1
|
He Q, Ye C, Qi S, Zheng Y, Yan K, Chen Y, Chen H, Bei W. Effects of fisetin on virulence of Actinobacillus Pleuropneumoniae. Microb Pathog 2025; 205:107692. [PMID: 40368071 DOI: 10.1016/j.micpath.2025.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Porcine infectious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly infectious respiratory disease of pigs, resulting in significant economic losses to the industry. Apx toxins are cytolytic virulence factors produced by APP. The natural flavonoid fisetin has a variety of biological activities, including antioxidant and anti-inflammatory properties. This study aimed to investigate the protective effects of fisetin against APP. Fisetin was found to effectively inhibit the hemolytic activity of both APP culture supernatants and the purified toxins, and blood agar plate results also showed that the addition of fisetin to APP reduced the diameter of the hemolytic zone. Fisetin did not influence the expression of Apx toxins, although it reduced that of the virulence factor CPS. In vitro, fisetin effectively inhibited APP cytotoxicity and intracellular colonization, as well as intracellular ROS production. Furthermore, it reduced the expression of IL-6, TNF-α, and TLR4 in porcine alveolar macrophages (3D4/21). In vivo, fisetin reduced APP colonization of mouse lung tissues and improved the survival rate of APP-infected mice. In conclusion, fisetin was found to reduce the release of pro-inflammatory cytokines and ROS, decrease the risk of hemolysis, and attenuate APP virulence. The findings highlight the potential therapeutic value of fisetin in the management of APP infection. Further investigations into the mechanisms underlying the effects of fisetin are warranted.
Collapse
Affiliation(s)
- Qiyun He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Song Qi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China; Guangxi Fusui Jiade Animal Husbandry Co., LTD, Chongzuo, China
| | - Yaxuan Zheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yunpeng Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Ke CH, Lai PY, Hsu FY, Hsueh PR, Chiou MT, Lin CN. Antimicrobial susceptibility and resistome of Actinobacillus pleuropneumoniae in Taiwan: a next-generation sequencing analysis. Vet Q 2024; 44:1-13. [PMID: 38688482 PMCID: PMC11064736 DOI: 10.1080/01652176.2024.2335947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Actinobacillus pleuropneumoniae infection causes a high mortality rate in porcine animals. Antimicrobial resistance poses global threats to public health. The current study aimed to determine the antimicrobial susceptibilities and probe the resistome of A. pleuropneumoniae in Taiwan. Herein, 133 isolates were retrospectively collected; upon initial screening, 38 samples were subjected to next-generation sequencing (NGS). Over the period 2017-2022, the lowest frequencies of resistant isolates were found for ceftiofur, cephalexin, cephalothin, and enrofloxacin, while the highest frequencies of resistant isolates were found for oxytetracycline, streptomycin, doxycycline, ampicillin, amoxicillin, kanamycin, and florfenicol. Furthermore, most isolates (71.4%) showed multiple drug resistance. NGS-based resistome analysis revealed aminoglycoside- and tetracycline-related genes at the highest prevalence, followed by genes related to beta-lactam, sulfamethoxazole, florphenicol, and macrolide. A plasmid replicon (repUS47) and insertion sequences (IS10R and ISVAp11) were identified in resistant isolates. Notably, the multiple resistance roles of the insertion sequence IS10R were widely proposed in human medicine; however, this is the first time IS10R has been reported in veterinary medicine. Concordance analysis revealed a high consistency of phenotypic and genotypic susceptibility to florphenicol, tilmicosin, doxycycline, and oxytetracycline. The current study reports the antimicrobial characterization of A. pleuropneumoniae for the first time in Taiwan using NGS.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pan-Yun Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Feng-Yang Hsu
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
3
|
do Valle Barroso M, da Silva JS, Moreira SM, Sabino YNV, Rocha GC, Moreira MAS, Bazzolli DMS, Mantovani HC. Antimicrobial Resistance Profiles of Multidrug-Resistant Enterobacteria Isolated from Feces of Weaned Piglets. Curr Microbiol 2023; 81:40. [PMID: 38103072 DOI: 10.1007/s00284-023-03556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Nosocomial infections caused by multidrug-resistant enterobacteria have become a major challenge in global public health. Previous studies have indicated that use of antibiotics in livestock production chains is linked to the rising threat of antibiotic resistance in humans. In this study, we aimed to evaluate the distribution of genes encoding resistance to tetracycline, β-lactams, and colistin in multidrug-resistant enterobacteria isolated from feces of weaned pigs. Ninety-four enterobacteria isolates were submitted to antibiotic susceptibility test by minimum inhibitory concentration (MIC). In addition, we performed conjugation experiments to verify if plasmid-bearing isolates containing the mcr-1 gene could transfer their resistance determinant to a colistin-sensitive recipient strain. Our results demonstrated a positive association between the detection of antibiotic resistance genes in enterobacteria and the phenotypic resistance profiles of the bacterial isolates. At least one of the extended-spectrum β-lactamases (ESBL) genes (blaCTX-M, blaTEM, or bla SHV) and tetA was found among most bacterial genera analyzed. In addition, results revealed that the mcr-1 gene can be transferred from E. coli UFV-627 isolate to an F- recipient (Escherichia coli K12) by conjugation. Our findings support the hypothesis that swine represents an important reservoir of antibiotic resistance genes and suggest that horizontal transfer mechanisms (e.g., conjugation) may mediate the spread of these genes in the swine gastrointestinal tract.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hilario C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Li X, Liu Z, Gao T, Liu W, Yang K, Guo R, Li C, Tian Y, Wang N, Zhou D, Bei W, Yuan F. Tea Polyphenols Protects Tracheal Epithelial Tight Junctions in Lung during Actinobacillus pleuropneumoniae Infection via Suppressing TLR-4/MAPK/PKC-MLCK Signaling. Int J Mol Sci 2023; 24:11842. [PMID: 37511601 PMCID: PMC10380469 DOI: 10.3390/ijms241411842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins β-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.
