrase region from plasma samples of 80 integrase treatment naive patients and serial samples from 12 patients with observed virologic failure on raltegravir containing treatment whenever plasma vireamia exceeded >50 copies/ml was performed. Drug resistance mutations were called with Stanford DB database and grouped into major and minor variants. For subtyping bootstrapped phylogenetic analysis was used; Bayesian Monte Carlo Marcov Chain (MCMC) model was implemented to infer on the phylogenetic relationships between the serial sequences from patients failing on raltegravir. Results Majority of the integrase region sequences were classified as subtype B; the remaining ones being subtype D, C, G, as well as CRF01_AE , CRF02_AG and CRF13_cpx recombinants. No major integrase drug resistance mutations have been observed in InI-treatment naive patients. In 30 (38.5%) cases polymorphic variation with predominance of the E157Q mutation was observed. This mutation was more common among subtype B (26 cases, 54.2%) than non-B sequences (5 cases, 16.7%), p=0.00099, OR: 5.91 (95% CI:1.77-22.63)]. Other variants included L68V, L74IL, T97A, E138D, V151I, R263K. Among 12 (26.1%) raltegravir treated patients treatment failure was observed; major InI drug resistance mutations (G140S, Q148H and N155H, V151I, E92EQ, V151I, G163R) were noted in four of these cases (8.3% of the total InI-treated patients). Time to the development of drug resistance ranged from 2.6 to 16.3 months with mean increase of HIV viral load of 4.34 (95% CI:1.86-6.84) log HIV-RNA copies/ml at the time of emergence of the major mutations. Baseline polymorphisms, including E157Q were not associated with the virologic failure on raltegravir. Conclusions In InI treatment naive patients polymorphic integrase sequence variation was common, with no major resistance mutants. In the treatment failing patients selection of drug resistance occurred rapidly and followed the typical drug resistance pathways. Preexisting integrase polymorphisms were not associated with the treatment failure.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious Diseases and Hepatology, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | |
Collapse
|
40
|
Hu G, Li X, Zhang X, Li Y, Ma L, Yang LM, Liu G, Li W, Huang J, Shen X, Hu L, Zheng YT, Tang Y. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J Med Chem 2012; 55:10108-17. [PMID: 23046280 DOI: 10.1021/jm301226a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aims to identify inhibitors that bind at the interface of HIV-1 integrase (IN) and human LEDGF/p75, which represents a novel target for anti-HIV therapy. To date, only a few such inhibitors have been reported. Here structure-based virtual screening was performed to search for the inhibitors from an in-house library of natural products and their derivatives. Among the 38 compounds selected by our strategy, 18 hits were discovered. The two most potent inhibitors showed IC(50) values at 0.32 and 0.26 μM, respectively. Three compounds were subsequently selected for anti-HIV assays, among which (E)-3-(2-chlorophenyl)-1-(2,4-dihydroxyphenyl)prop-2-en-1-one (NPD170) showed the highest antiviral activity (EC(50) = 1.81 μM). The antiviral mechanism of these compounds was further explored, and the results validated that the compounds interrupted the binding of transfected IN to endogenous LEDGF/p75. These findings could be helpful for anti-HIV drug discovery.
Collapse
Affiliation(s)
- Guoping Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wright DW, Wan S, Shublaq N, Zasada SJ, Coveney PV. From base pair to bedside: molecular simulation and the translation of genomics to personalized medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:585-98. [PMID: 22899636 DOI: 10.1002/wsbm.1186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the promises made that genomic sequencing would transform therapy by introducing a new era of personalized medicine, relatively few tangible breakthroughs have been made. This has led to the recognition that complex interactions at multiple spatial, temporal, and organizational levels may often combine to produce disease. Understanding this complexity requires that existing and future models are used and interpreted within a framework that incorporates knowledge derived from investigations at multiple levels of biological function. It also requires a computational infrastructure capable of dealing with the vast quantities of data generated by genomic approaches. In this review, we discuss the use of molecular modeling to generate quantitative and qualitative insights at the smallest scales of the systems biology hierarchy, how it can play an important role in the development of a systems understanding of disease and in the application of such knowledge to help discover new therapies and target existing ones on a personal level.
