1
|
Bokolia NP, Bag K, Sarkar B, Jhawar R, Chatterji D, Jayaraman N, Ghosh A. A novel C-4-modified isotetrone acts as a potent bio-enhancer to augment the activities of anti-tuberculosis drugs against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2024; 149:102569. [PMID: 39357126 DOI: 10.1016/j.tube.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Mycobacterium tuberculosis is a deadly pathogen that claims millions of lives every year. Current research focuses on finding new anti-tuberculosis drugs that are safe and effective, with lesser side effects and toxicity. One important approach is to identify bio-enhancers that can improve the effectiveness of anti-tuberculosis drugs, resulting in reduced doses and shortened treatment times. The present study investigates the use of C-4 modified isotetrones as bio-enhancers. A series of studies suggest an isotetrone, labeled as C11, inhibits growth, improves MIC, MBC and enhances the killing of M. tuberculosis H37Rv strain when used in combination with the first line and injectable anti-TB drugs in a dose-dependent manner. The combination of C11 and rifampicin also reduces the generation of spontaneous mutants against rifampicin and reaches a mutation prevention concentration (MPC) with moderate rifampicin concentrations. The identified compounds are effective against the MDR strain of M. tuberculosis and non-cytotoxic in HepG2 cells. We find that C11 induces the generation of reactive oxygen species (ROS) inside macrophages and within bacteria, resulting in better efficacy.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Kingshuk Bag
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Biplab Sarkar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Ruchi Jhawar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
2
|
Lanni A, Borroni E, Iacobino A, Russo C, Gentile L, Fattorini L, Giannoni F. Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms 2022; 10:microorganisms10071421. [PMID: 35889140 PMCID: PMC9316547 DOI: 10.3390/microorganisms10071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by Mycobacterium abscessus (Mab), an environmental non-tuberculous mycobacterium, are difficult to eradicate from patients with pulmonary diseases such as cystic fibrosis and bronchiectasis even after years of antibiotic treatments. In these people, the low oxygen pressure in mucus and biofilm may restrict Mab growth from actively replicating aerobic (A) to non-replicating hypoxic (H) stages, which are known to be extremely drug-tolerant. After the exposure of Mab A and H cells to drugs, killing was monitored by measuring colony-forming units (CFU) and regrowth in liquid medium (MGIT 960) of 1-day-old A cells (A1) and 5-day-old H cells (H5). Mab killing was defined as a lack of regrowth of drug-exposed cells in MGIT tubes after >50 days of incubation. Out of 18 drugs tested, 14-day treatments with bedaquiline-amikacin (BDQ-AMK)-containing three-drug combinations were very active against A1 + H5 cells. However, drug-tolerant cells (persisters) were not killed, as shown by CFU curves with typical bimodal trends. Instead, 56-day treatments with the nitrocompounds containing combinations BDQ-AMK-rifabutin-clarithromycin-nimorazole and BDQ-AMK-rifabutin-clarithromycin-metronidazole-colistin killed all A1 + H5 Mab cells in 42 and 56 days, respectively, as shown by lack of regrowth in agar and MGIT medium. Overall, these data indicated that Mab persisters may be killed by appropriate drug combinations.
Collapse
Affiliation(s)
- Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Cristina Russo
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Leonarda Gentile
- Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.R.); (L.G.)