Collapse
Affiliation(s)
- Xiaoyue Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ningning Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
5
|
Nahar N, Tram G, Jen FEC, Phillips ZN, Weinert L, Bossé J, Jabbari J, Gouil Q, Du MM, Ritchie M, Bowden R, Langford P, Tucker A, Jennings M, Turni C, Blackall P, Atack J. Actinobacillus pleuropneumoniae encodes multiple phase-variable DNA methyltransferases that control distinct phasevarions. Nucleic Acids Res 2023; 51:3240-3260. [PMID: 36840716 PMCID: PMC10123105 DOI: 10.1093/nar/gkad091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Jafar S Jabbari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mei R M Du
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
6
|
Structural and Biochemical Features of OXA-517: a Carbapenem and Expanded-Spectrum Cephalosporin Hydrolyzing OXA-48 Variant. Antimicrob Agents Chemother 2023; 67:e0109522. [PMID: 36648230 PMCID: PMC9933634 DOI: 10.1128/aac.01095-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OXA-48-producing Enterobacterales have now widely disseminated throughout the world. Several variants have now been reported, differing by just a few amino-acid substitutions or deletions, mostly in the region of the loop β5-β6. As OXA-48 hydrolyzes carbapenems but lacks significant expanded-spectrum cephalosporin (ESC) hydrolytic activity, ESCs were suggested as a therapeutic option. Here, we have characterized OXA-517, a natural variant of OXA-48- with an Arg214Lys substitution and a deletion of Ile215 and Glu216 in the β5-β6 loop, capable of hydrolyzing at the same time ESC and carbapenems. MICs values of E. coli expressing blaOXA-517 gene revealed reduced susceptibility to carbapenems (similarly to OXA-48) and resistance to ESCs. Steady-state kinetic parameters revealed high catalytic efficiencies for ESCs and carbapenems. The blaOXA-517 gene was located on a ca. 31-kb plasmid identical to the prototypical IncL blaOXA-48-carrying plasmid except for an IS1R-mediated deletion of 30.7-kb in the tra operon. The crystal structure of OXA-517, determined to 1.86 Å resolution, revealed an expanded active site compared to that of OXA-48, which allows for accommodation of the bulky ceftazidime substrate. Our work illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutation/deletion in the β5-β6 loop to extend its hydrolysis profile to encompass most β-lactam substrates.
Collapse
|
7
|
Zhang Y, Su YA, Qiu X, Mao Q, Liu H, Liu H, Wen D, Su Z. Temperature affects variations of class 1 integron during sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 364:128005. [PMID: 36155808 DOI: 10.1016/j.biortech.2022.128005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Revealing class 1 integron characteristics under different operating conditions is of great importance to control antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD). This study investigated the variations of class 1 integrons and the ARGs carried by class 1 integrons in anaerobic sludge digesters under 25 °C, 35 °C, and 55 °C. The results showed lower intI1 abundance and fewer class I integrons with long gene cassette arrays at 55 °C than at 25 °C and 35 °C. Multi-resistance gene cassette arrays were observed in the digesters at 25 °C and 35 °C. Abundant ARGs were detected on class 1 integrons in all digesters with aminoglycosides as the dominant class. The abundance of ARGs on class 1 integrons in digesters at 55 °C was lower than that at 25 °C and 35 °C. Thermophilic AD is better than mesophilic ones in the control of ARGs carried by class 1 integrons.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Yu-Ao Su
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuyang Qiu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiuyan Mao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongbo Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
da Silva GC, Rossi CC, Rosa JN, Sanches NM, Cardoso DL, Li Y, Witney AA, Gould KA, Fontes PP, Callaghan AJ, Bossé JT, Langford PR, Bazzolli DMS. Identification of small RNAs associated with RNA chaperone Hfq reveals a new stress response regulator in Actinobacillus pleuropneumoniae. Front Microbiol 2022; 13:1017278. [PMID: 36267174 PMCID: PMC9577009 DOI: 10.3389/fmicb.2022.1017278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Lopes Cardoso
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Yanwen Li
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Adam A. Witney
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Kate A. Gould
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | | | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Janine Thérèse Bossé
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Richard Langford
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
9
|
Li P, Zhu T, Zhou D, Lu W, Liu H, Sun Z, Ying J, Lu J, Lin X, Li K, Ying J, Bao Q, Xu T. Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Front Cell Infect Microbiol 2020; 10:369. [PMID: 32903722 PMCID: PMC7438884 DOI: 10.3389/fcimb.2020.00369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial resistance to antibiotics has become an important concern for public health. This study was aimed to investigate the characteristics and the distribution of the florfenicol-related resistance genes in bacteria isolated from four farms. A total of 106 florfenicol-resistant Gram-negative bacilli were examined for florfenicol-related resistance genes, and the positive isolates were further characterized. The antimicrobial sensitivity results showed that most of them (100, 94.33%) belonged to multidrug resistance Enterobacteriaceae. About 91.51% of the strains carried floR gene, while 4.72% carried cfr gene. According to the pulsed-field gel electrophoresis results, 34 Escherichia coli were subdivided into 22 profiles, the genetic similarity coefficient of which ranged from 80.3 to 98.0%. The multilocus sequence typing (MLST) results revealed 17 sequence types (STs), with ST10 being the most prevalent. The genome sequencing result showed that the Proteus vulgaris G32 genome consists of a 4.06-Mb chromosome, a 177,911-bp plasmid (pG32-177), and a 51,686-bp plasmid (pG32-51). A floR located in a drug-resistant region on the chromosome of P. vulgaris G32 was with IS91 family transposase, and the other floR gene on the plasmid pG32-177 was with an ISCR2 insertion sequence. The cfr gene was located on the pG32-51 flanked by IS26 element and TnpA26. This study suggested that the mobile genetic elements played an important role in the replication of resistance genes and the horizontal resistance gene transfer.