Collapse
Affiliation(s)
- David W Wright
- Centre for Computational Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
42
|
Phuphuakrat A, Pasomsub E, Kiertiburanakul S, Chantratita W, Sungkanuparph S. HIV type 1 integrase polymorphisms in treatment-naive and treatment-experienced HIV type 1-infected patients in Thailand where HIV type 1 subtype A/E predominates. AIDS Res Hum Retroviruses 2012; 28:937-43. [PMID: 21970343 DOI: 10.1089/aid.2011.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Integrase inhibitor (INI) is a novel antiretroviral drug recommended for both treatment-naive and treatment-experienced HIV-1-infected patients. Limited data are available on INI resistance in Thailand, where HIV-1 subtype A/E predominates. We aimed to investigate INI resistance-associated mutations (RAMs) among treatment-naive patients and patients who experienced treatment failure with NNRTI-based or PI-based antiretroviral therapy (ART) in Thailand. One hundred and eight plasma samples of 58 treatment-naive and 50 treatment-experienced HIV-1-infected individuals were collected. The HIV-1 integrase coding region was sequenced. Polymorphisms were compared between subtype A/E and B circulating in Thailand and between treatment-naive and treatment-experienced groups. Resulting amino acids were interpreted for drug resistance according to Stanford algorithms. Ninety-seven samples were HIV-1 subtype A/E, 10 were subtype B, and one was subtype C. Age, gender, and CD4 cell counts were similar between treatment-naive and treatment-experienced groups, while the treatment-failure group showed a statistically significant longer awareness time of HIV-1 infection and lower viral load than the treatment-naive group. Major INI-RAM was not found in this study, but some minor INI-RAMs, such asV54I, L68I, L74M, T97A, and S230N, were found. Comparing INI-RAMs between subtype A/E and B, the prevalence of V54I and V72I was higher in subtype B than subtype E, while V201I was found in all sequences of subtype A/E. In subtype A/E, integrase polymorphisms were not different between treatment-naive and treatment-experienced groups. However, the number of amino acid substitutions was significantly higher in the treatment-experienced group (p=0.009). One NNRTI-based ART-treated patient was found to have potential low-level INI-RAMs. INI-RAMs are rare in both treatment-naive and treatment-experienced patients in Thailand. This suggested that INI should be active in patients who are naive to INI in Thailand.
Collapse
Affiliation(s)
- Angsana Phuphuakrat
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekawat Pasomsub
- Unit of Virology and Molecular Microbiology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sasisopin Kiertiburanakul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasun Chantratita
- Unit of Virology and Molecular Microbiology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somnuek Sungkanuparph
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Rokas KEE, Bookstaver PB, Shamroe CL, Sutton SS, Millisor VE, Bryant JE, Weissman SB. Role of raltegravir in HIV-1 management. Ann Pharmacother 2012; 46:578-89. [PMID: 22496475 DOI: 10.1345/aph.1q616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To review the literature concerning the role of raltegravir in the treatment of HIV-1 in antiretroviral (ARV)-experienced and ARV-naïve patients. DATA SOURCES A PubMed search was conducted for published data through March 2012 using the search terms raltegravir, MK-0518, and integrase strand transfer inhibitor. An additional search of International Pharmaceutical Abstracts for unpublished data, including data from the Infectious Diseases Society of America, the Conference on Retroviruses and Opportunistic Infections, the International AIDS Society, and the Interscience Conference on Antimicrobial Agents and Chemotherapy, was conducted using similar search terms. STUDY SELECTION AND DATA EXTRACTION In vitro and in vivo Phase 2, Phase 3, and postmarketing studies available in English, evaluating antiretroviral regimens that contain raltegravir for the treatment of HIV-1 infection in both ARV-naïve and ARV-experienced patients, were evaluated. Studies assessing raltegravir pharmacokinetics and pharmacodynamics were included for review. DATA SYNTHESIS The nucleoside-based regimen of raltegravir with tenofovir/emtricitabine provides an effective first-line treatment option. However, nucleoside-sparing regimens appear unfavorable in ARV-naïve subjects and should be reserved for patients with limited treatment options. Raltegravir used with optimized background therapy provides an alternative regimen for ARV-experienced patients. This review describes the available in vitro and in vivo data on raltegravir potency, defined as the ability to achieve undetectable viral load, and safety profile, as well as comparison to standard HIV-1 therapies. CONCLUSIONS Raltegravir has demonstrated potent antiretroviral activity against HIV-1 in both ARV-naïve and ARV-experienced subjects, with the benefits of a favorable adverse effect profile and minimal drug interactions. Raltegravir must be dosed twice daily, as once daily raltegravir displays decreased virologic efficacy compared to twice daily dosing. However, the ongoing development of new integrase strand transfer inhibitors may provide potent once daily regimens.