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
- Correspondence: ; Tel.: +39-06-49902318; Fax: +39-06-49387112
| |
Collapse
|
3
|
Potentiating the Anti-Tuberculosis Efficacy of Peptide Nucleic Acids through Combinations with Permeabilizing Drugs. Microbiol Spectr 2022; 10:e0126221. [PMID: 35171048 PMCID: PMC8849056 DOI: 10.1128/spectrum.01262-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The emergence of antimicrobial resistance warrants for the development of improved treatment approaches. In this regard, peptide nucleic acids (PNAs) have shown great promise, exhibiting antibiotic properties through the targeting of cellular nucleic acids. We aimed to study the efficacy of PNA as an anti-tuberculosis agent. Since the efficacy of PNA is limited by its low penetration into the cell, we also investigated combinatorial treatments using permeabilizing drugs to improve PNA efficacy. Various concentrations of anti-inhA PNA, permeabilizing drugs, and their combinations were screened against extracellular and intracellular mycobacteria.0.625 to 5 μM anti-inhA PNA was observed to merely inhibit the growth of extracellular M. smegmatis, while low intracellular bacterial load was reduced by 2 or 2.5 log-fold when treated with 2.5 or 5 μM PNA, respectively. Anti-inhA PNA against M. tuberculosis H37Ra exhibited bactericidal properties at 2.5 and 5 μM and enabled a slight reduction in intracellular M. tuberculosis at concentrations from 2.5 to 20 μM. Of the permeabilizing drugs tested, ethambutol showed the most permeabilizing potential and ultimately potentiated anti-inhA PNA to the greatest extent, reducing its efficacious concentration to 1.25 μM against both M. smegmatis and M. tuberculosis. Furthermore, an enhanced clearance of 1.3 log-fold was observed for ethambutol-anti-inhA PNA combinations against intracellular M. tuberculosis. Thus, permeabilizing drug-PNA combinations indeed exhibit improved efficacies. We therefore propose that anti-inhA PNA could improve therapy even when applied in minute doses as an addition to the current anti-tuberculosis drug regimen. IMPORTANCE Peptide nucleic acids have great potential in therapeutics as anti-gene/anti-sense agents. However, their limited uptake in cells has curtailed their widespread application. Through this study, we explore a PNA-drug combinatorial strategy to improve the efficacy of PNAs and reduce their effective concentrations. This work also focuses on improving tuberculosis treatment, which is hindered by the emergence of antimicrobial-resistant strains of Mycobacterium tuberculosis. It is observed that the antibacterial efficacy of anti-inhA PNA is enhanced when it is combined with permeabilizing drugs, particularly ethambutol. This indicates that the addition of even small concentrations of anti-inhA PNA to the current TB regimen could potentiate their therapeutic efficiency. We hypothesize that this system would also overcome isoniazid resistance, since the resistance mutations lie outside the designed anti-inhA PNA target site.
Collapse
|
4
|
Delineation of the molecular mechanisms underlying Colistin-mediated toxicity using metabolomic and transcriptomic analyses. Toxicol Appl Pharmacol 2022; 439:115928. [DOI: 10.1016/j.taap.2022.115928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
5
|
Higher Dosing of Rifamycins Does Not Increase Activity against Mycobacterium tuberculosis in the Hollow-Fiber Infection Model. Antimicrob Agents Chemother 2021; 65:AAC.02255-20. [PMID: 33558283 DOI: 10.1128/aac.02255-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
Improvements in the translational value of preclinical models can allow more-successful and more-focused research on shortening the duration of tuberculosis treatment. Although the hollow-fiber infection model (HFIM) is considered a valuable addition to the drug development pipeline, its exact role has not been fully determined yet. Since the strategy of increasing the dose of rifamycins is being evaluated for its treatment-shortening potential, additional in vitro modeling is important. Therefore, we assessed increased dosing of rifampin and rifapentine in our HFIM in order to gain more insight into the place of the HFIM in the drug development pipeline. Total and free-fraction concentrations corresponding to daily dosing of 2.7, 10, and 50 mg of rifampin/kg of body weight, as well as 600 mg and 1,500 mg rifapentine, were assessed in our HFIM using the Mycobacterium tuberculosis H37Rv strain. Drug activity and the emergence of drug resistance were assessed by CFU counting and subsequent mathematical modeling over 14 days, and pharmacokinetic exposures were checked. We found that increasing rifampin exposure above what is expected with the standard dose did not result in higher antimycobacterial activity. For rifapentine, only the highest concentration showed increased activity, but the clinical relevance of this observation is questionable. Moreover, for both drugs, the emergence of resistance was unrelated to exposure. In conclusion, in the simplest experimental setup, the results of the HFIM did not fully correspond to preexisting clinical data. The inclusion of additional parameters and readouts in this preclinical model could be of interest for proper assessment of the translational value of the HFIM.