Collapse
Affiliation(s)
- Peizhen Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Tingyuan Zhu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhewei Sun
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Ying
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Jianchao Ying
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| |
Collapse
|
10
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
11
|
Tassinari E, Duffy G, Bawn M, Burgess CM, McCabe EM, Lawlor PG, Gardiner G, Kingsley RA. Microevolution of antimicrobial resistance and biofilm formation of Salmonella Typhimurium during persistence on pig farms. Sci Rep 2019; 9:8832. [PMID: 31222015 PMCID: PMC6586642 DOI: 10.1038/s41598-019-45216-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Salmonella Typhimurium and its monophasic variant S. 4,[5],12:i:- are the dominant serotypes associated with pigs in many countries. We investigated their population structure on nine farms using whole genome sequencing, and their genotypic and phenotypic variation. The population structure revealed the presence of phylogenetically distinct clades consisting of closely related clones of S. Typhimurium or S. 4,[5],12:i:- on each pig farm, that persisted between production cycles. All the S. 4,[5],12:i:- strains carried the Salmonella genomic island-4 (SGI-4), which confers resistance to heavy metals, and half of the strains contained the mTmV prophage, harbouring the sopE virulence gene. Most clonal groups were highly drug resistant due to the presence of multiple antimicrobial resistance (AMR) genes, and two clades exhibited evidence of recent on-farm plasmid-mediated acquisition of additional AMR genes, including an IncHI2 plasmid. Biofilm formation was highly variable but had a strong phylogenetic signature. Strains capable of forming biofilm with the greatest biomass were from the S. 4,[5],12:i:- and S. Typhimurium DT104 clades, the two dominant pandemic clones found over the last 25 years. On-farm microevolution resulted in enhanced biofilm formation in subsequent production cycle.
Collapse
Affiliation(s)
- Eleonora Tassinari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland
| | - Geraldine Duffy
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Peadar G Lawlor
- Teagasc Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Gillian Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
12
|
Niemann L, Feudi C, Eichhorn I, Hanke D, Müller P, Brauns J, Nathaus R, Schäkel F, Höltig D, Wendt M, Kadlec K, Schwarz S. Plasmid-located dfrA14 gene in Pasteurella multocida isolates from three different pig-producing farms in Germany. Vet Microbiol 2019; 230:235-240. [PMID: 30827394 DOI: 10.1016/j.vetmic.2019.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/15/2022]
Abstract
Pasteurella multocida is an important respiratory tract pathogen in intensive livestock farming, especially in pigs. Antimicrobial agents are frequently used to combat infections caused by this pathogen. In a study on antimicrobial resistance among respiratory tract pathogens of pigs from 30 German pig-producing farms, P. multocida isolates (n = 9) with high minimal inhibitory concentration (MIC) values of 16/304 mg/L (n = 2), 32/608 mg/L (n = 3) or ≥64/1216 mg/L (n = 4) for trimethoprim/sulfamethoxazole (1:19) and of ≥512 mg/L (n = 9) for trimethoprim (TMP) were detected in three of these farms. The genetic relatedness of the isolates was investigated via capsule-specific PCR and macrorestriction analyses with ApaI and SmaI. Pulsed-field gel electrophoresis revealed indistinguishable restriction patterns per farm, with slight differences between the three farms. All isolates represented capsular type A. Four representative isolates, that were subjected to whole genome sequencing, shared the multi-locus sequence type (ST) 3. Their plasmids were transformed into E. coli TOP10 with subsequent selection on TMP-containing agar plates. Antimicrobial susceptibility testing and plasmid analysis of the transformants confirmed that they were resistant to sulfonamides and trimethoprim and carried only a single small plasmid. This plasmid was completely sequenced and revealed a size of 6050 bp. Sequence analyses identified the presence of a resistance gene cluster comprising the genes sul2-ΔstrA-dfrA14-ΔstrA-ΔstrB. Further analysis identified a dfrA14 gene cassette being integrated into the strA reading frame. Neither the gene dfrA14 nor this gene cluster have been detected before in P. multocida.
