1
|
Fifer H, Johnson A. The continuing evolution of antibiotic resistance in Neisseria gonorrhoeae: past, present and future threats to effective treatment. J Antimicrob Chemother 2025:dkaf109. [PMID: 40205910 DOI: 10.1093/jac/dkaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Gonorrhoea constitutes a global public health threat. Although a range of antibiotics have been available to treat gonococcal infections for more than 80 years, Neisseria gonorrhoeae has shown remarkable versatility in its ability to develop resistance to successive classes of drugs. As a result, national and international treatment guidelines have had to be regularly updated to take account of increases in the prevalence of gonococcal strains resistant to recommended antibiotics. Even when particular antibiotics are no longer empirically used to treat gonorrhoea, N. gonorrhoeae often retains resistance, with strains becoming MDR over time. Future efforts to ensure gonorrhoea remains a treatable infection will require a multidisciplinary global approach including efforts to provide widely available and affordable diagnostic testing, robust international surveillance of resistance, and the development of new antibiotics coupled with enhanced antimicrobial stewardship to ensure optimal use of both new and older antimicrobial agents.
Collapse
Affiliation(s)
- Helen Fifer
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Alan Johnson
- Journal of Antimicrobial Chemotherapy, Birmingham B1 3NJ, UK
| |
Collapse
|
2
|
Cumplido A, Aramburu J, Font M, Montes M, Abad R, López E, Bernet A, Mormeneo S, Prats I, García M, Sánchez E, Bellés A. Antimicrobial resistance and epidemiological aspects of Neisseria gonorrhoeae in the province of Lleida, Spain (2017-2024). ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2025; 43:156-161. [PMID: 40037744 DOI: 10.1016/j.eimce.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Neisseria gonorrhoeae (NG) is one of the main causes of sexually transmitted infections and it is reaching high resistance levels worldwide. The aim of this study was to describe the antibiotic resistance, incidence and circulating sequence types of NG in the province of Lleida (Spain). METHODS A total of 487 NG isolates were included in the study (2017-2024). Antibiotic susceptibility testing was performed by gradient diffusion following EUCAST criteria. NG-MAST was performed to 211 isolates in Centro Nacional de Microbiología (Majadahonda, Spain). The study of co-infections was done by real-time PCR (Allplex™ STI, Seegene®). RESULTS All NG isolates remained susceptible to third-generation cephalosporins. The percentages of resistance to tetracycline, ciprofloxacin and penicillin G were 89.1%, 69.2% and 22.6% respectively. A 7.8% of isolates presented a MIC >1mg/L for azithromycin. A decrease in the incidence of gonococcal infections was detected during 2020, followed by a pronounced increase in next years. Ninety-seven different sequence types were detected. ST14994 (14.7%) and ST19792 (6.6%), were the most frequent ST detected in our study. NG appeared as a single STI agent in most cases (77.7%) and Chlamydia trachomatis was the most frequently detected STI agent (74.8%) in samples with co-infections. CONCLUSIONS NG incidence is increasing in our area. The lack of resistance to third-generation cephalosporins and the low level of azithromycin resistance suggest that the use of these antibiotics is a suitable option. Continuous surveillance is essential to prevent the emergence and spread of resistant NG isolates.
Collapse
Affiliation(s)
- Alejandro Cumplido
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Jesús Aramburu
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - María Font
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Marina Montes
- Unidad de Neisseria, Listeria y Bordetella, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raquel Abad
- Unidad de Neisseria, Listeria y Bordetella, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eric López
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomédica de Lleida (IRB-Lleida), Spain
| | - Albert Bernet
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomédica de Lleida (IRB-Lleida), Spain
| | - Saray Mormeneo
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomédica de Lleida (IRB-Lleida), Spain
| | - Iván Prats
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomédica de Lleida (IRB-Lleida), Spain
| | - Mercè García
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomédica de Lleida (IRB-Lleida), Spain
| | - Elena Sánchez
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Alba Bellés
- Laboratorio de Microbiología, Hospital Universitari Arnau de Vilanova, Lleida, Spain; Institut de Recerca Biomédica de Lleida (IRB-Lleida), Spain.
| |
Collapse
|
3
|
Mauffrey F, Poncet F, Jacot D, Greub G, Nordmann P, Blanc DS. Impact of mutations in the mtrR, rpdlVD and rrl genes on azithromycin resistance in Neisseria gonorrhoeae. PLoS One 2024; 19:e0306695. [PMID: 39012901 PMCID: PMC11251580 DOI: 10.1371/journal.pone.0306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/23/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Bacterial sexually transmitted infections (STIs) pose a major public health problem. The emergence of antibiotic-resistant strains of Neisseria gonorrhoeae represents a serious threat to successful treatment and epidemiological control. The first extensively drug-resistant (XDR) strains (ceftriaxone-resistant and high-level azithromycin-resistant [HLR AZY]) have been reported. AIMS To identify molecular mechanisms implicated in azithromycin resistance in strains isolated from patients over a three-year period in a university hospital in Switzerland. MATERIAL AND METHODS From January 2020 to December 2022, 34 isolates (one per patient) were recovered from samples analyzed at the University Hospital of Lausanne. Eight genes involved in azithromycin resistance were sequenced: mtrR repressor (mtrCDE operon repressor) and his promotor mtrR-pr, rplD gene (L4 ribosomal protein), rplV gene (L22 ribosomal protein) and the four alleles of the rrl gene (23S rRNA). RESULTS With a cutoff value of 1 mg/L, 15 isolates were considered as being resistant to azithromycin, whereas the remaining 19 were susceptible. The C2597T mutation in 3 or 4 of the rrl allele confer a medium-level resistance to azithromycin (MIC = 16 mg/L, N = 2). The following mutations were significantly associated with MIC values ≥1 mg/L: the three mutations V125A, A147G, R157Q in the rplD gene (N = 10) and a substitution A->C in the mtrR promotor (N = 9). Specific mutations in the mtrR repressor and its promotor were observed in both susceptible and resistant isolates. CONCLUSIONS Resistance to azithromycin was explained by the presence of mutations in many different copies of 23S RNA ribosomal genes and their regulatory genes. Other mutations, previously reported to be associated with azithromycin resistance, were documented in both susceptible and resistant isolates, suggesting they play little role, if any, in azithromycin resistance.
Collapse
Affiliation(s)
- Florian Mauffrey
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabrice Poncet
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Damien Jacot
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrice Nordmann
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Dominique S. Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
4
|
Fabregat Bolufer AB, Bueno Ferrando F, Navarro Ortega D, Colomina Rodríguez J. Antibiotic susceptibility and genotypic characterization of Neisseria gonorrhoeae isolates in the Comunidad Valenciana (Spain): GONOvig project. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:69-73. [PMID: 36646588 DOI: 10.1016/j.eimce.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The increase in sexually transmitted infections (STI) caused by Neisseria gonorrhoeae (NG) worldwide, together with the decrease in antibiotic susceptibility, forced us to understand the epidemiology of gonococcal infection. METHODS The GONOvig project analyzed, comparatively following CLSI and EUCAST criteria, the antibiotic susceptibility of 227 NG strains collected in thirteen representative hospitals of the Valencia Community (CV) between 2013 and 2018. Additionally, molecular typing of 175 strains using the NG multi-antigen sequence typing technique (NG-MAST) was performed. RESULTS High rates of resistance to tetracycline (38.2% by CLSI and 50.9% by EUCAST) and ciprofloxacin (49.1% CLSI and 54% EUCAST), and low percentages of resistance to spectinomycin (0%), cefixime (0.5% CLSI but 5.9% EUCAST), and ceftriaxone (1.5% CLSI and 2.4% EUCAST) were detected. Azithromycin resistance was 6% (both CLSI and EUCAST). Molecular analysis revealed the presence of 86 different sequence types (ST), highlighting ST2992 (7.4%), ST3378 (6.9%), ST2400 (4.6%) and ST13288 (6.9%), which was associated with resistance to cefixime (P=.031). The main genogroups (G) were G1407 (13.1%), G2992 (10.3%), G2400 (6.3%) and G387 (3.4%). G1407 and G2400 were associated with resistance to ciprofloxacin (P<.03). CONCLUSION Low resistance to ceftriaxone, a worrying resistance to azithromycin and a wide variety of circulating sequence types have been detected, some of which show correlation with certain resistance profiles.
Collapse
|
5
|
Jacobsson S, Golparian D, Oxelbark J, Kong FYS, Da Costa RMA, Franceschi F, Brown D, Louie A, Drusano G, Unemo M. Pharmacodynamics of zoliflodacin plus doxycycline combination therapy against Neisseria gonorrhoeae in a gonococcal hollow-fiber infection model. Front Pharmacol 2023; 14:1291885. [PMID: 38130409 PMCID: PMC10733441 DOI: 10.3389/fphar.2023.1291885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance in the sexually transmitted bacterium Neisseria gonorrhoeae is compromising the management and control of gonorrhea globally. Optimized use and enhanced stewardship of current antimicrobials and development of novel antimicrobials are imperative. The first in class zoliflodacin (spiropyrimidinetrione, DNA Gyrase B inhibitor) is a promising novel antimicrobial in late-stage clinical development for gonorrhea treatment, i.e., the phase III randomized controlled clinical trial (ClinicalTrials.gov Identifier: NCT03959527) was recently finalized, and zoliflodacin showed non-inferiority compared to the recommended ceftriaxone plus azithromycin dual therapy. Doxycycline, the first-line treatment for chlamydia and empiric treatment for non-gonococcal urethritis, will be frequently given together with zoliflodacin because gonorrhea and chlamydia coinfections are common. In a previous static in vitro study, it was indicated that doxycycline/tetracycline inhibited the gonococcal killing of zoliflodacin in 6-h time-kill curve analysis. In this study, our dynamic in vitro hollow-fiber infection model (HFIM) was used to investigate combination therapies with zoliflodacin and doxycycline. Dose-range experiments using the three gonococcal strains WHO F (susceptible to relevant therapeutic antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone-resistant; zoliflodacin-susceptible), and SE600/18 (zoliflodacin-susceptible strain with GyrB S467N substitution) were conducted simulating combination therapy with a single oral dose of zoliflodacin 0.5-4 g combined with a doxycycline daily oral dose of 200 mg administered as 100 mg twice a day, for 7 days (standard dose for chlamydia treatment). Comparing combination therapy of zoliflodacin (0.5-4 g single dose) plus doxycycline (200 mg divided into 100 mg twice a day orally, for 7 days) to zoliflodacin monotherapy (0.5-4 g single dose) showed that combination therapy was slightly more effective than monotherapy in the killing of N. gonorrhoeae and suppressing emergence of zoliflodacin resistance. Accordingly, WHO F was eradicated by only 0.5 g single dose of zoliflodacin in combination with doxycycline, and WHO X and SE600/18 were both eradicated by a 2 g single dose of zoliflodacin in combination with doxycycline; no zoliflodacin-resistant populations occurred during the 7-day experiment when using this zoliflodacin dose. When using suboptimal (0.5-1 g) zoliflodacin doses together with doxycycline, gonococcal mutants with increased zoliflodacin MICs, due to GyrB D429N and the novel GyrB T472P, emerged, but both the mutants had an impaired biofitness. The present study shows the high efficacy of zoliflodacin plus doxycycline combination therapy using a dynamic HFIM that more accurately and comprehensively simulate gonococcal infection and their treatment, i.e., compared to static in vitro models, such as short-time checkerboard experiments or time-kill curve analysis. Based on our dynamic in vitro HFIM work, zoliflodacin plus doxycycline for the treatment of both gonorrhea and chlamydia can be an effective combination.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Joakim Oxelbark
- Division of Clinical Chemistry, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Fabian Y. S. Kong
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Francois Franceschi
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - David Brown
- College of Medicine, Institute for Therapeutic Innovation, University of Florida, Orlando, FL, United States
| | - Arnold Louie
- College of Medicine, Institute for Therapeutic Innovation, University of Florida, Orlando, FL, United States
| | - George Drusano
- College of Medicine, Institute for Therapeutic Innovation, University of Florida, Orlando, FL, United States
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, United Kingdom
| |
Collapse
|
6
|
Vashishtha S, Thakur S, Singh J, Adhana S, Kundu B. Evolutionarily conserved heat shock protein, HtpX, as an adjunct target against antibiotic-resistant Neisseria gonorrhoeae. J Cell Biochem 2023; 124:1516-1529. [PMID: 37566682 DOI: 10.1002/jcb.30461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
The emergence of multiple drug resistance and extreme drug resistance pathogens necessitates the continuous evaluation of the pathogenic genome to identify conserved molecular targets and their respective inhibitors. In this study, we mapped the global mutational landscape of Neisseria gonorrhoeae (an intracellular pathogen notoriously known to cause the sexually transmitted disease gonorrhoea). We identified highly variable amino acid positions in the antibiotic target genes like the penA, ponA, 23s rRNA, rpoB, gyrA, parC, mtrR and porB. Some variations are directly reported to confer resistance to the currently used front-line drugs like ceftriaxone, cefixime, azithromycin and ciprofloxacin. Further, by whole genome comparison and Shannon entropy analysis, we identified a completely conserved protein HtpX in the drug-resistant as well as susceptible isolates of N. gonorrhoeae (NgHtpX). Comparison with the only available information of Escherichia coli HtpX suggested it to be a transmembrane metalloprotease having a role in stress response. The critical zinc-binding residue of NgHtpX was mapped to E141. By applying composite high throughput screening followed by MD simulations, we identified pemirolast and thalidomide as high-energy binding ligands of NgHtpX. Following cloning and expression of the purified metal-binding domain of NgHtpX (NgHtpXd), its Zn2+ -binding (Kd = 0.4 µM) and drug-binding (pemirolast, Kd = 3.47 µM; and thalidomide, Kd = 1.04 µM) potentials were determined using in-vitro fluorescence quenching experiment. When tested on N. gonorrhoeae cultures, both the ligands imposed a dose-dependent reduction in viability. Overall, our results provide high entropy positions in the targets of presently used antibiotics, which can be further explored to understand the AMR mechanism. Additionally, HtpX and its specific inhibitors identified can be utilised effectively in managing gonococcal infections.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sujata Adhana