Collapse
|
6
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
7
|
Advanced Quantification Methods To Improve the 18b Dormancy Model for Assessing the Activity of Tuberculosis Drugs In Vitro. Antimicrob Agents Chemother 2020; 64:AAC.00280-20. [PMID: 32340993 DOI: 10.1128/aac.00280-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
One of the reasons for the lengthy tuberculosis (TB) treatment is the difficulty to treat the nonmultiplying mycobacterial subpopulation. In order to assess the ability of (new) TB drugs to target this subpopulation, we need to incorporate dormancy models in our preclinical drug development pipeline. In most available dormancy models, it takes a long time to create a dormant state, and it is difficult to identify and quantify this nonmultiplying condition. The Mycobacterium tuberculosis 18b strain might overcome some of these problems, because it is dependent on streptomycin for growth and becomes nonmultiplying after 10 days of streptomycin starvation but still can be cultured on streptomycin-supplemented culture plates. We developed our 18b dormancy time-kill kinetics model to assess the difference in the activity of isoniazid, rifampin, moxifloxacin, and bedaquiline against log-phase growth compared to the nonmultiplying M. tuberculosis subpopulation by CFU counting, including a novel area under the curve (AUC)-based approach as well as time-to-positivity (TTP) measurements. We observed that isoniazid and moxifloxacin were relatively more potent against replicating bacteria, while rifampin and high-dose bedaquiline were equally effective against both subpopulations. Moreover, the TTP data suggest that including a liquid culture-based method could be of additional value, as it identifies a specific mycobacterial subpopulation that is nonculturable on solid media. In conclusion, the results of our study underline that the time-kill kinetics 18b dormancy model in its current form is a useful tool to assess TB drug potency and thus has its place in the TB drug development pipeline.
Collapse
|
8
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
9
|
Abouhmad A, Korany AH, Grey C, Dishisha T, Hatti-Kaul R. Exploring the Enzymatic and Antibacterial Activities of Novel Mycobacteriophage Lysin B Enzymes. Int J Mol Sci 2020; 21:ijms21093176. [PMID: 32365915 PMCID: PMC7246905 DOI: 10.3390/ijms21093176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
Mycobacteriophages possess different sets of lytic enzymes for disruption of the complex cell envelope of the mycobacteria host cells and release of the viral progeny. Lysin B (LysB) enzymes are mycolylarabinogalactan esterases that cleave the ester bond between the arabinogalactan and mycolic acids in the mycolylarabinogalactan-peptidoglycan (mAGP) complex in the cell envelope of mycobacteria. In the present study, four LysB enzymes were produced recombinantly and characterized with respect to their enzymatic and antibacterial activities. Examination of the kinetic parameters for the hydrolysis of para-nitrophenyl ester substrates, shows LysB-His6 enzymes to be active against a range of substrates (C4–C16), with a catalytic preference towards p-nitrophenyl laurate (C12). With p-nitrophenyl butyrate as substrate, LysB-His6 enzymes showed highest activity at 37 °C. LysB-His6 enzymes also hydrolyzed different Tween substrates with highest activity against Tween 20 and 80. Metal ions like Ca2+ and Mn2+ enhanced the enzymatic activity of LysB-His6 enzymes, while transition metal ions like Zn2+ and Cu2+ inhibited the enzymatic activity. The mycolylarabinogalactan esterase activity of LysB-His6 enzymes against mAGP complex was confirmed by LC-MS. LysB-His6 enzymes showed marginal antibacterial activity when tested alone against Mycobacterium smegmatis, however a synergetic activity was noticed when combined with outer membrane permealizers. These results confirm that LysB enzymes are lipolytic enzymes with potential application as antimycobacterials.
Collapse
Affiliation(s)
- Adel Abouhmad
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; (A.A.); (C.G.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed H. Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Carl Grey
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; (A.A.); (C.G.)
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; (A.A.); (C.G.)