Collapse
Affiliation(s)
- Lisa Niemann
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Claudia Feudi
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Petra Müller
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasmin Brauns
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Franziska Schäkel
- Institute for Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Doris Höltig
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Guerra PR, Herrero-Fresno A, Ladero V, Redruello B, Dos Santos TP, Spiegelhauer MR, Jelsbak L, Olsen JE. Putrescine biosynthesis and export genes are essential for normal growth of avian pathogenic Escherichia coli. BMC Microbiol 2018; 18:226. [PMID: 30587122 PMCID: PMC6307189 DOI: 10.1186/s12866-018-1355-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the infectious agent of a wide variety of avian diseases, which causes substantial economic losses to the poultry industry worldwide. Polyamines contribute to the optimal synthesis of nucleic acids and proteins in bacteria. The objectives of this study were to investigate; i) whether APEC E. coli encodes the same systems for biosynthesis and uptake as described for E. coli K12 and ii) the role of polyamines during in vitro growth of an avian pathogenic E. coli strain (WT-ST117- O83:H4T). RESULTS Following whole genome sequencing, polyamine biosynthesis and export genes present in E. coli MG1655 (K-12) were found to be identical in WT-ST117. Defined mutants were constructed in putrescine and spermidine biosynthesis pathways (ΔspeB, ΔspeC, ΔspeF, ΔspeB/C and ΔspeD/E), and in polyamines transport systems (ΔpotE, ΔyeeF, ΔpotABCD and ΔpotFGHI). Contrary to what was observed for MG1655, the ΔpotE-ST117 mutant was growth attenuated, regardless of putrescine supplementation. The addition of spermidine or orthinine restored the growth to the level of WT-ST117. Growth attenuation after induction of membrane stress by SDS suggested that PotE is involved in protection against this stress. The ΔspeB/C-ST117 mutant was also growth attenuated in minimal medium. The addition of putrescine or spermidine to the media restored growth rate to the wild type level. The remaining biosynthesis and transport mutants showed a growth similar to that of WT-ST117. Analysis by Ultra-High Performance Liquid Chromatography revealed that the ΔspeB/C mutant was putrescine-deficient, despite that the gene speF, which is also involved in the synthesis of putrescine, was expressed. CONCLUSIONS Deletion of the putrescine transport system, PotE, or the putrescine biosynthesis pathway genes speB/C affected in vitro growth of APEC (ST117- O83:H4) strain, but not E. coli MG1655, despite the high similarity of the genetic make-up of biosynthesis and transport genes. Therefore, blocking these metabolic reactions may be a suitable way to prevent APEC growth in the host without disturbing the commensal E. coli population.
Collapse
Affiliation(s)
- Priscila R Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Begoña Redruello
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Teresa Pires Dos Santos
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Malene R Spiegelhauer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Andersen-Civil AIS, Ahmed S, Guerra PR, Andersen TE, Hounmanou YMG, Olsen JE, Herrero-Fresno A. The impact of inactivation of the purine biosynthesis genes, purN and purT, on growth and virulence in uropathogenic E. coli. Mol Biol Rep 2018; 45:2707-2716. [PMID: 30377949 DOI: 10.1007/s11033-018-4441-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
De novo synthesis of purines has been suggested to be an important factor for the pathogenesis of uropathogenic E. coli (UPEC). We analyzed the role of the redundant purine biosynthesis genes purN and purT, responsible for the third step in the purine biosynthesis, during UPEC infection. Growth experiments in M9 (minimal media), MOPS (rich media), filtered urine, and human serum with E. coli UTI89 and ΔpurN, ΔpurT, and ΔpurN/T mutants revealed that UPEC relies on de novo purine synthesis for growth in minimal medium. Mutants in individual genes as well as the double mutant grew equally well as the wild type in urine, rich media, and serum. However, during competition for growth in urine, the wild type UTI89 strain significantly outcompeted the purine auxotrophic ΔpurN/T mutant from late exponential growth phase. Inactivation of purN and/or purT significantly affected UPEC invasion of human bladder cells, but not the intracellular survival. Cytotoxicity levels to bladder cells were also diminished when both purN and purT were deleted, while single gene mutants did not differ from the wild type. When infecting human macrophages, no differences were observed between UTI89 and mutants in uptake, survival or cytotoxicity. Finally, the lack of the pur-gene(s), whether analysed as single or double gene knock-out, did not affect recovery rates after in vivo infection in a mouse model of UTI. These findings suggest that de novo synthesis of purines might be required only when UPEC is fully deprived of nucleotides and when grown in competition with other microorganisms in urine.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Priscila Regina Guerra
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
15
|
Li Y, da Silva GC, Li Y, Rossi CC, Fernandez Crespo R, Williamson SM, Langford PR, Bazzolli DMS, Bossé JT. Evidence of Illegitimate Recombination Between Two Pasteurellaceae Plasmids Resulting in a Novel Multi-Resistance Replicon, pM3362MDR, in Actinobacillus pleuropneumoniae. Front Microbiol 2018; 9:2489. [PMID: 30405558 PMCID: PMC6206304 DOI: 10.3389/fmicb.2018.02489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence of plasmids carrying the tetracycline resistance gene, tet(B), was found in the previously reported whole genome sequences of 14 United Kingdom, and 4 Brazilian, isolates of Actinobacillus pleuropneumoniae. Isolation and sequencing of selected plasmids, combined with comparative sequence analysis, indicated that the four Brazilian isolates all harbor plasmids that are nearly identical to pB1001, a plasmid previously found in Pasteurella multocida isolates from Spain. Of the United Kingdom isolates, 13/14 harbor plasmids that are (almost) identical to pTetHS016 from Haemophilus parasuis. The remaining United Kingdom isolate, MIDG3362, harbors a 12666 bp plasmid that shares extensive regions of similarity with pOV from P. multocida (which carries blaROB-1 , sul2, and strAB genes), as well as with pTetHS016. The newly identified multi-resistance plasmid, pM3362MDR, appears to have arisen through illegitimate recombination of pTetHS016 into the stop codon of the truncated strB gene in a pOV-like plasmid. All of the tet(B)-carrying plasmids studied were capable of replicating in Escherichia coli, and predicted origins of replication were identified. A putative origin of transfer (oriT) sequence with similar secondary structure and a nic-site almost identical to that of RP4 was also identified in these plasmids, however, attempts to mobilize them from an RP4-encoding E. coli donor strain were not successful, indicating that specific conjugation machinery may be required.