- Department of Biomedical Sciences, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Kakooza F, Golparian D, Matoga M, Maseko V, Lamorde M, Krysiak R, Manabe YC, Chen JS, Kularatne R, Jacobsson S, Godreuil S, Hoffman I, Bercot B, Wi T, Unemo M. Genomic surveillance and antimicrobial resistance determinants in Neisseria gonorrhoeae isolates from Uganda, Malawi and South Africa, 2015-20. J Antimicrob Chemother 2023; 78:1982-1991. [PMID: 37352017 DOI: 10.1093/jac/dkad193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVES Global antimicrobial resistance (AMR) surveillance in Neisseria gonorrhoeae is essential. In 2017-18, only five (10.6%) countries in the WHO African Region reported to the WHO Global Gonococcal Antimicrobial Surveillance Programme (WHO GASP). Genomics enhances our understanding of gonococcal populations nationally and internationally, including AMR strain transmission; however, genomic studies from Africa are extremely scarce. We describe the gonococcal genomic lineages/sublineages, including AMR determinants, and baseline genomic diversity among strains in Uganda, Malawi and South Africa, 2015-20, and compare with sequences from Kenya and Burkina Faso. METHODS Gonococcal isolates cultured in Uganda (n = 433), Malawi (n = 154) and South Africa (n = 99) in 2015-20 were genome-sequenced. MICs were determined using ETEST. Sequences of isolates from Kenya (n = 159), Burkina Faso (n = 52) and the 2016 WHO reference strains (n = 14) were included in the analysis. RESULTS Resistance to ciprofloxacin was high in all countries (57.1%-100%). All isolates were susceptible to ceftriaxone, cefixime and spectinomycin, and 99.9% were susceptible to azithromycin. AMR determinants for ciprofloxacin, benzylpenicillin and tetracycline were common, but rare for cephalosporins and azithromycin. Most isolates belonged to the more antimicrobial-susceptible lineage B (n = 780) compared with the AMR lineage A (n = 141), and limited geographical phylogenomic signal was observed. CONCLUSIONS We report the first multi-country gonococcal genomic comparison from Africa, which will support the WHO GASP and WHO enhanced GASP (EGASP). The high prevalence of resistance to ciprofloxacin (and empirical use continues), tetracycline and benzylpenicillin, and the emerging resistance determinants for azithromycin show it is imperative to strengthen the gonococcal AMR surveillance, ideally including genomics, in African countries.
Collapse
Affiliation(s)
- Francis Kakooza
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
| | | | - Venessa Maseko
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Yuka C Manabe
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jane S Chen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ranmini Kularatne
- Labtests Laboratory and Head Office, Mt Wellington, Auckland, New Zealand
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, and MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Irving Hoffman
- UNC Project Malawi, Lilongwe, Malawi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beatrice Bercot
- Infectious Agents Department, French National Reference Centre for Bacterial STIs, Associated Laboratory for Gonococci, and APHP, Saint Louis Hospital, Paris, France
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
8
|
Jacobsson S, Golparian D, Oxelbark J, Wicha WW, da Costa RMA, Franceschi F, Brown D, Louie A, Gelone SP, Drusano G, Unemo M. Pharmacodynamic evaluation of lefamulin in the treatment of gonorrhea using a hollow fiber infection model simulating Neisseria gonorrhoeae infections. Front Pharmacol 2022; 13:1035841. [PMID: 36452226 PMCID: PMC9702083 DOI: 10.3389/fphar.2022.1035841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae is seriously threatening the treatment and control of gonorrhea globally. Novel treatment options are essential, coupled with appropriate methods to pharmacodynamically examine the efficacy and resistance emergence of these novel drugs. Herein, we used our dynamic in vitro hollow fiber infection model (HFIM) to evaluate protein-unbound lefamulin, a semisynthetic pleuromutilin, against N. gonorrhoeae. Dose-range and dose-fractionation experiments with N. gonorrhoeae reference strains: WHO F (susceptible to all relevant antimicrobials), WHO X (extensively drug-resistant, including ceftriaxone resistance), and WHO V (high-level azithromycin resistant, and highest gonococcal MIC of lefamulin (2 mg/l) reported), were performed to examine lefamulin gonococcal killing and resistance development during treatment. The dose-range experiments, simulating a single oral dose of lefamulin based on human plasma concentrations, indicated that ≥1.2 g, ≥2.8 g, and ≥9.6 g of lefamulin were required to eradicate WHO F, X, and V, respectively. Dose-fractionation experiments, based on human lefamulin plasma concentrations, showed that WHO X was eradicated with ≥2.8 g per day when administered as q12 h (1.4 g twice a day) and with ≥3.6 g per day when administered as q8 h (1.2 g thrice a day), both for 7 days. However, when simulating the treatment with 5-10 times higher concentrations of free lefamulin in relevant gonorrhea tissues (based on urogenital tissues in a rat model), 600 mg every 12 h for 5 days (approved oral treatment for community-acquired bacterial pneumonia) eradicated all strains, and no lefamulin resistance emerged in the successful treatment arms. In many arms failing single or multiple dose treatments for WHO X, lefamulin-resistant mutants (MIC = 2 mg/l), containing an A132V amino acid substitution in ribosomal protein L3, were selected. Nevertheless, these lefamulin-resistant mutants demonstrated an impaired biofitness. In conclusion, a clinical study is warranted to elucidate the clinical potential of lefamulin as a treatment option for uncomplicated gonorrhea (as well as several other bacterial STIs).
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Joakim Oxelbark
- Division of Clinical Chemistry, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | - Francois Franceschi
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - David Brown
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, United States
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, United States
| | - Steven P. Gelone
- Nabriva Therapeutics US Inc., Fort Washington, PA, United States
| | - George Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, United States
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, United Kingdom
| |
Collapse
|
9
|
Fabregat Bolufer AB, Bueno Ferrando F, Navarro Ortega D, Colomina Rodríguez J. Susceptibilidad antibiótica y caracterización genotípica de aislados de Neisseria gonorrhoeae circulantes en la Comunidad Valenciana (España): proyecto GONOvig. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int J Mol Sci 2022; 23:ijms231810499. [PMID: 36142410 PMCID: PMC9505821 DOI: 10.3390/ijms231810499] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
The paper presents various issues related to the increasing drug resistance of Neisseria gonorrhoeae and the occurrence and spread of multidrug-resistant clones. One of the most important is the incidence and evolution of resistance mechanisms of N. gonorrhoeae to beta-lactam antibiotics. Chromosomal resistance to penicillins and oxyimino-cephalosporins and plasmid resistance to penicillins are discussed. Chromosomal resistance is associated with the presence of mutations in the PBP2 protein, containing mosaic variants and nonmosaic amino acid substitutions in the transpeptidase domain, and their correlation with mutations in the mtrR gene and its promoter regions (the MtrCDE membrane pump repressor) and in several other genes, which together determine reduced sensitivity or resistance to ceftriaxone and cefixime. Plasmid resistance to penicillins results from the production of beta-lactamases. There are different types of beta-lactamases as well as penicillinase plasmids. In addition to resistance to beta-lactam antibiotics, the paper covers the mechanisms and occurrence of resistance to macrolides (azithromycin), fluoroquinolones and some other antibiotics. Moreover, the most important epidemiological types of multidrug-resistant N. gonorrhoeae, prevalent in specific years and regions, are discussed. Epidemiological types are defined as sequence types, clonal complexes and genogroups obtained by various typing systems such as NG-STAR, NG-MAST and MLST. New perspectives on the treatment of N. gonorrhoeae infections are also presented, including new drugs active against multidrug-resistant strains.
Collapse
|
11
|
Jacobsson S, Golparian D, Oxelbark J, Franceschi F, Brown D, Louie A, Drusano G, Unemo M. Pharmacodynamic Evaluation of Zoliflodacin Treatment of Neisseria gonorrhoeae Strains With Amino Acid Substitutions in the Zoliflodacin Target GyrB Using a Dynamic Hollow Fiber Infection Model. Front Pharmacol 2022; 13:874176. [PMID: 35496288 PMCID: PMC9046595 DOI: 10.3389/fphar.2022.874176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Novel antimicrobials for effective treatment of uncomplicated gonorrhea are essential, and the first-in-class, oral spiropyrimidinetrione DNA gyrase B inhibitor zoliflodacin appears promising. Using our newly developed Hollow Fiber Infection Model (HFIM), the pharmacodynamics of zoliflodacin was examined. A clinical zoliflodacin-susceptible N. gonorrhoeae strain, SE600/18 (harbouring a GyrB S467N amino acid substitution; MIC = 0.25 mg/L), and SE600/18-D429N (zoliflodacin-resistant mutant with a second GyrB substitution, D429N, selected in the HFIM experiments; zoliflodacin MIC = 2 mg/L), were examined. Dose-range experiments, simulating zoliflodacin single oral dose regimens of 0.5, 1, 2, 3, and 4 g, were performed for SE600/18. For SE600/18-D429N, dose-range experiments, simulating zoliflodacin single oral 2, 3, 4, and 6 g doses, and zoliflodacin oral dose-fractionation experiments with 4, 6, and 8 g administered as q12 h were performed. Both strains grew well in the untreated HFIM growth control arms and mostly maintained growth at 1010-1011 CFU/ml for 7 days. Zoliflodacin 3 and 4 g single dose oral regimens successfully eradicated SE600/18 and no growth was recovered during the 7-days experiments. However, the single oral 0.5, 1, and 2 g doses failed to eradicate SE600/18, and zoliflodacin-resistant populations with a GyrB D429N substitution were selected with all these doses. The zoliflodacin-resistant SE600/18-D429N mutant was not eradicated with any examined treatment regimen. However, this in vitro-selected zoliflodacin-resistant mutant was substantially less fit compared to the zoliflodacin-susceptible SE600/18 parent strain. In conclusion, the rare clinical gonococcal strains with GyrB S467N substitution are predisposed to develop zoliflodacin resistance and may require treatment with zoliflodacin ≥3 g. Future development may need to consider the inclusion of diagnostics directed at identifying strains resistant or predisposed to resistance development at a population level and to strengthen surveillance (phenotypically and genetically), and possibly also at the patient level to guide treatment.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Joakim Oxelbark
- Division of Clinical Chemistry, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Francois Franceschi
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - David Brown
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Gainesville, FL, United States
| | - George Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, United Kingdom
| |
Collapse
|
12
|
Yasir M, Mustafa Karim A, Kausar Malik S, Bajaffer AA, Azhar EI. Prediction of Antimicrobial Minimal Inhibitory Concentrations for Neisseria gonorrhoeae using Machine Learning Models. Saudi J Biol Sci 2022; 29:3687-3693. [PMID: 35844400 PMCID: PMC9280306 DOI: 10.1016/j.sjbs.2022.02.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 11/26/2022] Open
Abstract
The lowest concentration of an antimicrobial agent that can inhibit the visible growth of a microorganism after overnight incubation is called as minimum inhibitory concentration (MIC) and the drug prescriptions are made on the basis of MIC data to ensure successful treatment outcomes. Therefore, reliable antimicrobial susceptibility data is crucial, and it will help clinicians about which drug to prescribe. Although few prediction studies based on strategies have been conducted, however, no single machine learning (ML) modelling has been carried out to predict MICs in N. gonorrhoeae. In this study, we propose a ML based approach that can predict MICs of a specific antibiotic using unitigs sequences data. We retrieved N. gonorrhoeae genomes from European Nucleotide Archive and NCBI and analysed them combined with their respective MIC data for cefixime, ciprofloxacin, and azithromycin and then we constructed unitigs by using de Brujin graphs. We built and compared 35 different ML regression models to predict MICs. Our results demonstrate that RandomForest and CATBoost models showed best performance in predicting MICs of the three antibiotics. The coefficient of determination, R2, (a statistical measure of how well the regression predictions approximate the real data points) for cefixime, ciprofloxacin, and azithromycin was 0.75787, 0.77241, and 0.79009 respectively using RandomForest. For CATBoost model, the R2 value was 0.74570, 0.77393, and 0.79317 for cefixime, ciprofloxacin, and azithromycin respectively. Lastly, using feature importance, we explore the important genomic regions identified by the models for predicting MICs. The major mutations which are responsible for resistance against these three antibiotics were chosen by ML models as a top feature in case of each antibiotics. CATBoost, DecisionTree, GradientBoosting, and RandomForest regression models chose the same unitigs which are responsible for resistance. This unitigs-based strategy for developing models for MIC prediction, clinical diagnostics, and surveillance can be applicable for other critical bacterial pathogens.