- Correspondence: ; Tel.: +46-462-224-840
| |
Collapse
|
10
|
Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl Microbiol Biotechnol 2020; 104:3771-3780. [PMID: 32157424 DOI: 10.1007/s00253-020-10525-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection.
Collapse
|
11
|
Santos NCDS, Scodro RBDL, Sampiron EG, Ieque AL, Carvalho HCD, Santos TDS, Ghiraldi Lopes LD, Campanerut-Sá PAZ, Siqueira VLD, Caleffi-Ferracioli KR, Teixeira JJV, Cardoso RF. Minimum Bactericidal Concentration Techniques in Mycobacterium tuberculosis: A Systematic Review. Microb Drug Resist 2020; 26:752-765. [PMID: 31977277 DOI: 10.1089/mdr.2019.0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minimum bactericidal concentration (MBC) assay is an accepted parameter for evaluating new antimicrobial agents, and it is frequently used as a research tool to provide a prediction of bacterial eradication. To the best of our knowledge, there is no standardization among researchers regarding the technique used to detect a drug's MBC in Mycobacterium tuberculosis. Thus, the aim of this systematic review is to discuss the available literature in determining a drug's MBC in M. tuberculosis, to find the most commonly used technique and standardize the process. A broad and rigorous literature search of three electronic databases (PubMed, Web of Knowledge, and LILACS) was performed according to the PRISMA statement. We considered studies that were published from January 1, 1990 to February 19, 2019. Google Scholar was also searched to increase the number of publications. We searched for articles using the MeSH terms "microbiological techniques," "Mycobacterium," "antibacterial agents." In addition, free terms were used in the search. The search yielded 6,674 publications. After filter application, 5,348 publications remained. Of these, we evaluated the full text of 187 publications. By applying the inclusion criteria, 69 studies were included in the present systematic review. In the literature analyzed, a great variety in the techniques used to determine a drug's MBC in M. tuberculosis was observed. The most common variability is related to the culture media used, culture incubation time, and the percentage of bacterial death for the drug to be considered as bactericidal. The most commonly used technique for drug's MBC determination was carried out using the drug's minimum inhibitory concentration (MIC) assay. Aliquots from prior MIC values were subcultured in Middlebrook agar and incubated for 4 weeks at 35°C for determining the colony forming unit (CFU) with relevance to detect 99.9% bacilli killed or reduction in 3 log10 viable bacilli.
Collapse
Affiliation(s)
| | - Regiane Bertin de Lima Scodro
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | | | | | | | - Thais da Silva Santos
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil
| | - Luciana Dias Ghiraldi Lopes
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Paula Aline Zanetti Campanerut-Sá
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| |
Collapse
|
12
|
Si W, Wang L, Usongo V, Zhao X. Colistin Induces S. aureus Susceptibility to Bacitracin. Front Microbiol 2018; 9:2805. [PMID: 30515145 PMCID: PMC6255926 DOI: 10.3389/fmicb.2018.02805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 01/11/2023] Open
Abstract
Bacitracin has been used in topical preparations with polymyxin B for bacterial infections. Colistin belongs to the polymyxin group of antibiotics and is effective against most Gram-negative bacilli. This study investigated whether colistin could affect the susceptibility of S. aureus to bacitracin. S. aureus isolates were first incubated with colistin and the susceptibility of S. aureus to bacitracin was increased. The effect of the combination of colistin and bacitracin on S. aureus was then confirmed by the checkerboard assay and the time-kill kinetics. The Triton X-100-induced autolysis was significantly increased after S. aureus was exposed to colistin. Exposure to colistin also led to a less positive charge on the cell surface and a significant leakage of Na+, Mg2, K+, Ca2+, Mn2+, Cu2+, and Zn2+. Finally, disruptions on the cell surface and an irregular morphology were observed when the bacteria were exposed to colistin and bacitracin. Bacitracin had a stronger antibacterial activity against S. aureus in the presence of colistin. This could be due to the fact that colistin damaged the bacterial membrane. This study suggests that combination of colistin with bacitracin has a potential for treating clinical S. aureus infections.
