1
|
Joseph AM, Nahar K, Daw S, Hasan MM, Lo R, Le TBK, Rahman KM, Badrinarayanan A. Mechanistic insight into the repair of C8-linked pyrrolobenzodiazepine monomer-mediated DNA damage. RSC Med Chem 2022; 13:1621-1633. [PMID: 36561066 PMCID: PMC9749960 DOI: 10.1039/d2md00194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Pyrrolobenzodiazepines (PBDs) are naturally occurring DNA binding compounds that possess anti-tumor and anti-bacterial activity. Chemical modifications of PBDs can result in improved DNA binding, sequence specificity and enhanced efficacy. More recently, synthetic PBD monomers have shown promise as payloads for antibody drug conjugates and anti-bacterial agents. The precise mechanism of action of these PBD monomers and their role in causing DNA damage remains to be elucidated. Here we characterized the damage-inducing potential of two C8-linked PBD bi-aryl monomers in Caulobacter crescentus and investigated the strategies employed by cells to repair the same. We show that these compounds cause DNA damage and efficiently kill bacteria, in a manner comparable to the extensively used DNA cross-linking agent mitomycin-C (MMC). However, in stark contrast to MMC which employs a mutagenic lesion tolerance pathway, we implicate essential functions for error-free mechanisms in repairing PBD monomer-mediated damage. We find that survival is severely compromised in cells lacking nucleotide excision repair and to a lesser extent, in cells with impaired recombination-based repair. Loss of nucleotide excision repair leads to significant increase in double-strand breaks, underscoring the critical role of this pathway in mediating repair of PBD-induced DNA lesions. Together, our study provides comprehensive insights into how mono-alkylating DNA-targeting therapeutic compounds like PBD monomers challenge cell growth, and identifies the specific mechanisms employed by the cell to counter the same.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| | - Kazi Nahar
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Saheli Daw
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| | - Md Mahbub Hasan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Rebecca Lo
- John Innes Centre, Department of Molecular Microbiology Colney Lane Norwich NR4 7UH UK
| | - Tung B K Le
- John Innes Centre, Department of Molecular Microbiology Colney Lane Norwich NR4 7UH UK
| | - Khondaker Miraz Rahman
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| |
Collapse
|
2
|
Picconi P, Hind CK, Nahar KS, Jamshidi S, Di Maggio L, Saeed N, Evans B, Solomons J, Wand ME, Sutton JM, Rahman KM. New Broad-Spectrum Antibiotics Containing a Pyrrolobenzodiazepine Ring with Activity against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2020; 63:6941-6958. [PMID: 32515951 DOI: 10.1021/acs.jmedchem.0c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to find new antibiotic classes with activity against multidrug-resistant (MDR) Gram-negative pathogens as the pipeline of antibiotics is essentially empty. Modified pyrrolobenzodiazepines with a C8-linked aliphatic heterocycle provide a new class of broad-spectrum antibacterial agents with activity against MDR Gram-negative bacteria, including WHO priority pathogens. The structure-activity relationship established that the third ring was particularly important for Gram-negative activity. Minimum inhibitory concentrations for the lead compounds ranged from 0.125 to 2 mg/L for MDR Gram-negative, excluding Pseudomonas aeruginosa, and between 0.03 and 1 mg/L for MDR Gram-positive species. The lead compounds were rapidly bactericidal with >5 log reduction in viable count within 4 h for Acinetobacter baumannii and Klebsiella pneumoniae. The lead compound inhibited DNA gyrase in gel-based assays, with an IC50 of 3.16 ± 1.36 mg/L. This study provides a new chemical scaffold for developing novel broad-spectrum antibiotics which can help replenish the pipeline of antibiotics.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Charlotte K Hind
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Kazi S Nahar
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Lucia Di Maggio
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Naima Saeed
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Bonnie Evans
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Jessica Solomons
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Matthew E Wand
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - J Mark Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | | |
Collapse
|
3
|
Ferguson L, Bhakta S, Fox KR, Wells G, Brucoli F. Synthesis and Biological Evaluation of a Novel C8-Pyrrolobenzodiazepine (PBD) Adenosine Conjugate. A Study on the Role of the PBD Ring in the Biological Activity of PBD-Conjugates. Molecules 2020; 25:E1243. [PMID: 32164166 PMCID: PMC7179398 DOI: 10.3390/molecules25051243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022] Open
Abstract
Here we sought to evaluate the contribution of the PBD unit to the biological activity of PBD-conjugates and, to this end, an adenosine nucleoside was attached to the PBD A-ring C8 position. A convergent approach was successfully adopted for the synthesis of a novel C8-linked pyrrolo(2,1-c)(1,4)benzodiazepine(PBD)-adenosine(ADN) hybrid. The PBD and adenosine (ADN) moieties were synthesized separately and then linked through a pentynyl linker. To our knowledge, this is the first report of a PBD connected to a nucleoside. Surprisingly, the compound showed no cytotoxicity against murine cells and was inactive against Mycobacterium aurum and M. bovis strains and did not bind to guanine-containing DNA sequences, as shown by DNase I footprinting experiments. Molecular dynamics simulations revealed that the PBD-ADN conjugate was poorly accommodated in the DNA minor groove of two DNA sequences containing the AGA-PBD binding motif, with the adenosine moiety of the ligand preventing the covalent binding of the PBD unit to the guanine amino group of the DNA duplex. These interesting findings shed further light on the ability of the substituents attached at the C8 position of PBDs to affect and modulate the biological and biophysical properties of PBD hybrids.