Collapse
|
13
|
Shaskolskiy B, Kravtsov D, Kandinov I, Gorshkova S, Kubanov A, Solomka V, Deryabin D, Dementieva E, Gryadunov D. Comparative Whole-Genome Analysis of Neisseria gonorrhoeae Isolates Revealed Changes in the Gonococcal Genetic Island and Specific Genes as a Link to Antimicrobial Resistance. Front Cell Infect Microbiol 2022; 12:831336. [PMID: 35252037 PMCID: PMC8895040 DOI: 10.3389/fcimb.2022.831336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Comparative whole-genome analysis was performed for Neisseria gonorrhoeae isolates belonging to the Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) types predominant worldwide — 225, 1407, 2400, 2992, and 4186 — and to genogroup 807, the most common genogroup in the Russian Federation. Here, for the first time, the complete genomes of 25 N. gonorrhoeae isolates from genogroup 807 were obtained. For NG-MAST types 225, 1407, 2400, 2992, and 4186, genomes from the Pathogenwatch database were used. The phylogenetic network constructed for 150 genomes showed that the clustering according to NG-MAST type corresponded to the clustering according to genome. Comparisons of genomes of the six sequence types revealed 8-20 genes specific to each sequence type, including the loci for phase variations and genetic components of the gonococcal genetic island (GGI). NG-MAST type 2992 and 4186 isolates either lacked the GGI or carried critical mutations in genes essential for DNA secretion. In all analyzed genogroup 807 isolates, substitution of the essential atlA gene with the eppA gene was found, accompanied by a change in the traG allele, replacement of the ych gene with ych1, and the absence of the exp1 gene, which is likely to result in loss of GGI functionality. For the NG-MAST type 225, 1407 and 2400 isolates, no premature stop codons or reading frameshifts were found in the genes essential for GGI function. A relationship between isolate susceptibility to ciprofloxacin, penicillin, tetracycline and the presence of lesions in GGI genes necessary for DNA secretion was established. The N. gonorrhoeae evolutionary pathways, which allow a particular sequence type to maintain long-term predominance in the population, may include changes in genes responsible for adhesion and virulence, changes in the GGI structure, preservation of genes carrying drug resistance determinants, and changes in genes associated with host adaptation or encoding enzymes of biochemical pathways.
Collapse
Affiliation(s)
- Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Boris Shaskolskiy,
| | - Dmitry Kravtsov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kandinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofya Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Kubanov
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Victoria Solomka
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Dmitry Deryabin
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Ekaterina Dementieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Cassu-Corsi D, Santos FF, Cayô R, Martins WM, Nodari CS, Almeida LG, Martins RA, Carvalho da Silva RJ, Vasconcelos ATR, Pignatari AC, Gales AC. Genomic analyses of ciprofloxacin-resistant Neisseria gonorrhoeae isolates recovered from the largest South American metropolitan area. Genomics 2022; 114:110287. [DOI: 10.1016/j.ygeno.2022.110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
15
|
Luo H, Chen W, Mai Z, Yang J, Lin X, Zeng L, Pan Y, Xie Q, Xu Q, Li X, Liao Y, Feng Z, Ou J, Qin X, Zheng H. Development and application of Cas13a-based diagnostic assay for Neisseria gonorrhoeae detection and azithromycin resistance identification. J Antimicrob Chemother 2021; 77:656-664. [PMID: 34894246 DOI: 10.1093/jac/dkab447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gonorrhoea, caused by Neisseria gonorrhoeae, has spread worldwide. Strains resistant to most antibiotics, including ceftriaxone and azithromycin, have emerged to an alarming level. Rapid testing for N. gonorrhoeae and its antimicrobial resistance will therefore contribute to clinical decision making for early diagnosis and rational drug use. METHODS A Cas13a-based assay (specific high-sensitivity enzymatic reporter unlocking; SHERLOCK) was developed for N. gonorrhoeae detection (porA gene) and azithromycin resistance identification (A2059G, C2611T). Assays were evaluated for sensitivity with purified dsDNA and specificity with 17 non-gonococcal strains. Performance of SHERLOCK (porA) was compared with Roche Cobas 4800 using 43 urine samples. Identification of azithromycin resistance mutations (A2059G, C2611T) was evaluated using a total of 84 clinical isolates and 18 urine samples. Lateral flow was tested for this assay as a readout tool. Moreover, we directly assayed 27 urethral swabs from patients with urethritis to evaluate their status in terms of N. gonorrhoeae infection and azithromycin resistance. RESULTS The SHERLOCK assay was successfully developed with a sensitivity of 10 copies/reaction, except 100 copies/reaction for A2059G, and no cross-reaction with other species. Comparison of the SHERLOCK assay with the Cobas 4800 revealed 100% concordance within 18 positive and 25 negative urine samples. Of the 84 isolates, 21 strains with azithromycin resistance mutations were distinguished and further verified by sequencing and MIC determination. In addition, 62.96% (17/27) strains from swab samples were detected with no mutant strains confirmed by sequencing. CONCLUSIONS The SHERLOCK assay for rapid N. gonorrhoeae detection combined with azithromycin resistance testing is a promising method for application in clinical practice.
Collapse
Affiliation(s)
- Hao Luo
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhida Mai
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaomian Lin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Qinghui Xie
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Qingqing Xu
- Guangdong Dermatology Clinical College, Anhui Medical University, Hefei 230022, China
| | - Xiaoxiao Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University, Yichang 443002, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiangli Ou
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
16
|
Gianecini RA, Poklepovich T, Golparian D, Cuenca N, Tuduri E, Unemo M, Campos J, Galarza P. Genomic Epidemiology of Azithromycin-Nonsusceptible Neisseria gonorrhoeae, Argentina, 2005-2019. Emerg Infect Dis 2021; 27:2369-2378. [PMID: 34424175 PMCID: PMC8386799 DOI: 10.3201/eid2709.204843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Azithromycin-nonsusceptible Neisseria gonorrhoeae strains are an emerging global public health threat. During 2015–2018, the prevalence of azithromycin-nonsusceptible gonococcal infection increased significantly in Argentina. To investigate the genomic epidemiology and resistance mechanisms of these strains, we sequenced 96 nonsusceptible isolates collected in Argentina during 2005–2019. Phylogenomic analysis revealed 2 main clades, which were characterized by a limited geographic distribution, circulating during January 2015–November 2019. These clades included the internationally spreading multilocus sequence types (STs) 1580 and 9363. The ST1580 isolates, which had MICs of 2–4 μg/mL, had mutations in the 23S rRNA. The ST9363 isolates, which had MICs of 2–4 or >256 μg/mL, had mutations in the 23S rRNA, a mosaic mtr locus, or both. Identifying the geographic dissemination and characteristics of these predominant clones will guide public health policies to control the spread of azithromycin-nonsusceptible N. gonorrhoeae in Argentina.
Collapse
|
17
|
The Accuracy of Molecular Detection Targeting the Mutation C2611T for Detecting Moderate-Level Azithromycin Resistance in Neisseria gonorrhoeae: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10091027. [PMID: 34572609 PMCID: PMC8471969 DOI: 10.3390/antibiotics10091027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neisseria gonorrhoeae (N. gonorrhoeae) is now recognized as a commonly reported sexually transmitted pathogen, and the increasing drug resistance of N. gonorrhoeae has become a serious public health problem. The accuracy of molecular detection for detecting moderate-level azithromycin resistance is not well-established. We summarized the data from studies of the N. gonorrhoeae 23S rRNA mutation at position 2611 with azithromycin resistance to determine the relationship between the mutation and resistance. METHODS AND FINDINGS In this systematic review and meta-analysis, two researchers independently searched six databases for studies with data for the azithromycin minimum inhibitory concentrations (MICs) and the 23S rRNA mutation C2611T of each N. gonorrhoeae isolate. Since the breakpoint of moderate-level resistance to azithromycin (ML-AzmR) was not determined, we divided the moderate level into two groups according to the range of MICs (moderate resistance limited to 2-128 mg/L or 4-128 mg/L) for data extraction. A random-effects model was used to calculate the pooled sensitivity rate, the specificity rate, the pooled positive likelihood ratio (PLR), the negative likelihood ratio (NLR), and the diagnostic odds ratio (DOR). Meta-regression analyses by detection method, isolates sampling (a random sample or not), location, and sample size were performed to explore the possible causes of heterogeneity. The potential publication bias of the included studies was conducted by the Deeks' test. We included 20 studies in our study: 20 studies have data of N. gonorrhoeae with MICs between 2 and 128 mg/L with mutation or without mutation at position 2611(4759 samples), and 14 studies have data of N. gonorrhoeae with MICs between 4 and 128 mg/L (3367 samples). In the group with the moderate level of 2-128 mg/L, the pooled sensitivity rate of the molecular assays was determined to be 71.9% (95% CI, 67.6-74%), the pooled specificity rate was 98.7% (95% CI, 98.2-99.0%), and the DOR ranged from 55.0 to 351.3 (mean, 139.1). In the 4-128 mg/L group, the pooled sensitivity rate was 91.9% (95% CI, 88.9-94.2%), the pooled specificity rate was 95.9% (95% CI, 95.1-96.6%), and the DOR ranged from 41.9 to 364.1 (mean, 123.6). CONCLUSION Through this meta-analysis, we found that the C2611T mutation of 23S rRNA is valuable for the molecular diagnostic of moderate-level azithromycin resistance (ML-AzmR) in N. gonorrhoeae, especially when the moderate level is set at 4-128 mg/L. This rapid molecular detection method can be used for the rapid identification of ML-AzmR isolates in the clinic.
Collapse
|
18
|
Salmerón P, Viñado B, Arando M, Alcoceba E, Romero B, Menéndez B, Bernal S, Idigoras P, Colomina J, Martin-Saco G, Leal-Negredo Á, Torreblanca A, Martínez O, Serra-Pladevall J. Neisseria gonorrhoeae antimicrobial resistance in Spain: a prospective multicentre study. J Antimicrob Chemother 2021; 76:1523-1531. [PMID: 33569588 DOI: 10.1093/jac/dkab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Gonococcal infection is one of the most reported sexually transmitted infections and antimicrobial resistance in Neisseria gonorrhoeae (NG) is challenging for the treatment of this infection. This observational study aimed to describe antimicrobial resistance of NG and epidemiological data from patients with gonococcal infection in eight regions of Spain, for updating the local therapeutic guidelines. METHODS MICs of penicillin, cefixime, ceftriaxone, azithromycin, ciprofloxacin, fosfomycin and gentamicin were determined by Etest for all NG isolates recovered from 1 April 2018 to 30 September 2019 from 10 hospitals in Spain. Resistance determinants were identified using logistic regression analysis. Differences with a P value <0.05 were considered statistically significant. RESULTS Antimicrobial susceptibility testing was performed for 2571 gonococci isolated from 2429 patients. 44.5% (945/2124) of patients were MSM. The resistance rate to extended-spectrum cephalosporins was low, with 0.2% (6/2561) of isolates resistant to ceftriaxone and 1.7% (44/2517) of isolates resistant to cefixime. The overall azithromycin resistance rate was 12.1% (310/2560), but differed greatly depending on the area. 56.2% (1366/2429) of the strains studied were ciprofloxacin resistant. MIC50 and MIC90 values of gentamicin and fosfomycin were 4 and 8 mg/L and 24 and 48 mg/L, respectively. CONCLUSIONS Our study shows that NG susceptibility to extended-spectrum cephalosporins remains high in Spain. The azithromycin resistance rate questions the suitability of dual therapy. This study provides data of interest for updating the national treatment guidelines and highlights the need to develop and implement a national sentinel gonococcal antimicrobial susceptibility programme.