Collapse
Affiliation(s)
- Yinghui Li
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ciro C Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Li Y, Li Y, Fernandez Crespo R, Leanse LG, Langford PR, Bossé JT. Characterization of the Actinobacillus pleuropneumoniae SXT-related integrative and conjugative element ICEApl2 and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux. J Antimicrob Chemother 2018; 73:57-65. [PMID: 29029160 PMCID: PMC5890775 DOI: 10.1093/jac/dkx342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives To characterize ICEApl2, an SXT-related integrative and conjugative element (ICE) found in a clinical isolate of the porcine pathogen Actinobacillus pleuropneumoniae, and analyse the functional nature of the encoded FloR. Methods ICEApl2 was identified in the genome of A. pleuropneumoniae MIDG3553. Functional analysis was done using conjugal transfer experiments. MIDG3553 was tested for susceptibility to the antimicrobials for which resistance genes are present in ICEApl2. Lack of florfenicol/chloramphenicol resistance conferred by the encoded FloR protein was investigated by cloning and site-directed mutagenesis experiments in Escherichia coli. Results ICEApl2 is 92660 bp and contains 89 genes. Comparative sequence analysis indicated that ICEApl2 is a member of the SXT/R391 ICE family. Conjugation experiments showed that, although ICEApl2 is capable of excision from the chromosome, it is not self-transmissible. ICEApl2 encodes the antimicrobial resistance genes floR, strAB, sul2 and dfrA1, and MIDG3553 is resistant to streptomycin, sulfisoxazole and trimethoprim, but not florfenicol or chloramphenicol. Cloning and site-directed mutagenesis of the floR gene revealed the importance of the nature of the hydrophobic amino acid residues at positions 160 and 228 in FloR for determining resistance to florfenicol and chloramphenicol. Conclusions Our results indicate that the nature of hydrophobic residues at positions 160 and 228 of FloR contribute dynamically to specific efflux of florfenicol and chloramphenicol, although some differences in resistance levels may depend on the bacterial host species. This is also, to our knowledge, the first description of an SXT/R391 ICE in A. pleuropneumoniae or any member of the Pasteurellaceae.
Collapse
Affiliation(s)
- Yinghui Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London, UK.,Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Roberto Fernandez Crespo
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Leon G Leanse
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London, UK
| |
Collapse
|
17
|
Michael GB, Bossé JT, Schwarz S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0022-2017. [PMID: 29916344 PMCID: PMC11633590 DOI: 10.1128/microbiolspec.arba-0022-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
Affiliation(s)
- Geovana B Michael
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| | - Janine T Bossé
- Section of Pediatrics, Department of Medicine London, Imperial College London, London W2 1PG, United Kingdom
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| |
Collapse
|
18
|
Bossé JT, Li Y, Sárközi R, Fodor L, Lacouture S, Gottschalk M, Casas Amoribieta M, Angen Ø, Nedbalcova K, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol 2018; 217:1-6. [PMID: 29615241 PMCID: PMC5901230 DOI: 10.1016/j.vetmic.2018.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 11/30/2022]
Abstract
Identification of two new serovars of Actinobacillus pleuropneumoniae. Serological confirmation of specific reactivity with homologous antisera. Characterization of the capsule loci of serovars 17 and 18. Development of PCRs for molecular diagnostics.
The aim of this study was to investigate isolates of Actinobacillus pleuropneumoniae previously designated serologically either as non-typable (NT) or as ‘K2:07’, which did not produce serovar-specific amplicons in PCR assays. We used whole genome sequencing to identify the capsule (CPS) loci of six previously designated biovar 1 NT and two biovar 1 ‘K2:O7’ isolates of A. pleuropneumoniae from Denmark, as well as a recent biovar 2 NT isolate from Canada. All of the NT isolates have the same six-gene type I CPS locus, sharing common cpsABC genes with serovars 2, 3, 6, 7, 8, 9, 11 and 13. The two ‘K2:O7’ isolates contain a unique three-gene type II CPS locus, having a cpsA gene similar to that of serovars 1, 4, 12, 14 and 15. The previously NT isolates share the same O-antigen genes, found between erpA and rpsU, as serovars 3, 6, 8, and 15. Whereas the ‘K2:O7’ isolates, have the same O-antigen genes as serovar 7, which likely contributed to their previous mis-identification. All of the NT and ‘K2:O7’ isolates have only the genes required for production of ApxII (apxIICA structural genes, and apxIBD export genes). Rabbit polyclonal antisera raised against representative isolates with these new CPS loci demonstrated distinct reactivity compared to the 16 known serovars. The serological and genomic results indicate that the isolates constitute new serovars 17 (previously NT) and 18 (previously ‘K2:O7’). Primers designed for amplification of specific serovar 17 and 18 sequences for molecular diagnostics will facilitate epidemiological tracking of these two new serovars of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, UK.