Collapse
Affiliation(s)
- Kristina E E Rokas
- South Carolina College of Pharmacy, University of South Carolina Campus, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob Agents Chemother 2012; 56:2873-8. [PMID: 22450969 DOI: 10.1128/aac.06170-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The failure of raltegravir (RAL) is generally associated with the selection of mutations at integrase position Y143, Q148, or N155. However, a relatively high proportion of failures occurs in the absence of these changes. Here, we report the phenotypic susceptibilities to RAL and elvitegravir (EVG) for a large group of HIV-infected patients failing on RAL-containing regimens. Plasma from HIV-infected individuals failing on RAL-containing regimens underwent genotypic and phenotypic resistance testing (Antivirogram v2.5.01; Virco). A control group of patients failing on other regimens was similarly tested. Sixty-one samples were analyzed, 40 of which belonged to patients failing on RAL-containing regimens. Full RAL susceptibility was found in 20/21 controls, while susceptibility to EVG was diminished in 8 subjects, with a median fold change (FC) of 2.5 (interquartile range [IQR], 2.1 to 3.1). Fourteen samples from patients with RAL failures showed diminished RAL susceptibility, with a median FC of 38.5 (IQR, 10.8 to 103.2). Primary integrase resistance mutations were found in 11 of these samples, displaying a median FC of 68.5 (IQR, 23.5 to 134.3). The remaining 3 samples showed a median FC of 2.5 (IQR, 2 to 2.7). EVG susceptibility was diminished in 19/40 samples from patients with RAL failures (median FC, 7.71 [IQR, 2.48 to 99.93]). Cross-resistance between RAL and EVG was high (R(2) = 0.8; P < 0.001), with drug susceptibility being more frequently reduced for EVG than for RAL (44.3% versus 24.6%; P = 0.035). Susceptibility to RAL and EVG is rarely affected in the absence of primary integrase resistance mutations. There is broad cross-resistance between RAL and EVG, which should preclude their sequential use. Resistance to EVG seems to be more frequent and might be more influenced by integrase variability.
Collapse
|
45
|
Analysis of transmitted resistance to raltegravir and selective pressure among HIV-1-infected patients on a failing HAART in Sao Paulo, Brazil. J Clin Microbiol 2012; 50:2122-5. [PMID: 22403424 DOI: 10.1128/jcm.00539-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the presence of primary resistance to raltegravir (RAL), natural polymorphisms, and selection pressure on HIV-1 integrase. We found a high frequency of integrase polymorphisms related to the resistance to RAL and sequence stability. Further studies are needed to determine the importance of these polymorphisms to RAL resistance.
Collapse
|
46
|
Margot NA, Hluhanich RM, Jones GS, Andreatta KN, Tsiang M, McColl DJ, White KL, Miller MD. In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antiviral Res 2011; 93:288-296. [PMID: 22197635 DOI: 10.1016/j.antiviral.2011.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
Abstract
Elvitegravir is a strand transfer inhibitor of HIV-1 integrase that is currently undergoing phase 3 clinical testing. The two predominant metabolites of elvitegravir, M1 and M4 (elvitegravir hydroxide and elvitegravir glucuronide), have been shown to inhibit HIV-1 integrase in vitro. While they are markedly less potent than elvitegravir and present only at low levels in plasma clinically, we investigated their potential to select for elvitegravir resistance in vitro. Resistance selection experiments using metabolites M1 and M4 led to the development of the previously reported elvitegravir integrase resistance mutations H51Y, T66A, E92G, and S147G, as well as a novel S153F substitution. Additional resistance selection experiments using elvitegravir led to the development of previously reported integrase inhibitor resistance mutations (T66I, F121Y, and S153Y) as well as a novel R263K integrase mutation. Phenotypic analyses of site-directed mutants with these mutations demonstrated broad cross-resistance between elvitegravir and its M1 and M4 metabolites with more limited cross-resistance to the integrase inhibitor raltegravir. Overall, our in vitro studies demonstrate that the resistance profile of the M1 and M4 metabolites of elvitegravir overlaps with that of the parent molecule elvitegravir; as such, their presence at low levels is not considered clinically relevant.