Collapse
Affiliation(s)
- Paula Salmerón
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Belén Viñado
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Maider Arando
- Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Drassanes-Vall d'Hebron Sexually Transmitted Infections Unit, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Eva Alcoceba
- Microbiology Department, Son Espases Hospital Universitari, Mallorca, Spain
| | - Beatriz Romero
- Microbiology Department, Ramón y Cajal Hospital Universitario, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Blanca Menéndez
- Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Sandoval Health Centre, San Carlos Hospital Clínico, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Samuel Bernal
- Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Microbiology Department, Virgen de Valme Hospital Universitario, Sevilla, Spain
| | - Pedro Idigoras
- Microbiology Department, Donostia Hospital Universitario, San Sebastián, Spain
| | - Javier Colomina
- Microbiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Gloria Martin-Saco
- Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Microbiology Department, Miguel Servet Hospital Universitario, Zaragoza, Spain
| | - Álvaro Leal-Negredo
- Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Aurora Torreblanca
- Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Microbiology Department, Cabueñes Hospital Universitario, Gijón, Spain
| | - Olalla Martínez
- Microbiology Department, La Ribera Hospital Universitario, Valencia, Spain
| | - Judit Serra-Pladevall
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Sexually Transmitted Infections Study Group (GEITS), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
19
|
Singh R, Kusalik A, Dillon JAR. Bioinformatics tools used for whole-genome sequencing analysis of Neisseria gonorrhoeae: a literature review. Brief Funct Genomics 2021; 21:78-89. [PMID: 34170311 DOI: 10.1093/bfgp/elab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing (WGS) data are well established for the investigation of gonococcal transmission, antimicrobial resistance prediction, population structure determination and population dynamics. A variety of bioinformatics tools, repositories, services and platforms have been applied to manage and analyze Neisseria gonorrhoeae WGS datasets. This review provides an overview of the various bioinformatics approaches and resources used in 105 published studies (as of 30 April 2021). The challenges in the analysis of N. gonorrhoeae WGS datasets, as well as future bioinformatics requirements, are also discussed.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology
| | - Anthony Kusalik
- Department of Computer Science at the University of Saskatchewan
| | - Jo-Anne R Dillon
- Department of Biochemistry Microbiology and Immunology, College of Medicine, c/o Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| |
Collapse
|
20
|
Golparian D, Bazzo ML, Golfetto L, Gaspar PC, Schörner MA, Schwartz Benzaken A, Ramos MC, Ferreira WA, Alonso Neto JB, Mendes Pereira GF, Unemo M. Genomic epidemiology of Neisseria gonorrhoeae elucidating the gonococcal antimicrobial resistance and lineages/sublineages across Brazil, 2015-16. J Antimicrob Chemother 2021; 75:3163-3172. [PMID: 32785692 DOI: 10.1093/jac/dkaa318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Neisseria gonorrhoeae antimicrobial resistance (AMR) surveillance is imperative internationally, but only eight (22.9%) countries in the WHO Region of the Americas reported complete AMR data to the WHO Global Gonococcal Antimicrobial Surveillance Program (WHO GASP) in 2016. Genomic studies are ideal for enhanced understanding of gonococcal populations, including the spread of AMR strains. To elucidate the circulating gonococcal lineages/sublineages, including their AMR determinants, and the baseline genomic diversity among gonococcal strains in Brazil, we conducted WGS on 548 isolates obtained in 2015-16 across all five macroregions in Brazil. METHODS A total of 548 gonococcal isolates cultured across Brazil in 2015-16 were genome sequenced. AMR was determined using agar dilution and/or Etest. Genome sequences of isolates from Argentina (n = 158) and the 2016 WHO reference strains (n = 14) were included in the analysis. RESULTS We found 302, 68 and 214 different NG-MAST, MLST and NG-STAR STs, respectively. The phylogenomic analysis identified one main antimicrobial-susceptible lineage and one AMR lineage, which was divided into two sublineages with different AMR profiles. Determination of NG-STAR networks of clonal complexes was shown as a new and valuable molecular epidemiological analysis. Several novel mosaic mtrD (and mtrR and mtrE) variants associated with azithromycin resistance were identified. CONCLUSIONS We describe the first genomic baseline data to support the Brazilian GASP. The high prevalence of resistance to ciprofloxacin, tetracycline and benzylpenicillin, and the high number of isolates with mosaic penA and azithromycin resistance mutations, should prompt continued and strengthened AMR surveillance, including WGS, of N. gonorrhoeae in Brazil.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Luiza Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Lisléia Golfetto
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pamela Cristina Gaspar
- Department of Diseases of Chronic Condition and Sexually Transmitted Infection, Secretariat of Health Surveillance, Ministry of Health of Brazil, Brasília, Brazil
| | - Marcos André Schörner
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | | | - José Boullosa Alonso Neto
- Department of Diseases of Chronic Condition and Sexually Transmitted Infection, Secretariat of Health Surveillance, Ministry of Health of Brazil, Brasília, Brazil
| | - Gerson Fernando Mendes Pereira
- Department of Diseases of Chronic Condition and Sexually Transmitted Infection, Secretariat of Health Surveillance, Ministry of Health of Brazil, Brasília, Brazil
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
21
|
Li Y, Xiu L, Liu J, Zhang C, Wang F, Yin Y, Peng J. A multiplex assay for characterization of antimicrobial resistance in Neisseria gonorrhoeae using multi-PCR coupled with mass spectrometry. J Antimicrob Chemother 2021; 75:2817-2825. [PMID: 32688393 DOI: 10.1093/jac/dkaa269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Complicated mechanisms and variable determinants related to drug resistance pose a major challenge to obtain comprehensive antimicrobial resistance (AMR) profiles of Neisseria gonorrhoeae. Meanwhile, cephalosporin-resistant mosaic penA alleles have been reported worldwide. Therefore, it is urgent to monitor the expansion of cephalosporin-resistant mosaic penA alleles. OBJECTIVES To develop a comprehensive high-throughput method to efficiently screen AMR determinants. METHODS We developed a method based on multiplex PCR with MALDI-TOF MS, which can simultaneously screen for 24 mutations associated with multiple antimicrobial agents in 19 gonococcal AMR loci (NG-AMR-MS). The performance of the NG-AMR-MS method was assessed by testing 454 N. gonorrhoeae isolates with known MICs of six antibiotics, eight non-gonococcal Neisseria strains, 214 clinical samples and three plasmids with a confirmed mosaic penA allele. RESULTS The results show that NG-AMR-MS had a specificity of 100% with a sensitivity as low as 10 copies per reaction (except for PorB A121D/N/G, 100 copies per reaction). For clinical samples with gonococcal load >5 copies/μL, the method can accurately identify 20 AMR mutations. In addition, the method successfully detected specific cephalosporin-resistant strains with the A311V mutation in the penA allele. CONCLUSIONS Our high-throughput method can provide comprehensive AMR profiles within a multiplex format. Furthermore, the method can be directly applied to screening for AMR among clinical samples, serving as an effective tool for overall monitoring of N. gonorrhoeae AMR and also provides a powerful means to comprehensively improve the level of monitoring.
Collapse
Affiliation(s)
- Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingwei Liu
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.,National Center for Sexually Transmitted Diseases Control, Chinese Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, People's Republic of China
| | - Yueping Yin
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, People's Republic of China.,National Center for Sexually Transmitted Diseases Control, Chinese Center for Disease Control and Prevention, Nanjing, People's Republic of China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Antimicrobial resistance in Neisseria gonorrhoeae isolates and gonorrhoea treatment in the Republic of Belarus, Eastern Europe, 2009-2019. BMC Infect Dis 2021; 21:520. [PMID: 34078300 PMCID: PMC8173742 DOI: 10.1186/s12879-021-06184-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background Limited antimicrobial resistance (AMR) data for Neisseria gonorrhoeae are available in Eastern Europe. We investigated AMR in N. gonorrhoeae isolates in the Republic of Belarus from 2009 to 2019, antimicrobial treatment recommended nationally, and treatment given to patients with gonorrhoea. Methods N. gonorrhoeae isolates (n = 522) cultured in three regions of Belarus in 2009–2019 were examined. Determination of minimum inhibitory concentrations (MICs) of eight antimicrobials was performed using Etest. Resistance breakpoints from the European Committee on Antimicrobial Susceptibility Testing were applied where available. A Nitrocefin test identified β-lactamase production. Gonorrhoea treatment for 1652 patients was also analysed. Statistical significance was determined by the Z-test, Fisher’s exact test, or Mann-Whitney U test with p-values of < 0.05 indicating significance. Results In total, 27.8% of the N. gonorrhoeae isolates were resistant to tetracycline, 24.7% to ciprofloxacin, 7.0% to benzylpenicillin, 2.7% to cefixime, and 0.8% to azithromycin. No isolates were resistant to ceftriaxone, spectinomycin, or gentamicin. However, 14 (2.7%) isolates had a ceftriaxone MIC of 0.125 mg/L, exactly at the resistance breakpoint (MIC > 0.125 mg/L). Only one (0.2%) isolate, from 2013, produced β-lactamase. From 2009 to 2019, the levels of resistance to ciprofloxacin and tetracycline were relatively high and stable. Resistance to cefixime was not identified before 2013 but peaked at 22.2% in 2017. Only sporadic isolates with resistance to azithromycin were found in 2009 (n = 1), 2012 (n = 1), and 2018–2019 (n = 2). Overall, 862 (52.2%) patients received first-line treatment according to national guidelines (ceftriaxone 1 g). However, 154 (9.3%) patients received a nationally recommended alternative treatment (cefixime 400 mg or ofloxacin 400 mg), and 636 (38.5%) were given non-recommended treatment. Conclusions The gonococcal resistance to ciprofloxacin and tetracycline was high, however, the resistance to azithromycin was low and no resistance to ceftriaxone was identified. Ceftriaxone 1 g can continuously be recommended as empiric first-line gonorrhoea therapy in Belarus. Fluoroquinolones should not be prescribed for treatment if susceptibility has not been confirmed by testing. Timely updating and high compliance with national evidence-based gonorrhoea treatment guidelines based on quality-assured AMR data are imperative. The need for continued, improved and enhanced surveillance of gonococcal AMR in Belarus is evident.
Collapse
|
23
|
Jacobsson S, Golparian D, Oxelbark J, Alirol E, Franceschi F, Gustafsson TN, Brown D, Louie A, Drusano G, Unemo M. Pharmacodynamic Evaluation of Dosing, Bacterial Kill, and Resistance Suppression for Zoliflodacin Against Neisseria gonorrhoeae in a Dynamic Hollow Fiber Infection Model. Front Pharmacol 2021; 12:682135. [PMID: 34093206 PMCID: PMC8175963 DOI: 10.3389/fphar.2021.682135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 01/17/2023] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is threatening the treatment and control of gonorrhea globally, and new treatment options are imperative. Utilizing our dynamic in vitro hollow fiber infection model (HFIM), we examined the pharmacodynamics of the first-in-class spiropyrimidinetrione (DNA gyrase B inhibitors), zoliflodacin, against the N. gonorrhoeae reference strains World Health Organization F (susceptible to all relevant antimicrobials) and WHO X (extensively drug resistant, including resistance to ceftriaxone) over 7 days. Dose-range experiments with both strains, simulating zoliflodacin single oral dose regimens of 0.5-8 g, and dose-fractionation experiments with WHO X, simulating zoliflodacin oral dose therapy with 1-4 g administered as q12 h and q8 h for 24 h, were performed. A kill-rate constant that reflected a rapid bacterial kill during the first 6.5 h for both strains and all zoliflodacin doses was identified. In the dose-range experiments, the zoliflodacin 2-8 g single-dose treatments successfully eradicated both WHO strains, and resistance to zoliflodacin was not observed. However, zoliflodacin as a single 0.5 g dose failed to eradicate both WHO strains, and a 1 g single dose failed to eradicate WHO X in one of two experiments. The zoliflodacin 1 g/day regimen also failed to eradicate WHO X when administered as two and three divided doses given at q12 h and q8 h in the dose-fractionation studies, respectively. All failed regimens selected for zoliflodacin-resistant mutants. In conclusion, these data demonstrate that zoliflodacin should be administered at >2 g as a single oral dose to provide effective killing and resistance suppression of N. gonorrhoeae. Future studies providing pharmacokinetic data for zoliflodacin (and other gonorrhea therapeutic antimicrobials) in urogenital and extragenital infection sites, particularly in the pharynx, and evaluation of gonococcal strains with different gyrB mutations would be important.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Joakim Oxelbark
- Division of Clinical Chemistry, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Emilie Alirol
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Francois Franceschi
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Tomas N. Gustafsson
- Department of Clinical Microbiology, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - David Brown
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, United States
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, United States
| | - George Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, FL, United States
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
24
|
Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, Cole MJ, Grad YH, Martin I, Raphael BH, Shafer WM, Town K, Wi T, Harris SR, Unemo M, Aanensen DM. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med 2021; 13:61. [PMID: 33875000 PMCID: PMC8054416 DOI: 10.1186/s13073-021-00858-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain.