Collapse
Affiliation(s)
- Lindsay Ferguson
- School of Science, University of the West of Scotland, Paisley, Scotland PA1 2BE, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Geoff Wells
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
4
|
Andriollo P, Hind CK, Picconi P, Nahar KS, Jamshidi S, Varsha A, Clifford M, Sutton JM, Rahman KM. C8-Linked Pyrrolobenzodiazepine Monomers with Inverted Building Blocks Show Selective Activity against Multidrug Resistant Gram-Positive Bacteria. ACS Infect Dis 2018; 4:158-174. [PMID: 29260545 DOI: 10.1021/acsinfecdis.7b00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antimicrobial resistance has become a major global concern. Development of novel antimicrobial agents for the treatment of infections caused by multidrug resistant (MDR) pathogens is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents initially discovered and isolated from natural sources. Recently, C8-linked PBD biaryl conjugates have been shown to be active against some MDR Gram-positive strains. To explore the role of building block orientations on antibacterial activity and obtain structure activity relationship (SAR) information, four novel structures were synthesized in which the building blocks of previously reported compounds were inverted, and their antibacterial activity was studied. The compounds showed minimum inhibitory concentrations (MICs) in the range of 0.125-32 μg/mL against MDR Gram-positive strains with a bactericidal mode of action. The results showed that a single inversion of amide bonds reduces the activity while the double inversion restores the activity against MDR pathogens. All inverted compounds did not stabilize DNA and lacked eukaryotic toxicity. The compounds inhibit DNA gyrase in vitro, and the most potent compound was equally active against both wild-type and mutant DNA gyrase in a biochemical assay. The observed activity of the compounds against methicillin resistant S. aureus (MRSA) strains with equivalent gyrase mutations is consistent with gyrase inhibition being the mechanism of action in vivo, although this has not been definitively confirmed in whole cells. This conclusion is supported by a molecular modeling study showing interaction of the compounds with wild-type and mutant gyrases. This study provides important SAR information about this new class of antibacterial agents.
Collapse
Affiliation(s)
- Paolo Andriollo
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K. Hind
- National Infections Service, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Pietro Picconi
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kazi S. Nahar
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Shirin Jamshidi
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Amrit Varsha
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Melanie Clifford
- National Infections Service, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - J. Mark Sutton
- National Infections Service, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
5
|
Jackson PJ, Rahman KM, Thurston DE. The use of molecular dynamics simulations to evaluate the DNA sequence-selectivity of G–A cross-linking PBD–duocarmycin dimers. Bioorg Med Chem Lett 2017; 27:102-108. [DOI: 10.1016/j.bmcl.2016.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
6
|
DNA Targeting as a Likely Mechanism Underlying the Antibacterial Activity of Synthetic Bis-Indole Antibiotics. Antimicrob Agents Chemother 2016; 60:7067-7076. [PMID: 27620482 DOI: 10.1128/aac.00309-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported the synthesis and biological activity of a series of cationic bis-indoles with potent, broad-spectrum antibacterial properties. Here, we describe mechanism of action studies to test the hypothesis that these compounds bind to DNA and that this target plays an important role in their antibacterial outcome. The results reported here indicate that the bis-indoles bind selectively to DNA at A/T-rich sites, which is correlated with the inhibition of DNA and RNA synthesis in representative Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) organisms. Further, exposure of E. coli and S. aureus to representative bis-indoles resulted in induction of the DNA damage-inducible SOS response. In addition, the bis-indoles were found to be potent inhibitors of cell wall biosynthesis; however, they do not induce the cell wall stress stimulon in S. aureus, suggesting that this pathway is inhibited by an indirect mechanism. In light of these findings, the most likely basis for the observed activities of these compounds is their ability to bind to the minor groove of DNA, resulting in the inhibition of DNA and RNA synthesis and other secondary effects.