Collapse
Affiliation(s)
- Nicolas A Margot
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA.
| | | | - Gregg S Jones
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - Manuel Tsiang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Damian J McColl
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Kirsten L White
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Michael D Miller
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| |
Collapse
|
47
|
Hurt CB. Transmitted resistance to HIV integrase strand-transfer inhibitors: right on schedule. Antivir Ther 2011; 16:137-40. [PMID: 21447861 DOI: 10.3851/imp1750] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transmitted drug resistance (TDR), the primary acquisition of an HIV variant already resistant to antiretrovirals, affects approximately 15% of all new infections in the United States. Historically, from the time initial agents in the reverse transcriptase, protease and entry inhibitor classes were introduced, it took 3-5 years before the first case reports of TDR appeared. With the description of the first two cases of transmitted integrase stand-transfer inhibitor resistance, it is only a matter of time before the prevalence of TDR affecting this newest antiretroviral class reaches a level warranting baseline resistance testing for all patients entering care.
Collapse
Affiliation(s)
- Christopher B Hurt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
48
|
Young B, Fransen S, Greenberg KS, Thomas A, Martens S, St Clair M, Petropoulos CJ, Ha B. Transmission of integrase strand-transfer inhibitor multidrug-resistant HIV-1: case report and response to raltegravir-containing antiretroviral therapy. Antivir Ther 2011; 16:253-6. [PMID: 21447875 DOI: 10.3851/imp1748] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report the case of an integrase strand-transfer inhibitor (INI)-resistant and four-drug-class-resistant HIV-1 variant infecting an antiretroviral therapy-naive man. The virus harboured INI drug resistance substitutions (Q148H and G140S) along with multiple reverse transcriptase and protease inhibitor resistance mutations. This case illustrates an emerging need to consider the possibility of acquired INI resistance among newly diagnosed treatment-naive individuals harbouring multidrug-resistant HIV-1.
Collapse
|
49
|
Abstract
The development of multiple agents with potent antiretroviral activity against HIV has ushered in a new age of optimism in the management of patients infected with the virus. However, the viruses' dynamic ability to develop resistance against these agents necessitates the investigation of novel targets for viral suppression. Raltegravir represents a first-in-class agent targeting the HIV integrase enzyme, which is responsible for integration of virally encoded DNA into the host genome. Over the last 5 years, clinical trials data has demonstrated an increasing role for raltegravir in the management of both treatment-experienced and treatment-naïve HIV-1-infected patients. This review focuses on the evidence supporting raltegravir's efficacy in an array of clinical settings. Other HIV-1 integrase inhibitors in development are also briefly discussed.
Collapse
Affiliation(s)
- N Lance Okeke
- Duke University Medical Center, Department of Hospital Medicine, Durham Regional Hospital, Durham, North Carolina, USA
| | | |
Collapse
|
50
|
Gräf T, Passaes CPB, Ferreira LGE, Grisard EC, Morgado MG, Bello G, Pinto AR. HIV-1 genetic diversity and drug resistance among treatment naïve patients from Southern Brazil: an association of HIV-1 subtypes with exposure categories. J Clin Virol 2011; 51:186-91. [PMID: 21622023 DOI: 10.1016/j.jcv.2011.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/13/2011] [Accepted: 04/25/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND The AIDS epidemic in Southern Brazil has unique features, showing co-circulation of HIV-1 subtypes C, B and recombinant forms. Florianópolis has the second highest AIDS incidence among Brazilian capitals, but limited information is available about HIV molecular epidemiology and prevalence of primary drug resistance. OBJECTIVES To investigate the molecular epidemiology of HIV-1 in Florianópolis and to describe the prevalence of primary HIV-1 drug resistance mutations (DMRs). STUDY DESIGN Epidemiological and clinical data from 82 untreated patients from Florianópolis (2008-2009) were analyzed. The HIV-1 subtype at envelope, protease, reverse transcriptase and integrase regions were determined by phylogenetic and bootscaning analyses and the drug resistance profile were analyzed at the Stanford HIV Drug Resistance Database. RESULTS The most frequent HIV-1 genetic form was subtype C (65.8%) followed by mosaics BC (18.3%), subtype B (13.4%), subtype F1 (1.2%) and BCF1 recombinant (1.2%). HIV-1 subtype C and BC recombinants were much more frequent in the heterosexual exposure category, whereas subtype B was more common in the MSM exposure category. DRMs were seen in 11% of the sequences, 2.4% of them were related to PI, 5% to NRTI, 3.6% to NNRTI and 1.2% was related to INTI. CONCLUSIONS The present study confirms the high prevalence of subtype C and BC recombinants in Santa Catarina State and revealed a significant difference in the subtype distribution among distinct virus exposure categories. This study also shows a relative high prevalence of protease/reverse transcriptase primary drug resistance mutations and corroborates the usefulness of the integrase inhibitors in southern Brazil.
Collapse
Affiliation(s)
- Tiago Gräf
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|