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Benjamin Taylor
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Richard J Goater
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
- European Molecular Biology Lab, Heidelberg, Baden-Wuerttemberg, Germany
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, London, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Brian H Raphael
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Katy Town
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Microbiotica, Biodata Innovation Centre, Cambridge, Cambridgeshire, UK
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
25
|
Atypical Mutation in Neisseria gonorrhoeae 23S rRNA Associated with High-Level Azithromycin Resistance. Antimicrob Agents Chemother 2021; 65:AAC.00885-20. [PMID: 33139288 DOI: 10.1128/aac.00885-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023] Open
Abstract
A2059G mutation in the 23S rRNA gene is the only reported mechanism conferring high-level azithromycin resistance (HL-AZMR) in Neisseria gonorrhoeae Through U.S. gonococcal antimicrobial resistance surveillance projects, we identified four HL-AZMR gonococcal isolates lacking this mutational genotype. Genetic analysis revealed an A2058G mutation of 23S rRNA alleles in all four isolates. In vitro selected gonococcal strains with homozygous A2058G recapitulated the HL-AZMR phenotype. Taken together, we postulate that the A2058G mutation confers HL-AZMR in N. gonorrhoeae.
Collapse
|
26
|
Kersh EN, Allen V, Ransom E, Schmerer M, Cyr S, Workowski K, Weinstock H, Patel J, Ferraro MJ. Rationale for a Neisseria gonorrhoeae Susceptible-only Interpretive Breakpoint for Azithromycin. Clin Infect Dis 2021; 70:798-804. [PMID: 30963175 DOI: 10.1093/cid/ciz292] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Azithromycin (AZI) is recommended with ceftriaxone (CRO) for treatment of uncomplicated gonococcal urethritis and cervicitis in the United States, and an AZI-susceptibility breakpoint is needed. Neither the Food and Drug Administration (FDA) nor the Clinical and Laboratory Standards Institute (CLSI) has set interpretive breakpoints for AZI susceptibility. As a result, AZI antimicrobial susceptibility testing (AST) cannot be interpreted using recognized standards. This has contributed to increasingly unavailable clinical laboratory AST, although gonorrhea is on the rise with >550 000 US gonorrhea cases reported to the Centers for Disease Control and Prevention in 2017, the highest number of cases since 1991. METHODS This article summarizes the rationale data reviewed by the CLSI in June 2018. RESULTS The CLSI decided to set a susceptible-only interpretive breakpoint at the minimum inhibitory concentration of ≤1 µg/mL. This is also the epidemiological cutoff value (ECV) (ie, the end of the wild-type susceptibility distribution). This breakpoint presumes that AZI (1-g single dose) is used in an approved regimen that includes an additional antimicrobial agent (ie, CRO 250 mg, intramuscular single dose). CONCLUSIONS Having a breakpoint can improve patient care and surveillance and allow future development and FDA regulatory approval of modernized AST to guide treatment. The breakpoint coincides with a European Committee on AST decision to remove previously established, differing AZI breakpoints and use the ECV as guidance for testing. The CLSI breakpoint is now the recognized standard that defines AZI susceptibility for gonococcal infections.
Collapse
Affiliation(s)
- Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Eric Ransom
- Association of Public Health Laboratories, Silver Spring, Maryland
| | - Matthew Schmerer
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sancta Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kim Workowski
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia.,Emory University, Department of Medicine, Atlanta, Georgia
| | - Hillard Weinstock
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jean Patel
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary Jane Ferraro
- Department of Medicine, Harvard Medical School, Boston.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
27
|
Ma KC, Mortimer TD, Duckett MA, Hicks AL, Wheeler NE, Sánchez-Busó L, Grad YH. Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nat Commun 2020; 11:5374. [PMID: 33097713 PMCID: PMC7584619 DOI: 10.1038/s41467-020-19250-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of resistance to azithromycin complicates treatment of Neisseria gonorrhoeae, the etiologic agent of gonorrhea. Substantial azithromycin resistance remains unexplained after accounting for known resistance mutations. Bacterial genome-wide association studies (GWAS) can identify novel resistance genes but must control for genetic confounders while maintaining power. Here, we show that compared to single-locus GWAS, conducting GWAS conditioned on known resistance mutations reduces the number of false positives and identifies a G70D mutation in the RplD 50S ribosomal protein L4 as significantly associated with increased azithromycin resistance (p-value = 1.08 × 10-11). We experimentally confirm our GWAS results and demonstrate that RplD G70D and other macrolide binding site mutations are prevalent (present in 5.42% of 4850 isolates) and widespread (identified in 21/65 countries across two decades). Overall, our findings demonstrate the utility of conditional associations for improving the performance of microbial GWAS and advance our understanding of the genetic basis of macrolide resistance.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marissa A Duckett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Foerster S, Drusano G, Golparian D, Neely M, Piddock LJV, Alirol E, Unemo M. In vitro antimicrobial combination testing of and evolution of resistance to the first-in-class spiropyrimidinetrione zoliflodacin combined with six therapeutically relevant antimicrobials for Neisseria gonorrhoeae. J Antimicrob Chemother 2020; 74:3521-3529. [PMID: 31730160 DOI: 10.1093/jac/dkz376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Resistance in Neisseria gonorrhoeae to all gonorrhoea therapeutic antimicrobials has emerged. Novel therapeutic antimicrobials are imperative and the first-in-class spiropyrimidinetrione zoliflodacin appears promising. Zoliflodacin could be introduced in dual antimicrobial therapies to prevent the emergence and/or spread of resistance. We investigated the in vitro activity of and selection of resistance to zoliflodacin alone and in combination with six gonorrhoea therapeutic antimicrobials against N. gonorrhoeae. METHODS The international gonococcal reference strains WHO F (WT) and WHO O, WHO V and WHO X (strains with different AMR profiles) were examined. Zoliflodacin was evaluated alone or combined with ceftriaxone, cefixime, spectinomycin, gentamicin, tetracycline, cethromycin or sitafloxacin in chequerboard assays, time-kill curve analysis and selection-of-resistance studies. RESULTS Zoliflodacin alone or in combination with all six antimicrobials showed rapid growth inhibition against all examined strains. The time-kill curve analysis indicated that tetracycline or cethromycin combined with zoliflodacin can significantly decrease the zoliflodacin kill rate in vitro. The frequency of selected zoliflodacin-resistance mutations was low when evaluated as a single agent and further reduced for all antimicrobial combinations. All resistant mutants contained the GyrB mutations D429N, K450T or K450N, resulting in zoliflodacin MICs of 0.5-4 mg/L. CONCLUSIONS Zoliflodacin, alone or in combination with sexually transmitted infection therapeutic antimicrobials, rapidly kills gonococci with infrequent resistance emergence. Zoliflodacin remains promising for gonorrhoea oral monotherapy and as part of dual antimicrobial therapy with low resistance emergence potential. A Phase III trial evaluating efficacy and safety of zoliflodacin for uncomplicated gonorrhoea treatment is planned in 2019.
Collapse
Affiliation(s)
- Sunniva Foerster
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - George Drusano
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL, USA
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michael Neely
- Children's Hospital of Los Angeles, Department of Pediatrics, Division of Infectious Diseases, University of Southern California, CA, USA
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), Geneva, Switzerland
| | - Emilie Alirol
- Global Antibiotic Research & Development Partnership (GARDP), Geneva, Switzerland
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
29
|
Gernert KM, Seby S, Schmerer MW, Thomas JC, Pham CD, Cyr SS, Schlanger K, Weinstock H, Shafer WM, Raphael BH, Kersh EN. Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance data. LANCET MICROBE 2020; 1:e154-e164. [PMID: 33005903 DOI: 10.1016/s2666-5247(20)30059-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background The number of cases of gonorrhoea in the USA and worldwide caused by Neisseria gonorrhoeae is increasing (555 608 reported US cases in 2017, and 87 million cases worldwide in 2016). Many countries report declining in vitro susceptibility of azithromycin, which is a concern because azithromycin and ceftriaxone are the recommended dual treatment in many countries. We aimed to identify strain types associated with decreased susceptibility to azithromycin. Methods We did a genomic analysis of N gonorrhoeae isolates obtained by the US Gonococcal Isolate Surveillance Project. Isolates were whole-genome sequenced based on decreased susceptibility to azithromycin (minimal inhibitory concentration [MIC] ≥2 μg/mL, using agar dilution antibiotic susceptibility testing) and geographical representation. Bioinformatic analyses established genomic diversity, strain population dynamics, and antimicrobial resistance profiles. Findings 410 isolates were sorted into more than 20 unique phylogenetic clades. One predominant persistent clade (consisting of 97 isolates) included the most isolates with azithromycin MICs of 2 μg/mL or higher (61 of 97 [63%] vs 59 of 311 [19%]; p<0·0001) and carried a mosaic mtr (multiple transferable resistance) locus (68 of 97 [70%] vs two of 313 [1%]; p<0·0001). Of the remaining 313 isolates, 57 (18%) had decreased susceptibility to azithromycin (MIC ≥4 μg/mL), which was attributed to 23S rRNA variants (56 of 57 [98%]) and formed phylogenetically diverse clades, showing various levels of clonal expansion. Interpretation Reduced azithromycin susceptibility was associated with expanding and persistent clades harbouring two well described resistance mechanisms, mosaic mtr locus and 23S rRNA variants. Understanding the role of recombination, particularly within the mtr locus, on the fitness and expansion of strains with decreased susceptibility has important implications for the public health response to minimise gonorrhoea transmission. Funding US Centers for Disease Control and Prevention (CDC), CDC Combating Antibiotic Resistant Bacteria initiative, Oak Ridge Institute for Science Education, US Department of Energy/CDC/Emory University, National Institutes of Health, and Biomedical Laboratory Research and Development Service of the US Department of Veterans Affairs.
Collapse
Affiliation(s)
- Kim M Gernert
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Sandra Seby
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Matthew W Schmerer
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Jesse C Thomas
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Cau D Pham
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Sancta St Cyr
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Karen Schlanger
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Hillard Weinstock
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - William M Shafer
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Brian H Raphael
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | - Ellen N Kersh
- Laboratory Reference and Research Branch (K M Gernert PhD, S Seby MS, M W Schmerer PhD, J C Thomas IV PhD, C D Pham PhD, B H Raphael PhD, E N Kersh PhD), Surveillance and Data Management Branch (S St Cyr MD, H Weinstock PhD), and Epidemiology and Statistics Branch (K Schlanger PhD), Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, USA (S Seby, J C Thomas IV); Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA (W M Shafer PhD); and Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA (W M Shafer)
| | | |
Collapse
|
30
|
Gianecini RA, Golparian D, Zittermann S, Litvik A, Gonzalez S, Oviedo C, Melano RG, Unemo M, Galarza P. Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011-16. J Antimicrob Chemother 2020; 74:1551-1559. [PMID: 30820563 DOI: 10.1093/jac/dkz054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Our aim was to describe the molecular epidemiology and antimicrobial resistance determinants of isolates of Neisseria gonorrhoeae with decreased susceptibility and resistance to extended-spectrum cephalosporins (ESCs) in Argentina in 2011-16. METHODS Gonococcal isolates (n=158) with decreased susceptibility and resistance to ESCs collected in 2011-16 across Argentina were subjected to WGS and antimicrobial susceptibility testing for six antimicrobials. RESULTS In total, 50% of the isolates were resistant to cefixime, 1.9% were resistant to ceftriaxone, 37.3% were resistant to azithromycin and 63.9% of the isolates showed an MDR phenotype. Resistance and decreased susceptibility to ESCs was mainly associated with isolates possessing the mosaic penA-34.001, in combination with an mtrR promoter A deletion, and PorB1b amino acid substitutions G120K/A121N. Phylogenetic analysis revealed two main clades of circulating strains, which were associated with the N. gonorrhoeae multiantigen sequence typing (NG-MAST) ST1407 and closely related STs, and characterized by a high prevalence rate, wide geographical distribution and temporal persistence. CONCLUSIONS N. gonorrhoeae isolates with decreased susceptibility and resistance to ESCs in Argentina have emerged and rapidly spread mainly due to two clonal expansions after importation of one or two strains, which are associated with the international MDR NG-MAST ST1407 clone. The identification of the geographical dissemination and characteristics of these predominant clones may help to focus action plans and public health policies to control the spread of ESC resistance in Argentina. Dual antimicrobial therapy (ceftriaxone plus azithromycin) for gonorrhoea needs to be considered in Argentina.