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, UK
| | - Rita Sárközi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | | | - Øystein Angen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, UK
| | | |
Collapse
|
19
|
Antenucci F, Fougeroux C, Bossé JT, Magnowska Z, Roesch C, Langford P, Holst PJ, Bojesen AM. Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae. Vet Res 2017; 48:74. [PMID: 29122004 PMCID: PMC5679336 DOI: 10.1186/s13567-017-0479-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022] Open
Abstract
Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A. pleuropneumoniae immunogens. Potential immunogens were identified in the complete genomes of three A. pleuropneumoniae strains belonging to different serovars using the following parameters: predicted outer-membrane subcellular localization; ≤ 1 trans-membrane helices; presence of a signal peptide in the protein sequence; presence in all known A. pleuropneumoniae genomes; homology with other well characterized factors with relevant data regarding immunogenicity/protective potential. Using this approach, we selected the proteins ApfA and VacJ to be expressed and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that ApfA and VacJ are highly conserved proteins, naturally expressed during infection by all A. pleuropneumoniae serovars tested. Furthermore, OMVs, ApfA and VacJ were shown to possess a high immunogenic potential in vitro. These findings favour the immunogen selection protocol used, and suggest that OMVs, along with ApfA and VacJ, could represent effective immunogens for the prevention of A. pleuropneumoniae infections in a serovar-independent manner. This hypothesis is nonetheless predictive in nature, and in vivo testing in a relevant animal model will be necessary to verify its validity.
Collapse
Affiliation(s)
- Fabio Antenucci
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, København K, 1014, Copenhagen, Denmark
| | - Janine T Bossé
- Department of Medicine, St Mary's Campus, Imperial College London, 236 Wright Fleming Wing, London, UK
| | - Zofia Magnowska
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark
| | - Camille Roesch
- Izon Science Ltd, Bâtiment Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Paul Langford
- Department of Medicine, St Mary's Campus, Imperial College London, 236 Wright Fleming Wing, London, UK
| | - Peter Johannes Holst
- Department of International Health, Immunology and Microbiology ISIM, University of Copenhagen, Øster Farigmagsgade 5, Bldg 22/23, København K, 1014, Copenhagen, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frb. C., 1-20, Building: 301, Copenhagen, Denmark.
| |
Collapse
|
20
|
Wang L, Zhao X, Zhu C, Xia X, Qin W, Li M, Wang T, Chen S, Xu Y, Hang B, Sun Y, Jiang J, Richard LP, Lei L, Zhang G, Hu J. Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Vet Microbiol 2017; 203:202-210. [PMID: 28619145 DOI: 10.1016/j.vetmic.2017.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of the highly contagious and deadly respiratory infection porcine pleuropneumonia, resulting in serious losses to the pig industry worldwide. Alternative to antibiotics are urgently needed due to the serious increase in antimicrobial resistance. Thymol is a monoterpene phenol and efficiently kills a variety of bacteria. This study found that thymol has strong bactericidal effects on the A. pleuropneumoniae 5b serotype strain, an epidemic strain in China. Sterilization occurred rapidly, and the minimum inhibitory concentration (MIC) is 31.25μg/mL; the A. pleuropneumoniae density was reduced 1000 times within 10min following treatment with 1 MIC. Transmission electron microscopy (TEM) analysis revealed that thymol could rapidly disrupt the cell walls and cell membranes of A. pleuropneumoniae, causing leakage of cell contents and cell death. In addition, treatment with thymol at 0.5 MIC significantly reduced the biofilm formation of A. pleuropneumoniae. Quantitative RT-PCR results indicated that thymol treatment significantly increased the expression of the virulence genes purC, tbpB1 and clpP and down-regulated ApxI, ApxII and Apa1 expression in A. pleuropneumoniae. Therapeutic analysis of a murine model showed that thymol (20mg/kg) protected mice from a lethal dose of A. pleuropneumoniae, attenuated lung pathological lesions. This study is the first to report the use of thymol to treat A. pleuropneumoniae infection, establishing a foundation for the development of new antimicrobials.
Collapse
Affiliation(s)
- Lei Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R.China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaojing Xia
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanhai Qin
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongzhao Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanzhao Xu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | | | - Liancheng Lei
- College of Veterinary Medicine, JiLin University, Changchun, P. R. China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R.China.