Collapse
|
7
|
Brucoli F, Guzman JD, Basher MA, Evangelopoulos D, McMahon E, Munshi T, McHugh TD, Fox KR, Bhakta S. DNA sequence-selective C8-linked pyrrolobenzodiazepine–heterocyclic polyamide conjugates show anti-tubercular-specific activities. J Antibiot (Tokyo) 2016; 69:843-849. [DOI: 10.1038/ja.2016.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
|
8
|
Varvounis G. An Update on the Synthesis of Pyrrolo[1,4]benzodiazepines. Molecules 2016; 21:154. [PMID: 26828475 PMCID: PMC6273195 DOI: 10.3390/molecules21020154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/12/2023] Open
Abstract
Pyrrolo[1,4]benzodiazepines are tricyclic compounds that are considered “privileged structures” since they possess a wide range of biological activities. The first encounter with these molecules was the isolation of anthramycin from cultures of Streptomyces, followed by determination of the X-ray crystal structure of the molecule and a study of its interaction with DNA. This opened up an intensive synthetic and biological study of the pyrrolo[2,1-c][1,4]benzodiazepines that has culminated in the development of the dimer SJG-136, at present in Phase II clinical trials. The synthetic efforts have brought to light some new synthetic methodology, while the contemporary work is focused on building trimeric pyrrolo[2,1-c][1,4]benzodiazepines linked together by various heterocyclic and aliphatic chains. It is the broad spectrum of biological activities of pyrrolo[1,2-a][1,4]benzodiazepines that has maintained the interest of researchers to date whereas several derivatives of the even less studied pyrrolo[1,2-d][1,4]benzodiazepines were found to be potent non-nucleoside HIV-1 reverse transcriptase inhibitors. The present review is an update on the synthesis of pyrrolo[2,1-c][1,4]benzodiazepines since the last major review of 2011, while the overview of the synthesis of the other two tricyclic isomers is comprehensive.
Collapse
Affiliation(s)
- George Varvounis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 451 10 Ioannina, Greece.
| |
Collapse
|
9
|
Thurston DE, Vassoler H, Jackson PJM, James CH, Rahman KM. Effect of hairpin loop structure on reactivity, sequence preference and adduct orientation of a DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepine (PBD) antitumour agent. Org Biomol Chem 2015; 13:4031-40. [DOI: 10.1039/c4ob02405b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pyrrolobenzodiazepine (PBD) monomer GWL-78 reacts faster with DNA hairpins containing a hexaethylene glycol (HEG) loop compared to hairpins containing a TTT loop due to the greater structural flexibility of the HEG.