Collapse
Affiliation(s)
- Wei Si
- Department of Animal Science, McGill University, Montreal, QC, Canada
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Liangliang Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Valentine Usongo
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Metabolomics of colistin methanesulfonate treated Mycobacterium tuberculosis. Tuberculosis (Edinb) 2018; 111:154-160. [PMID: 30029902 DOI: 10.1016/j.tube.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Over the past 5 years, there has been a renewed interest in finding new compounds with anti-TB action. Colistin methanesulfonate or polymyxin E, is a possible anti-TB drug candidate, which may in future be used either alone or in combination to the current 6 month "directly observed treatment short-course" (DOTS) regimen. However its mechanism of action has to date not yet been fully explored, and only described from a histological and genomics perspective. Considering this, we used a GCxGC-TOFMS metabolomics approach and identified those metabolite markers characterising Mycobacterium tuberculosis (Mtb) cultured in the presence of colistin methanesulfonate, in order to better understand or confirm its mechanism of action. The metabolite markers identified indicated a flux in the metabolism of the colistin methanesulfonate treated Mtb towards fatty acid synthesis and cell wall repair, confirming previous reports that colistin acts by disrupting the cell wall of mycobacteria. Accompanying this, is a subsequently elevated glucose uptake, since the latter now serves as the primary energy substrate for the upregulated glyoxylate cycle, and additionally as a precursor for further fatty acid synthesis via the glycerolipid metabolic pathway. Furthermore, the elevated concentrations of those metabolites associated with pentose phosphate, valine, threonine, and pentanediol metabolism, also confirms a shift towards glucose utilization for energy production, in the colistin methanesulfonate treated Mtb.
Collapse
|
14
|
Koen N, van Breda SV, Loots DT. Elucidating the antimicrobial mechanisms of colistin sulfate on Mycobacterium tuberculosis using metabolomics. Tuberculosis (Edinb) 2018; 111:14-19. [PMID: 30029899 DOI: 10.1016/j.tube.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 03/29/2018] [Accepted: 05/06/2018] [Indexed: 11/28/2022]
Abstract
Considering the disadvantageous of first line anti-tuberculosis (TB) drugs, including poor patient adherence, drug side effects, the long treatment duration and rapidly increasing microbe resistance, alternative treatment strategies are needed. Colistin sulfate (CS), a polymyxin antibiotic considered a last-resort antibiotics for treating multidrug-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter, has antimicrobial activity towards mycobacteria, and could serve as a possible anti-TB drug. Using GCxGC-TOFMS metabolomics, we compared the metabolic profiles of Mycobacterium tuberculosis (Mtb) cultured in the presence and absence of CS, to elucidate the mechanisms by which this drug may exert its antimicrobial effects. The principal component analysis of the metabolite data indicated significant variation in the underlying metabolite profiles of the groups. Those metabolites best explaining this differentiation, were acetic acid, and cell wall associated methylated and unmethylated fatty acids, and their alcohol and alkane derivatives. The elevated glucose levels, and various glyoxylate and glycerolipid metabolic intermediates, indicates an elevated flux in these metabolic pathways. Since all the metabolites identified in the colistin treated Mtb indicates an increase in fatty acid synthesis and cell wall repair, it can be concluded that CS acts by disrupting the cell wall in Mtb, confirming a similar drug action to other organisms.