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
21
|
Bossé JT, Li Y, Rogers J, Fernandez Crespo R, Li Y, Chaudhuri RR, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Front Microbiol 2017; 8:311. [PMID: 28321207 PMCID: PMC5337627 DOI: 10.3389/fmicb.2017.00311] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to evaluate the correlation between antimicrobial resistance (AMR) profiles of 96 clinical isolates of Actinobacillus pleuropneumoniae, an important porcine respiratory pathogen, and the identification of AMR genes in whole genome sequence (wgs) data. Susceptibility of the isolates to nine antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, sulfisoxazole, tetracycline, tilmicosin, trimethoprim, and tylosin) was determined by agar dilution susceptibility test. Except for the macrolides tested, elevated MICs were highly correlated to the presence of AMR genes identified in wgs data using ResFinder or BLASTn. Of the isolates tested, 57% were resistant to tetracycline [MIC ≥ 4 mg/L; 94.8% with either tet(B) or tet(H)]; 48% to sulfisoxazole (MIC ≥ 256 mg/L or DD = 6; 100% with sul2), 20% to ampicillin (MIC ≥ 4 mg/L; 100% with blaROB-1), 17% to trimethoprim (MIC ≥ 32 mg/L; 100% with dfrA14), and 6% to enrofloxacin (MIC ≥ 0.25 mg/L; 100% with GyrAS83F). Only 33% of the isolates did not have detectable AMR genes, and were sensitive by MICs for the antimicrobial agents tested. Although 23 isolates had MIC ≥ 32 mg/L for tylosin, all isolates had MIC ≤ 16 mg/L for both erythromycin and tilmicosin, and no macrolide resistance genes or known point mutations were detected. Other than the GyrAS83F mutation, the AMR genes detected were mapped to potential plasmids. In addition to presence on plasmid(s), the tet(B) gene was also found chromosomally either as part of a 56 kb integrative conjugative element (ICEApl1) in 21, or as part of a Tn7 insertion in 15 isolates. Our results indicate that, with the exception of macrolides, wgs data can be used to accurately predict resistance of A. pleuropneumoniae to the tested antimicrobial agents and provides added value for routine surveillance.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Jon Rogers
- Animal and Plant Health Agency Bury St Edmunds, UK
| | | | - Yinghui Li
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | | | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College Hatfield, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| |
Collapse
|
22
|
Xie F, Li G, Zhou L, Zhang Y, Cui N, Liu S, Wang C. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge. BMC Vet Res 2017; 13:14. [PMID: 28061786 PMCID: PMC5219649 DOI: 10.1186/s12917-016-0928-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which leads to large economic losses to the swine industry worldwide. In this study, S-8△clpP△apxIIC, a double-deletion mutant of A. pleuropneumoniae was constructed, and its safety and protective efficacy were evaluated in pigs. Results The S-8△clpP△apxIIC mutant exhibited attenuated virulence in a murine (BALB/c) model, and caused no detrimental effects on pigs even at a dose of up to 1.0 × 109 CFU. Furthermore, the S-8△clpP△apxIIC mutant was able to induce a strong immune response in pigs, which included high levels of IgG1 and IgG2, stimulated gamma interferon (IFN-γ), interleukin 12 (IL-12), and interleukin 4 (IL-4) production, and conferred effective protection against the lethal challenge with A. pleuropneumoniae serovars 7 or 5a. The pigs in the S-8△clpP△apxIIC immunized groups have no lesions and reduced bacterial loads in the lung tissue after challenge. Conclusions The data obtained in this study suggest that the S-8△clpP△apxIIC mutant can serve as a highly immunogenic and potential live attenuated vaccine candidate against A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Ning Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
23
|
Li Y, Cao S, Zhang L, Lau GW, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Huang Y, Wen X. A TolC-Like Protein of Actinobacillus pleuropneumoniae Is Involved in Antibiotic Resistance and Biofilm Formation. Front Microbiol 2016; 7:1618. [PMID: 27822201 PMCID: PMC5075564 DOI: 10.3389/fmicb.2016.01618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumonia, a significant disease that causes serious economic losses to the swine industry worldwide. Persistent infections caused by bacterial biofilms are recalcitrant to treat because of the particular drug resistance of biofilm-dwelling cells. TolC, a key component of multidrug efflux pumps, are responsible for multidrug resistance (MDR) in many Gram-negative bacteria. In this study, we identified two TolC-like proteins, TolC1 and TolC2, in A. pleuropneumoniae. Deletion of tolC1, but not tolC2, caused a significant reduction in biofilm formation, as well as increased drug sensitivity of both planktonic and biofilm cells. The genetic-complementation of the tolC1 mutation restored the competent biofilm and drug resistance. Besides, biofilm formation was inhibited and drug sensitivity was increased by the addition of phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux pump inhibitor (EPI), suggesting a role for EPI in antibacterial strategies toward drug tolerance of A. pleuropneumoniae. Taken together, TolC1 is required for biofilm formation and is a part of the MDR machinery of both planktonic and biofilm cells, which could supplement therapeutic strategies for resistant bacteria and biofilm-related infections of A. pleuropneumoniae clinical isolate SC1516.
Collapse
Affiliation(s)
- Ying Li
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Luhua Zhang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Department of Pathobiology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| |
Collapse
|
24
|
Dayao DAE, Seddon JM, Gibson JS, Blackall PJ, Turni C. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides. Microb Drug Resist 2016; 22:531-537. [DOI: 10.1089/mdr.2015.0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Jennifer M. Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Justine S. Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Patrick J. Blackall
- Queensland Alliance for Agriculture and Food Innovation, EcoSciences Precinct, The University of Queensland, Dutton Park, Queensland, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, EcoSciences Precinct, The University of Queensland, Dutton Park, Queensland, Australia
| |
Collapse
|
25
|
Schwarz S, Enne VI, van Duijkeren E. 40 years of veterinary papers inJAC– what have we learnt? J Antimicrob Chemother 2016; 71:2681-90. [DOI: 10.1093/jac/dkw363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
26
|
Miranda A, Ávila B, Díaz P, Rivas L, Bravo K, Astudillo J, Bueno C, Ulloa MT, Hermosilla G, Del Canto F, Salazar JC, Toro CS. Emergence of Plasmid-Borne dfrA14 Trimethoprim Resistance Gene in Shigella sonnei. Front Cell Infect Microbiol 2016; 6:77. [PMID: 27489797 PMCID: PMC4951496 DOI: 10.3389/fcimb.2016.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022] Open
Abstract
The most common mechanism of trimethoprim (TMP)-resistance is the acquisition of dihydrofolate reductase enzyme resistant to this drug. Previous molecular characterization of TMP-genes resistance in Chilean isolates of Shigella sonnei searching for dfrA1 and dfrA8, showed solely the presence of dfrA8 (formerly dhfrIIIc). However, these genetic markers were absent in S. sonnei strains further isolated during an outbreak in 2009. To identify the TMP-resistance gene in these strains, a genomic DNA library from a TMP-resistant (TMPR) S. sonnei representative strain for the outbreak was used to clone, select and identify a TMP-resistance marker. The TMPR clone was sequenced by primer walking, identifying the presence of the dfrA14 gene in the sul2-strA'-dfrA14-‘strA-strB gene arrangement, harbored in a native 6779-bp plasmid. The same plasmid was isolated by transforming with a ~4.2 MDa plasmid extracted from several TMPRS. sonnei strains into Escherichia coli. This plasmid, named pABC-3, was present only in dfrA14-positive strains and was homologous to a previously described pCERC-1, but different due to the absence of an 11-bp repetitive unit. The distribution of dfrA1, dfrA8, and dfrA14 TMP-resistance genes was determined in 126 TMPRS. sonnei isolates. Most of the strains (96%) carried only one of the three TMP-resistance genes assessed. Thus, all strains obtained during the 2009-outbreak harbored only dfrA14, whereas, dfrA8 was the most abundant gene marker before outbreak and, after the outbreak dfrA1 seems have appeared in circulating strains. According to PFGE, dfrA14-positive strains were clustered in a genetically related group including some dfrA1- and dfrA8-positive strains; meanwhile other genetic group included most of the dfrA8-positive strains. This distribution also correlated with the isolation period, showing a dynamics of trimethoprim genetic markers prevalent in Chilean S. sonnei strains. To our knowledge, dfrA14 gene associated to a small non-conjugative plasmid was detected for the first time in Shigella. Apparently, the strain causing the outbreak must have been introduced, changing drastically the genetic distribution of trimethoprim resistance in Chilean S. sonnei strains.