Collapse
Affiliation(s)
| | - Higia Vassoler
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | | - Colin H. James
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | |
Collapse
|
10
|
Rahman KM, Corcoran DB, Bui TTT, Jackson PJM, Thurston DE. Pyrrolobenzodiazepines (PBDs) do not bind to DNA G-quadruplexes. PLoS One 2014; 9:e105021. [PMID: 25133504 PMCID: PMC4136862 DOI: 10.1371/journal.pone.0105021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs) are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920) reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS), Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA. Therefore, we evaluated the interaction of eight PBD molecules of diverse structure with a range of parallel, antiparallel and mixed DNA quadruplexes using DNA Thermal Denaturation, Circular Dichroism and Molecular Dynamics Simulations. Those PBD molecules without large C8-substitutents had an insignificant affinity for the eight quadruplex types, although those with large π-system-containing C8-substituents (as with the compounds evaluated by Raju and co-workers) were found to interact to some extent. Our molecular dynamics simulations support the likelihood that molecules of this type, including those examined by Raju and co-workers, interact with quadruplex DNA through their C8-substituents rather than the PBD moiety itself. It is important for the literature to be clear on this matter, as the mechanism of action of these agents will be under close scrutiny in the near future due to the growing number of PBD-based agents entering the clinic as both single-agents and as components of antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Khondaker M. Rahman
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
- * E-mail: (KMR); (DET)
| | - David B. Corcoran
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Tam T. T. Bui
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Paul J. M. Jackson
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - David E. Thurston
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
- * E-mail: (KMR); (DET)
| |
Collapse
|
11
|
Bolhuis A, Aldrich-Wright JR. DNA as a target for antimicrobials. Bioorg Chem 2014; 55:51-9. [DOI: 10.1016/j.bioorg.2014.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
|
12
|
Rahman KM, Jackson PJM, James CH, Basu BP, Hartley JA, de la Fuente M, Schatzlein A, Robson M, Pedley RB, Pepper C, Fox KR, Howard PW, Thurston DE. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J Med Chem 2013; 56:2911-35. [PMID: 23514599 DOI: 10.1021/jm301882a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA binding 4-(1-methyl-1H-pyrrol-3-yl)benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD-MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-κB with its cognate DNA binding sequence.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Department of Pharmacy, Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rahman KM, Rosado H, Moreira JB, Feuerbaum EA, Fox KR, Stecher E, Howard PW, Gregson SJ, James CH, de la Fuente M, Waldron DE, Thurston DE, Taylor PW. Antistaphylococcal activity of DNA-interactive pyrrolobenzodiazepine (PBD) dimers and PBD-biaryl conjugates. J Antimicrob Chemother 2012; 67:1683-96. [PMID: 22547662 PMCID: PMC3370821 DOI: 10.1093/jac/dks127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Pyrrolobenzodiazepine (PBD) dimers, tethered through inert propyldioxy or pentyldioxy linkers, possess potent bactericidal activity against a range of Gram-positive bacteria by virtue of their capacity to cross-link duplex DNA in sequence-selective fashion. Here we attempt to improve the antibacterial activity and cytotoxicity profile of PBD-containing conjugates by extension of dimer linkers and replacement of one PBD unit with phenyl-substituted or benzo-fused heterocycles that facilitate non-covalent interactions with duplex DNA. Methods DNase I footprinting was used to identify high-affinity DNA binding sites. A staphylococcal gene microarray was used to assess epidemic methicillin-resistant Staphylococcus aureus 16 phenotypes induced by PBD conjugates. Molecular dynamics simulations were employed to investigate the accommodation of compounds within the DNA helix. Results Increasing the length of the linker in PBD dimers led to a progressive reduction in antibacterial activity, but not in their cytotoxic capacity. Complex patterns of DNA binding were noted for extended PBD dimers. Modelling of DNA strand cross-linking by PBD dimers indicated distortion of the helix. A majority (26 of 43) of PBD-biaryl conjugates possessed potent antibacterial activity with little or no helical distortion and a more favourable cytotoxicity profile. Bactericidal activity of PBD-biaryl conjugates was determined by inability to excise covalently bound drug molecules from bacterial duplex DNA. Conclusions PBD-biaryl conjugates have a superior antibacterial profile compared with PBD dimers such as ELB-21. We have identified six PBD-biaryl conjugates as potential drug development candidates.
Collapse
|
14
|
Lewis EA, Munde M, Wang S, Rettig M, Le V, Machha V, Wilson WD. Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site. Nucleic Acids Res 2011; 39:9649-58. [PMID: 21890907 PMCID: PMC3239193 DOI: 10.1093/nar/gkr699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Structural results with minor groove binding agents, such as netropsin, have provided detailed, atomic level views of DNA molecular recognition. Solution studies, however, indicate that there is complexity in the binding of minor groove agents to a single site. Netropsin, for example, has two DNA binding enthalpies in isothermal titration calorimetry (ITC) experiments that indicate the compound simultaneously forms two thermodynamically different complexes at a single AATT site. Two proposals for the origin of this unusual observation have been developed: (i) two different bound species of netropsin at single binding sites and (ii) a netropsin induced DNA hairpin to duplex transition. To develop a better understanding of DNA recognition complexity, the two proposals have been tested with several DNAs and the methods of mass spectrometry (MS), polyacrylamide gel electrophoresis (PAGE) and nuclear magnetic resonance spectroscopy in addition to ITC. All of the methods with all of the DNAs investigated clearly shows that netropsin forms two different complexes at AATT sites, and that the proposal for an induced hairpin to duplex transition in this system is incorrect.
Collapse
Affiliation(s)
- Edwin A Lewis
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|