Collapse
Affiliation(s)
- Nadia Koen
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Shane Vontelin van Breda
- Department of Internal Medicine, Division of Infectious Diseases, University of Pretoria, Pretoria, 0002, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
15
|
Akkerman OW, Grasmeijer F, de Lange WCM, Kerstjens HAM, de Vries G, Bolhuis MS, Alffenaar JW, Frijlink HW, Smith G, Gajraj R, de Zwaan R, Hagedoorn P, Dedicoat M, van Soolingen D, van der Werf TS. Cross border, highly individualised treatment of a patient with challenging extensively drug-resistant tuberculosis. Eur Respir J 2018; 51:13993003.02490-2017. [PMID: 29419442 PMCID: PMC5863047 DOI: 10.1183/13993003.02490-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/20/2018] [Indexed: 11/05/2022]
Abstract
Extensively drug-resistant (XDR) tuberculosis (TB) is defined by resistance to isoniazid, rifampicin, any fluoroquinolone and at least one of the three second line injectable drugs, such as amikacin. Drug toxicity and duration impair adherence to treatment and outcome is rather poor [1]. We report on a particularly challenging XDR-TB patient with persistent non-adherence to treatment and an exceptionally complex drug susceptibility pattern. Crossing borders by treating a patient with difficult to treat XDR-TB; highly individualised but holistic approachhttp://ow.ly/JyjK30ielsD
Collapse
Affiliation(s)
- Onno W Akkerman
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands.,Both authors contributed equally
| | - Floris Grasmeijer
- University of Groningen, Dept of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands.,Both authors contributed equally
| | - Wiel C M de Lange
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - Huib A M Kerstjens
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
| | - Gerard de Vries
- KNCV Tuberculosis Foundation, Den Haag, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mathieu S Bolhuis
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- University of Groningen, University Medical Center Groningen, Dept of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Dept of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Grace Smith
- National Mycobacteriology Reference Unit, Birmingham, UK
| | | | - Rina de Zwaan
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Paul Hagedoorn
- University of Groningen, Dept of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Martin Dedicoat
- Dept of Infection, Heart of England Foundation Trust, Birmingham, UK
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Radboud University Nijmegen Medical Centre, Depts of Pulmonary Diseases and Medical Microbiology, Nijmegen, The Netherlands
| | - Tjip S van der Werf
- University of Groningen, University Medical Center Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Dept of Internal Medicine, Groningen, The Netherlands
| |
Collapse
|
16
|
The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs. Tuberculosis (Edinb) 2017; 105:80-85. [PMID: 28610791 DOI: 10.1016/j.tube.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022]
Abstract
Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework.
Collapse
|
17
|
de Knegt GJ, van der Meijden A, de Vogel CP, Aarnoutse RE, de Steenwinkel JEM. Activity of moxifloxacin and linezolid against Mycobacterium tuberculosis in combination with potentiator drugs verapamil, timcodar, colistin and SQ109. Int J Antimicrob Agents 2017; 49:302-307. [PMID: 28162983 DOI: 10.1016/j.ijantimicag.2016.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023]
Abstract
Current treatment for tuberculosis (TB) is complicated by the emergence of multidrug resistant TB (MDR-TB). As a result, there is an urgent need for new powerful anti-TB regimens and novel strategies. In this study, we aimed to potentiate a moxifloxacin + linezolid backbone as treatment for MDR-TB with the efflux pump inhibitors verapamil and timcodar as well as with drugs that act on mycobacterial cell wall stability such as colistin and SQ109. Using a time-kill kinetics assay, the activities of moxifloxacin, linezolid, verapamil, timcodar, colistin and SQ109 as single drugs against Mycobacterium tuberculosis were evaluated. In addition, the activity of the moxifloxacin + linezolid backbone in combination with one of the potentiator drugs was assessed. As little as 0.125 mg/L moxifloxacin achieved 99% killing of M. tuberculosis after 6 days of exposure. Linezolid showed moderate killing but 99% killing was not achieved. Verapamil, timcodar and colistin only resulted in killing with the highest concentrations tested but 99% killing was not achieved. SQ109 resulted in complete elimination after 1 day of exposure to 256 mg/L and in 99% elimination after 6 days of exposure to 1 mg/L. Furthermore, colistin added to the moxifloxacin + linezolid backbone resulted in increased elimination, whereas verapamil, timcodar and SQ109 showed no added value to the backbone. This finding that colistin potentiates the activity of the moxifloxacin + linezolid backbone against M. tuberculosis suggests its potential role in further studies on the applicability of a moxifloxacin + linezolid treatment of MDR-TB.
Collapse
Affiliation(s)
- Gerjo J de Knegt
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Aart van der Meijden
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Corné P de Vogel
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|