Collapse
Affiliation(s)
- Ricardo A Gianecini
- National Reference Laboratory of Sexually Transmitted Diseases, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Ana Litvik
- Rawson Infectious Diseases Hospital, Córdoba, Argentina
| | | | - Claudia Oviedo
- National Reference Laboratory of Sexually Transmitted Diseases, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Patricia Galarza
- National Reference Laboratory of Sexually Transmitted Diseases, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
31
|
Boiko I, Golparian D, Jacobsson S, Krynytska I, Frankenberg A, Shevchenko T, Unemo M. Genomic epidemiology and antimicrobial resistance determinants of
Neisseria gonorrhoeae
isolates from Ukraine, 2013–2018. APMIS 2020; 128:465-475. [DOI: 10.1111/apm.13060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Iryna Boiko
- Department of Functional and Laboratory Diagnostics I. Horbachevsky Ternopil National Medical University Ternopil Ukraine
- WHO Collaborating Centre for Gonorrhoea and other STIs National Reference Laboratory for STIs Department of Laboratory Medicine Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs National Reference Laboratory for STIs Department of Laboratory Medicine Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other STIs National Reference Laboratory for STIs Department of Laboratory Medicine Faculty of Medicine and Health Örebro University Örebro Sweden
| | - Inna Krynytska
- Department of Functional and Laboratory Diagnostics I. Horbachevsky Ternopil National Medical University Ternopil Ukraine
| | | | - Tetiana Shevchenko
- Department of General Medicine with a Course of Physical Therapy Faculty of Medical Technologies of Diagnostics and Rehabilitation Oles Honchar Dnipro National University Dnipro Ukraine
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs National Reference Laboratory for STIs Department of Laboratory Medicine Faculty of Medicine and Health Örebro University Örebro Sweden
| |
Collapse
|
32
|
Boiko I, Akimova V, Mazur L, Savchenko I, Kohut I, Krynytska I. The Clinico-Epidemiological Profile of Patients with Gonorrhoea and Challenges in the Management of Neisseria gonorrhoeae Infection in an STI clinic, Ternopil, Ukraine (2013-2018). J Med Life 2020; 13:75-81. [PMID: 32341705 PMCID: PMC7175438 DOI: 10.25122/jml-2019-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gonorrhea is the second most common sexually transmitted infection spreading worldwide and a serious public health problem. However, further data are required to improve the management of gonorrhea. Our aim was to review the features of gonococcal infection and characterize the challenges of its management. A retrospective descriptive study of the medical records of 136 adult patients with gonorrhea that visited Ternopil Regional Sexually Transmitted Infections Clinic (Ukraine) in 2013-2018 was performed. The male-to-female ratio was 6.6:1. Homosexually-acquired gonorrhoea was 3.7%. Also, most patients acquired gonorrhea in Ukraine (98.4%). The mean infectious period lasted 2-16 days, including the incubation period of 1-9 days and the period from the onset of symptoms to the first visit of the clinic of 1-7 days. The probability of N. gonorrhoeae transmission within the frame of the epidemiologic sexual chain was 1:2.4. Concurrent T. vaginalis (39.7%) and C. trachomatis (2.2%) were detected. HIV and syphilis screening rates were 1.6% and 0.7%, respectively. The examining rate of sexual partners was 11%, testing extragenital specimens - 0.7%, screening coverage for HIV - 46.3%, compliance with follow-up visits - 41.9%. Part of patients (16.2%) received monotherapy with clarithromycin, doxycycline, benzylpenicillin, azithromycin, or ofloxacin. The management of N. gonorrhoeae infections was compromised by a low rate of examining sexual partners, females and testing extragenital specimens, screening for HIV, compliance to follow-up visits, access to nucleic acid amplification tests, and receiving questionable or even obsolete antimicrobial treatment. Therefore, more accurate and comprehensive management of gonorrhea is urgently needed in Ukraine.
Collapse
Affiliation(s)
- Iryna Boiko
- Department of Functional and Laboratory Diagnostics, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Viorika Akimova
- Department of Clinical Laboratory Diagnostic, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Lyudmyla Mazur
- Department of Clinical Immunology, Allergology and General Patients' Care, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Savchenko
- First Department of Internal Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Ihor Kohut
- Department of Infectious Diseases with Epidemiology, Skin and Sexually Transmitted Diseases, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Inna Krynytska
- Department of Functional and Laboratory Diagnostics, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
33
|
Lan PT, Golparian D, Ringlander J, Van Hung L, Van Thuong N, Unemo M. Genomic analysis and antimicrobial resistance of Neisseria gonorrhoeae isolates from Vietnam in 2011 and 2015-16. J Antimicrob Chemother 2020; 75:1432-1438. [PMID: 32068837 PMCID: PMC7382555 DOI: 10.1093/jac/dkaa040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) in Neisseria gonorrhoeae, compromising gonorrhoea treatment, is a threat to reproductive health globally. South-East and East Asia have been major sources of emergence and subsequent international spread of AMR gonococcal strains during recent decades. We investigated gonococcal isolates from 2011 and 2015-16 in Vietnam using AMR testing, WGS and detection of AMR determinants. METHODS Two hundred and twenty-nine gonococcal isolates cultured in 2015-16 (n = 121) and 2011 (n = 108) in Vietnam were examined. AMR testing was performed using Etest and WGS with Illumina MiSeq. RESULTS Resistance among the 2015-16 isolates was as follows: ciprofloxacin, 100%; tetracycline, 79%; benzylpenicillin, 50%; cefixime, 15%; ceftriaxone, 1%; spectinomycin, 0%; and 5% were non-WT to azithromycin. Eighteen (15%) isolates were MDR. The MIC range for gentamicin was 2-8 mg/L. Among the 2015-16 isolates, 27% (n = 33) contained a mosaic penA allele, while no isolates had a mosaic penA allele in 2011. Phylogenomic analysis revealed introduction after 2011 of two mosaic penA-containing clones (penA-10.001 and penA-34.001), which were related to cefixime-resistant strains spreading in Japan and Europe, and a minor clade (eight isolates) relatively similar to the XDR strain WHO Q. CONCLUSIONS From 2011 to 2015-16, resistance in gonococci from Vietnam increased to all currently and previously used antimicrobials except ceftriaxone, spectinomycin and tetracycline. Two mosaic penA-containing clones were introduced after 2011, explaining the increased cefixime resistance. Significantly increased AMR surveillance, antimicrobial stewardship and use of WGS for molecular epidemiology and AMR prediction for gonococcal isolates in Vietnam and other Asian countries are crucial.
Collapse
Affiliation(s)
- Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johan Ringlander
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Infectious Diseases at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Le Van Hung
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Nguyen Van Thuong
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
34
|
Alfsnes K, Eldholm V, Olsen AO, Brynildsrud OB, Bohlin J, Steinbakk M, Caugant DA. Genomic epidemiology and population structure of Neisseria gonorrhoeae in Norway, 2016-2017. Microb Genom 2020; 6:e000359. [PMID: 32213251 PMCID: PMC7276708 DOI: 10.1099/mgen.0.000359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
This study presents the nationwide epidemiology of Neisseria gonorrhoeae, using whole-genome sequencing of all culture-positive cases, which comprise roughly 40 % of all cases of gonorrhea reported in Norway from 2016 to 2017. Isolates were assigned to sequence types and Bayesian analysis clusters and variation in genes coding for antibiotic resistance was linked to phenotypic resistance data. The study also included isolates taken from the same patients from different anatomical sites at one or more time points. Comparing these isolates allows for observation of patterns of infections, i.e. multiple reinfections of genetically related clones vs. reinfections of genetically distant clones, and quantification of the genomic variation of closely related isolates from samples taken from a patient within the same day. Demographically, the patients in the study could be split into two groups; one group of patients from the capital with a high proportion of men who have sex with men (MSM), and another consisting of young adults with transmission primarily between males and females from outside the capital. Some clusters of N. gonorrhoeae were restricted to one of these two demographic groups. Pairwise comparison of multiple isolates from the same patients revealed that most were reinfected with different clones. Observations of frequent reinfections in patients is a concern and should be taken into account in the development of improved information and treatment guidelines.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne Olaug Olsen
- National Advisory Unit for Sexually Transmitted Infections, Oslo, Norway
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Martin Steinbakk
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Østfold Hospital Trust, Center for Laboratory Medicine, Grålum, Norway
| | - Dominique A. Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Institute for Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Cole MJ, Quinten C, Jacobsson S, Day M, Amato-Gauci AJ, Woodford N, Spiteri G, Unemo M. The European gonococcal antimicrobial surveillance programme (Euro-GASP) appropriately reflects the antimicrobial resistance situation for Neisseria gonorrhoeae in the European Union/European Economic Area. BMC Infect Dis 2019; 19:1040. [PMID: 31822275 PMCID: PMC6902330 DOI: 10.1186/s12879-019-4631-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) antimicrobial resistance (AMR) data are used to inform gonorrhoea treatment guidelines; therefore the data need to be robust and representative. We assessed the extent to which Euro-GASP reflects national measures of the AMR situation for Neisseria gonorrhoeae across the European Union/European Economic Area (EU/EEA). Methods We compared data from Euro-GASP with published national gonococcal AMR data from 15 countries for azithromycin, cefixime and ciprofloxacin for the period 2009 to 2013 and performed Poisson regression to identify differences (p < 0.05) between the proportions of resistant isolates. The 2014 Euro-GASP AMR data for each country (n = 19) were weighted to account for differences in the distribution of patient characteristics between Euro-GASP and EU/EEA epidemiological gonorrhoea surveillance data. Data were compared to determine whether estimates of resistance levels differed with regards to the 5% threshold used to assess the clinical utility of first-line gonorrhoea treatments. We assessed the quality of decentralised testing by comparing AMR data for isolates tested both centrally and in the participating laboratories, and by evaluating external quality assessment (EQA) performance. Results There was no significant difference for azithromycin, cefixime and ciprofloxacin resistance when Euro-GASP country data were compared with data from national reports. Weighting slightly altered the Euro-GASP AMR estimates (by between − 4.7 and 4.7% from the unweighted estimates). Weighting resulted in greater changes in estimates of resistance to azithromycin (from − 9.5 to 2.7%) and ciprofloxacin (from − 14.8 to 17.9%) in countries with low isolate numbers and low completeness of reporting (n = 3). Weighting caused AMR levels to fall below or above the 5% threshold for cefixime or azithromycin, respectively in only two countries. Susceptibility category data submitted from the decentralised Euro-GASP laboratories were concordant with the Euro-GASP data (> 90%). EQA performance was also good; < 5% of the minimum inhibitory concentration (MIC) results differed by > 4-fold from the modal MIC of the EQA isolate. Conclusions The overall prevalence of AMR reported by Euro-GASP reflects closely the AMR situation for N. gonorrhoeae in the EU/EEA. Euro-GASP data can be used to provide robust AMR estimates to inform the European guideline for the management of gonorrhoea.