Collapse
Affiliation(s)
- Alfonso Miranda
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Bárbara Ávila
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Patricia Díaz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Lina Rivas
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Karen Bravo
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Javier Astudillo
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Constanza Bueno
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - María T Ulloa
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Germán Hermosilla
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Juan C Salazar
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Cecilia S Toro
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| |
Collapse
|
27
|
Bossé JT, Li Y, Fernandez Crespo R, Chaudhuri RR, Rogers J, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. ICEApl1, an Integrative Conjugative Element Related to ICEHin1056, Identified in the Pig Pathogen Actinobacillus pleuropneumoniae. Front Microbiol 2016; 7:810. [PMID: 27379024 PMCID: PMC4908127 DOI: 10.3389/fmicb.2016.00810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
ICEApl1 was identified in the whole genome sequence of MIDG2331, a tetracycline-resistant (MIC = 8 mg/L) serovar 8 clinical isolate of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. PCR amplification of virB4, one of the core genes involved in conjugation, was used to identify other A. pleuropneumoniae isolates potentially carrying ICEApl1. MICs for tetracycline were determined for virB4 positive isolates, and shotgun whole genome sequence analysis was used to confirm presence of the complete ICEApl1. The sequence of ICEApl1 is 56083 bp long and contains 67 genes including a Tn10 element encoding tetracycline resistance. Comparative sequence analysis was performed with similar integrative conjugative elements (ICEs) found in other members of the Pasteurellaceae. ICEApl1 is most similar to the 59393 bp ICEHin1056, from Haemophilus influenzae strain 1056. Although initially identified only in serovar 8 isolates of A. pleuropneumoniae (31 from the UK and 1 from Cyprus), conjugal transfer of ICEApl1 to representative isolates of other serovars was confirmed. All isolates carrying ICEApl1 had a MIC for tetracycline of 8 mg/L. This is, to our knowledge, the first description of an ICE in A. pleuropneumoniae, and the first report of a member of the ICEHin1056 subfamily in a non-human pathogen. ICEApl1 confers resistance to tetracycline, currently one of the more commonly used antibiotics for treatment and control of porcine pleuropneumonia.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | | | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Jon Rogers
- Animal and Plant Health Agency Bury St Edmunds Suffolk, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College Hatfield, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | | |
Collapse
|
28
|
Complete Genome Sequence of MIDG2331, a Genetically Tractable Serovar 8 Clinical Isolate of Actinobacillus pleuropneumoniae. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01667-15. [PMID: 26823596 PMCID: PMC4732349 DOI: 10.1128/genomea.01667-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report here the complete annotated genome sequence of a clinical serovar 8 isolate Actinobacillus pleuropneumoniae MIDG2331. Unlike the serovar 8 reference strain 405, MIDG2331 is amenable to genetic manipulation via natural transformation as well as conjugation, making it ideal for studies of gene function.
Collapse
|
29
|
Bossé JT, Li Y, Atherton TG, Walker S, Williamson SM, Rogers J, Chaudhuri RR, Weinert LA, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Vet Microbiol 2015; 178:279-82. [PMID: 26049592 PMCID: PMC4503812 DOI: 10.1016/j.vetmic.2015.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/02/2022]
Abstract
First complete sequence of a floR plasmid from Actinobacillus pleuropneumoniae Extended similarity to floR plasmids in other Pasteurellaceae species Conjugal transfer between between species confirmed
The complete nucleotide sequence of a 7.7 kb mobilisable plasmid (pM3446F), isolated from a florfenicol resistant isolate of Actinobacillus pleuropneumoniae, showed extended similarity to plasmids found in other members of the Pasteurellaceae containing the floR gene as well as replication and mobilisation genes. Mobilisation into other Pasteurellaceae species confirmed that this plasmid can be transferred horizontally.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Tom G Atherton
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Stephanie Walker
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Susanna M Williamson
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK
| | - Jon Rogers
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | | |
Collapse
|