Collapse
Affiliation(s)
- Michelle J Cole
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.
| | - Chantal Quinten
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michaela Day
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
36
|
Młynarczyk-Bonikowska B, Majewska A, Malejczyk M, Młynarczyk G, Majewski S. Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol 2019; 209:95-108. [PMID: 31802195 PMCID: PMC7125254 DOI: 10.1007/s00430-019-00651-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Neisseria gonorrhoeae is an etiologic agent of gonorrhoea, one of the most common sexually transmitted diseases caused by bacteria. For many years, infections caused by N. gonorrhoeae were considered to be relatively easy to treat; however, resistance has emerged successively to all therapeutic agents used in treatment of the disease, e.g., penicillin, ciprofloxacin or azithromycin. Currently, the global problem is the emergence and a threat of spread of N. gonorrhoeae strains resistant to extended-spectrum cephalosporins (ESC), such as injectable ceftriaxone and oral-used cefixime. Especially, dangerous are multi-resistant strains resistant simultaneously to ESC and azithromycin. Three strains with high-level resistance to azithromycin and resistant to ESC were first time isolated in 2018. Moreover, in 2018, the first ESBL was described in N. gonorrhoeae and that makes the threat of appearing the ESBL mechanism of resistance in N. gonorrhoeae more real, even though the strain was sensitive to ceftriaxone. Molecular typing revealed that variants resistant to ESC occurred also among strains belonging to epidemic clonal complex CC1 (genogroup G1407) distinguished in NG-MAST typing system. The G1407 genogroup, in particular the ST1407 sequence type, is currently dominant in most European countries. The presence of different mechanisms of drug resistance significantly affects clinical practice and force changes in treatment regimens and introduction of new drugs.
Collapse
Affiliation(s)
- Beata Młynarczyk-Bonikowska
- Department of Diagnostics of Sexually Transmitted Diseases, Medical University of Warsaw, 82a Koszykowa Str, 02-008, Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004, Warsaw, Poland.
| | - Magdalena Malejczyk
- Department of Diagnostics of Sexually Transmitted Diseases, Medical University of Warsaw, 82a Koszykowa Str, 02-008, Warsaw, Poland
| | - Grażyna Młynarczyk
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004, Warsaw, Poland
| | - Sławomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, 82a Koszykowa Str, 02-008, Warsaw, Poland
| |
Collapse
|
37
|
Abstract
The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.
Collapse
|
38
|
Zheng Z, Liu L, Shen X, Yu J, Chen L, Zhan L, Chen H, Lin C, Jiang Y, Xia H, Wang L, Yu F. Antimicrobial Resistance And Molecular Characteristics Among Neisseria gonorrhoeae Clinical Isolates In A Chinese Tertiary Hospital. Infect Drug Resist 2019; 12:3301-3309. [PMID: 31695449 PMCID: PMC6815782 DOI: 10.2147/idr.s221109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose The resistance of N. gonorrhoeae to antimicrobial agents has been increasing year by year due to the overuse of antibiotics. The primary aims of the present study were to investigate the molecular characteristics of the clinical isolates of Neisseria gonorrhoeae and the resistance to azithromycin in a Chinese tertiary hospital. Methods From January 2014 to May 2017, a total of 55 clinical isolates of N. gonorrhoeae were collected. Genes associated with azithromycin resistance (AZM-R), including mutations in 23S rRNA alleles, the mtrR promoter and coding regions, and rplD and rplV were evaluated by PCR and DNA sequencing. All clinical isolates were subjected to N. gonorrhoeae multiantigen sequence typing (NG-MAST), while the AZM-R isolates were further characterized by multilocus sequence typing (MLST). Results The AZM-R rate in this study was 23.64% (13/55), and a single (A)-nucleotide deletion mutation in the mtrR promoter region, a G45D mutation in the mtrR coding region, a point mutation in rplD, and an A2047G mutation in 23S rRNA alleles were detected in 13, 4, 3 and 4 isolates, respectively; no mutations were found in rplV. There was no significant difference in the mtrR coding region mutation rate between the azithromycin-sensitive and AZM-R groups (P > 0.05); however, there was a significant difference in the mutation rate of the mtrR promoter region (P < 0.05). Among the 55 isolates studied, 43 distinct NG-MAST were determined, while the AZM-R isolates were allocated into 10 distinct MLST/NG-MAST combinations. All three isolates with high-level AZM-R belonged to the sequence types (STs) NG-MAST ST1866 and MLST ST10899. Conclusion N. gonorrhoeae clinical isolates from Wenzhou, eastern China, showed considerable genetic diversity. Measures should be implemented to monitor the spread of the NG-MAST ST1866 and MLST ST10899 N. gonorrhoeae clones, which exhibit high-level AZM-R in eastern China.
Collapse
Affiliation(s)
- Zhou Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Li Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaofei Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lingling Zhan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Han Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chunchan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ye Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hong Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| |
Collapse
|
39
|
Golparian D, Rose L, Lynam A, Mohamed A, Bercot B, Ohnishi M, Crowley B, Unemo M. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. ACTA ACUST UNITED AC 2019; 23. [PMID: 30482267 PMCID: PMC6341943 DOI: 10.2807/1560-7917.es.2018.23.47.1800617] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe a multidrug-resistant Neisseria gonorrhoeae urethritis case with ceftriaxone resistance and azithromycin intermediate resistance in a heterosexual man in Ireland, August 2018. Whole-genome sequencing showed that the isolate IR72 belongs to the internationally spreading multidrug-resistant ceftriaxone-resistant FC428 clade, initially described in Japan in 2015. IR72 was assigned MSLT ST1903, NG-MAST ST17842 and NG-STAR type 1133, including the ceftriaxone resistance-mediating penA-60.001. Global awareness of spreading ceftriaxone-resistant gonococcal strains that threaten recommended dual therapies is essential.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Swedish Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lisa Rose
- Department of Clinical Microbiology, University of Dublin, Trinity College, St. James's Hospital, Dublin, Ireland
| | - Almida Lynam
- Guide Clinic, St. James's Hospital, Dublin, Ireland
| | - Aia Mohamed
- Department of Clinical Microbiology, University of Dublin, Trinity College, St. James's Hospital, Dublin, Ireland
| | - Beatrice Bercot
- APHP, St Louis Hospital, Laboratory of Microbiology; French National Reference Center for Bacterial STI, Associated laboratory for gonococci; Paris Diderot University, IAME, Sorbonne Paris Cité, Paris, France
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Brendan Crowley
- Authors contributed equally to the work and share joint authorship.,National Gonococcal Reference Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Clinical Microbiology, University of Dublin, Trinity College, St. James's Hospital, Dublin, Ireland
| | - Magnus Unemo
- Authors contributed equally to the work and share joint authorship.,WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Swedish Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
40
|
Bazzo ML, Golfetto L, Gaspar PC, Pires AF, Ramos MC, Franchini M, Ferreira WA, Unemo M, Benzaken AS. First nationwide antimicrobial susceptibility surveillance for Neisseria gonorrhoeae in Brazil, 2015-16. J Antimicrob Chemother 2019; 73:1854-1861. [PMID: 29635367 DOI: 10.1093/jac/dky090] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives Gonorrhoea and antimicrobial resistance (AMR) in Neisseria gonorrhoeae are major public health concerns globally. Enhanced AMR surveillance for gonococci is essential worldwide; however, recent quality-assured gonococcal AMR surveillance in Latin America, including Brazil, has been limited. Our aims were to (i) establish the first nationwide gonococcal AMR surveillance, quality assured according to WHO standards, in Brazil, and (ii) describe the antimicrobial susceptibility of clinical gonococcal isolates collected from 2015 to 2016 in all five main regions (seven sentinel sites) of Brazil. Methods Gonococcal isolates from 550 men with urethral discharge were examined for susceptibility to ceftriaxone, cefixime, azithromycin, ciprofloxacin, benzylpenicillin and tetracycline using the agar dilution method, according to CLSI recommendations and quality assured according to WHO standards. Results The levels of resistance (intermediate susceptibility) to tetracycline, ciprofloxacin, benzylpenicillin and azithromycin were 61.6% (34.2%), 55.6% (0.5%), 37.1% (60.4%) and 6.9% (8.9%), respectively. All isolates were susceptible to ceftriaxone and cefixime using the US CLSI breakpoints. However, according to the European EUCAST cefixime breakpoints, 0.2% (n = 1) of isolates were cefixime resistant and 6.9% (n = 38) of isolates had a cefixime MIC bordering on resistance. Conclusions This study describes the first national surveillance of gonococcal AMR in Brazil, which was quality assured according to WHO standards. The high resistance to ciprofloxacin (which promptly informed a revision of the Brazilian sexually transmitted infection treatment guideline), emerging resistance to azithromycin and decreasing susceptibility to extended-spectrum cephalosporins necessitate continuous surveillance of gonococcal AMR and ideally treatment failures, and increased awareness when prescribing treatment in Brazil.
Collapse
Affiliation(s)
- M L Bazzo
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - L Golfetto
- Molecular Biology, Microbiology and Serology Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - P C Gaspar
- Department of Surveillance, Prevention and Control of Sexually Transmitted Infections, HIV/AIDS and Viral Hepatitis, Ministry of Health, Brasilia, Brazil
| | - A F Pires
- Department of Surveillance, Prevention and Control of Sexually Transmitted Infections, HIV/AIDS and Viral Hepatitis, Ministry of Health, Brasilia, Brazil.,University of Brasilia Postgraduate Program in Collective Health, Brasilia, Brazil
| | - M C Ramos
- Brazilian STD Society, Porto Alegre, Brazil
| | | | | | - M Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - A S Benzaken
- Department of Surveillance, Prevention and Control of Sexually Transmitted Infections, HIV/AIDS and Viral Hepatitis, Ministry of Health, Brasilia, Brazil
| | | |
Collapse
|
41
|
Antibiotic Resistance and Azithromycin Resistance Mechanism of Legionella pneumophila Serogroup 1 in China. Antimicrob Agents Chemother 2019; 63:AAC.00768-19. [PMID: 31405864 DOI: 10.1128/aac.00768-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Legionnaires' disease, caused by Legionella pneumophila, has been treated primarily with antibiotics. However, few reports have been published on antibiotic-resistant Legionella in China. Our aim was to determine the azithromycin resistance mechanism of L. pneumophila serogroup 1 in China. The sensitivities of 149 L. pneumophila serogroup 1 strains, isolated from clinical cases or environmental water in China from 2002 to 2016, to five antibiotics, including erythromycin, azithromycin, levofloxacin, moxifloxacin, and rifampin, were evaluated. The mechanisms of the resistance of L. pneumophila serogroup 1 to azithromycin were studied. The expression levels of efflux pump gene lpeAB and the MIC of azithromycin-resistant strains in the presence and absence of the efflux pump inhibitor carbonyl cyanide-chlorophenylhydrazone (CCCP) were determined. All 149 strains were sensitive to erythromycin, levofloxacin, moxifloxacin, and rifampin, among which 25 of the strains exhibited azithromycin resistance. These 25 strains, including strains of sequence type 1 (ST1), ST144, ST150, ST154, and ST629, were screened. Expression of lpeAB was responsible for the reduced azithromycin susceptibility in all 25 of these strains. The phenotypes of 25 strains with virulence were linked by evaluating the intracellular growth ability in mouse macrophage J774 cells. Among the 25 strains, 60% were more virulent than the ATCC 33152 reference strain. The results determined in our study represent data supporting the further study of the antibiotic sensitivity of L. pneumophila strains in China.
Collapse
|
42
|
Unemo M, Lahra MM, Cole M, Galarza P, Ndowa F, Martin I, Dillon JAR, Ramon-Pardo P, Bolan G, Wi T. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex Health 2019; 16:412-425. [PMID: 31437420 PMCID: PMC7035961 DOI: 10.1071/sh19023] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a serious public health problem, compromising the management and control of gonorrhoea globally. Resistance in N. gonorrhoeae to ceftriaxone, the last option for first-line empirical monotherapy of gonorrhoea, has been reported from many countries globally, and sporadic failures to cure especially pharyngeal gonorrhoea with ceftriaxone monotherapy and dual antimicrobial therapies (ceftriaxone plus azithromycin or doxycycline) have been confirmed in several countries. In 2018, the first gonococcal isolates with ceftriaxone resistance plus high-level azithromycin resistance were identified in England and Australia. The World Health Organization (WHO) Global Gonococcal Antimicrobial Surveillance Program (GASP) is essential to monitor AMR trends, identify emerging AMR and provide evidence for refinements of treatment guidelines and public health policy globally. Herein we describe the WHO GASP data from 67 countries in 2015-16, confirmed gonorrhoea treatment failures with ceftriaxone with or without azithromycin or doxycycline, and international collaborative actions and research efforts essential for the effective management and control of gonorrhoea. In most countries, resistance to ciprofloxacin is exceedingly high, azithromycin resistance is present and decreased susceptibility or resistance to ceftriaxone has emerged. Enhanced global collaborative actions are crucial for the control of gonorrhoea, including improved prevention, early diagnosis, treatment of index patient and partner (including test-of-cure), improved and expanded AMR surveillance (including surveillance of antimicrobial use and treatment failures), increased knowledge of correct antimicrobial use and the pharmacokinetics and pharmacodynamics of antimicrobials and effective drug regulations and prescription policies (including antimicrobial stewardship). Ultimately, rapid, accurate and affordable point-of-care diagnostic tests (ideally also predicting AMR and/or susceptibility), new therapeutic antimicrobials and, the only sustainable solution, gonococcal vaccine(s) are imperative.
Collapse
Affiliation(s)
- Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85 Örebro, Sweden; and Corresponding author.
| | - Monica M Lahra
- World Health Organization Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
| | - Michelle Cole
- National Infection Service, Public Health England, London, UK
| | - Patricia Galarza
- National Reference Laboratory for STDs, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Francis Ndowa
- Skin and Genitourinary Medicine Clinic, Harare, Zimbabwe
| | - Irene Martin
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | | | - Pilar Ramon-Pardo
- Communicable Diseases and Environmental Determinants of Health Department Pan American Health Organization/World Health Organization, Washington, DC, USA
| | - Gail Bolan
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
43
|
Emergence and Spread of Neisseria gonorrhoeae Strains with High-Level Resistance to Azithromycin in Taiwan from 2001 to 2018. Antimicrob Agents Chemother 2019; 63:AAC.00773-19. [PMID: 31235631 DOI: 10.1128/aac.00773-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
A total of 598 Neisseria gonorrhoeae isolates obtained from patients in Taiwan from 2001 to 2018 were evaluated. The MICs of ceftriaxone (CRO) and azithromycin (AZM) against the isolates were determined by the agar dilution method. N. gonorrhoeae isolates with AZM MICs of ≥1 μg/ml were identified and characterized by the presence of AZM resistance determinants. For high-level AZM-resistant (AZM-HLR) isolates (MIC ≥ 256 μg/ml), genotyping was performed using multilocus sequence typing (MLST) and N. gonorrhoeae multiantigen sequence typing (NG-MAST). Among the N. gonorrhoeae isolates studied, 8.7% (52/598) exhibited AZM MICs of ≥1 μg/ml. Thirteen of the 52 isolates contained A2059G (23S rRNA NG-STAR type 1) or C2611T (23S rRNA NG-STAR type 2) mutations. The prevalence of the A2059G mutation was higher in AZM-HLR isolates (P < 0.001). The -35A deletion in the promoter region of the mtrR gene did not differ between AZM-HLR isolates (100%, 10/10) and the isolates with AZM MICs of 1 μg/ml to 64 μg/ml (95.2%, 40/42) (P = 1.000). The presence of mutations in the mtrR coding region was significantly different between these two groups at 90% (9/10) and 26.2% (11/42), respectively (P < 0.001). The AZM-HLR isolates, all carrying four mutated A2059G alleles, a -35A deletion, and G45D, were classified as MLST 12039/10899 and NG-MAST 1866/16497. In conclusion, Taiwan is among the countries reporting gonococci with high-level resistance to AZM so that a single dose of 1 g ceftriaxone intramuscularly as the first choice for management of N. gonorrhoeae infection should be evaluated.
Collapse
|
44
|
Whiley DM, Kundu RL, Jennison AV, Buckley C, Limnios A, Hogan T, Enriquez R, El Nasser J, George CR, Lahra MM. Azithromycin-resistant Neisseria gonorrhoeae spreading amongst men who have sex with men (MSM) and heterosexuals in New South Wales, Australia, 2017. J Antimicrob Chemother 2019; 73:1242-1246. [PMID: 29373697 DOI: 10.1093/jac/dky017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 11/15/2022] Open
Abstract
Objectives To identify the genetic basis of resistance as well as to better understand the epidemiology of a recent surge in azithromycin-resistant Neisseria gonorrhoeae in New South Wales, Australia. Methods Azithromycin-resistant N. gonorrhoeae isolates (n = 118) collected from 107 males, 10 females and 1 transsexual between January and July 2017 were genotyped using a previously described iPLEX method. The results were compared with phenotypic resistance profiles and available patient data. Results The iPLEX results revealed 10 different N. gonorrhoeae genotypes (designated AZI-G1 to AZI-G10) of which three were responsible for the majority of infections; AZI-G10 (74.6%, 88 isolates; 87 males and 1 transsexual), AZI-G4 (11.0%, 13 isolates; 7 males and 6 females) and AZI-G7 (6.8%, 8 isolates; 7 males and 1 female). The observed resistance was attributable to one of two different azithromycin resistance mechanisms; the 23S rRNA C2611T mutation was identified in 24% of isolates, whereas the majority of resistance (76%) was associated with a meningococcal-type mtrR variant. Additionally, one isolate was found to harbour both the 23S rRNA C2611T mutation and a type XXXIV mosaic penA sequence associated with cephalosporin resistance. Conclusions These data indicate outbreaks of azithromycin-resistant gonococci amongst networks of MSM and heterosexuals in New South Wales. The results also provide further evidence that azithromycin may soon be an ineffective treatment option for gonococcal infection and highlight the urgent need to explore alternative therapies.
Collapse
Affiliation(s)
- David M Whiley
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia.,Pathology Queensland Central Laboratory, Brisbane, Queensland 4029, Australia
| | - Ratan L Kundu
- WHO Collaborating Centre for STD, Microbiology Department, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Amy V Jennison
- Public Health Microbiology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Queensland 4108, Australia
| | - Cameron Buckley
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia
| | - Athena Limnios
- WHO Collaborating Centre for STD, Microbiology Department, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Tiffany Hogan
- WHO Collaborating Centre for STD, Microbiology Department, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Rodney Enriquez
- WHO Collaborating Centre for STD, Microbiology Department, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Jasmin El Nasser
- WHO Collaborating Centre for STD, Microbiology Department, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - C Robert George
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead, New South Wales 2145, Australia
| | - Monica M Lahra
- WHO Collaborating Centre for STD, Microbiology Department, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, New South Wales 2031, Australia.,School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
45
|
Carannante A, Ciammaruconi A, Vacca P, Anselmo A, Fillo S, Palozzi AM, Fortunato A, Lista F, Stefanelli P. Genomic Characterization of Gonococci from Different Anatomic Sites, Italy, 2007-2014. Microb Drug Resist 2019; 25:1316-1324. [PMID: 31219400 DOI: 10.1089/mdr.2018.0371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent decades, Neisseria gonorrhoeae has developed resistance to several antimicrobial classes. Molecular epidemiology approaches are useful for detecting emerging, often resistant, gonococcal clones. In this study, 67 N. gonorrhoeae isolates from different anatomic sites, collected over 8 years in Italy, were analyzed by whole genome sequencing (WGS). WGS was performed using the Illumina NextSeq 500 platform. Phylogenetic analysis was based on core single nucleotide polymorphism (SNP) and core genome multilocus sequence typing (cgMLST). N. gonorrhoeae multi-antigen sequence typing (NG-MAST), MLST, and N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) were carried out in silico using WGS data. Antimicrobial susceptibility against a four-drug panel was evaluated using a gradient diffusion method. Overall, gonococci clustered in accordance with NG-MAST, MLST, NG-STAR, and antimicrobials susceptibility profiles, but not with the site of isolation, HIV status, and patient sexual orientation. Phylogenetic analysis identified nine clades: two of them were the predominant and including gonococci of G1407 and G2400 genogroups.
Collapse
Affiliation(s)
- Anna Carannante
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center, Rome, Italy
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
46
|
Kubanov A, Solomka V, Plakhova X, Chestkov A, Petrova N, Shaskolskiy B, Dementieva E, Leinsoo A, Gryadunov D, Deryabin D. Summary and Trends of the Russian Gonococcal Antimicrobial Surveillance Programme, 2005 to 2016. J Clin Microbiol 2019; 57:e02024-18. [PMID: 30894437 PMCID: PMC6535600 DOI: 10.1128/jcm.02024-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 02/01/2023] Open
Abstract
The Russian Gonococcal Antimicrobial Surveillance Programme (RU-GASP) was established in 2004 and operated continuously during the years from 2005 to 2016. The aims of this study were to summarize the RU-GASP results over this 12-year period and evaluate the trends in Neisseria gonorrhoeae antimicrobial resistance in Russia. In total, 5,038 verified N. gonorrhoeae isolates from 40 participating regions were tested for susceptibility to six antimicrobials via an agar dilution method. DNA loci involved in antimicrobial resistance were identified via minisequencing or DNA microarray techniques. From 2005 to 2016, increasing susceptibility to penicillin G (from 22.6% to 63.0%), tetracycline (from 34.8% to 53.0%), and ciprofloxacin (from 50.6% to 68.6%) was observed, but resistance to these drugs remained high. The proportions of isolates nonsusceptible to azithromycin and spectinomycin peaked in 2011 and decreased thereafter. Of the isolates, only 6 and 23 were identified as nonsusceptible to ceftriaxone according to the CLSI definitions and EUCAST breakpoint (0.57% of the total population), respectively. Comparison of N. gonorrhoeae antimicrobial resistance genetic determinants in 2005 versus those in 2016 showed a significant decrease in the number of isolates carrying chromosomal mutations. The proportion of isolates with wild-type genotypes increased from 11.7% in 2005 to 30.3% in 2016. Thus, the RU-GASP can be considered a successful gonorrhea surveillance program, and the current state of N. gonorrhoeae antimicrobial resistance in Russia is less serious than that in other WHO GASP regions.
Collapse
Affiliation(s)
- Alexey Kubanov
- State Research Center of Dermatovenerology and Cosmetology, Moscow, Russia
| | - Viktoria Solomka
- State Research Center of Dermatovenerology and Cosmetology, Moscow, Russia
| | - Xenia Plakhova
- State Research Center of Dermatovenerology and Cosmetology, Moscow, Russia
| | - Aleksandr Chestkov
- State Research Center of Dermatovenerology and Cosmetology, Moscow, Russia
| | - Natalya Petrova
- State Research Center of Dermatovenerology and Cosmetology, Moscow, Russia
| | - Boris Shaskolskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Dementieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Arvo Leinsoo
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Gryadunov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Deryabin
- State Research Center of Dermatovenerology and Cosmetology, Moscow, Russia
| |
Collapse
|
47
|
Tran TX, Le TT, Trieu LP, Austin CM, Van Quyen D, Nguyen HM. Whole-genome sequencing and characterization of an antibiotic resistant Neisseria meningitidis B isolate from a military unit in Vietnam. Ann Clin Microbiol Antimicrob 2019; 18:16. [PMID: 31060558 PMCID: PMC6501280 DOI: 10.1186/s12941-019-0315-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/27/2019] [Indexed: 12/30/2022] Open
Abstract
Background Invasive meningococcal disease (IMD) persists in military units in Vietnam despite the availability of antibiotics and vaccines. A hindrance to reducing the incidence of IMD in Vietnam is a lack of molecular data from isolates of the causative agent, Neisseria meningitidis from this country. Here, we characterized key genetic and epidemiological features of an invasive N. meningitidis isolate from a military unit in Vietnam using whole-genome sequencing. Methods Neisseria meningitidis was isolated from a conscript admitted for meningitis and tested against seven antibiotics. DNA from the isolate was extracted and sequenced using the Illumina HiSeq platform. Denovo assembly and scaffolding were performed to construct a draft genome assembly, from which genes were predicted and functionally annotated. Genome analysis included epidemiological characterization, genomic composition and identification of antibiotic resistance genes. Results Susceptibility testing of the isolate showed high levels of resistance to chloramphenicol and diminished susceptibility to ampicillin and rifampicin. A draft genome of ~ 2.1 Mb was assembled, containing 2451 protein coding sequences, 49 tRNAs and 3 rRNAs. Fifteen coding sequences sharing ≥ 84% identity with known antibiotic resistance genes were identified. Genome analysis revealed abundant repetitive DNAs and two prophages. Epidemiological typing revealed newly described sequence type, antigenic finetype and Bexsero® Antigen Sequence Typing (BAST). The BAST profile showed no coverage by either Bexsero® or Trumenba®. Conclusions Our results present the first genome assembly of an invasive N. meningitidis isolate from a military unit in Vietnam. This study illustrates the usefulness of whole genome sequencing (WGS) analysis for epidemiological and antibiotic resistance studies and surveillance of IMD in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
| | - Trang Thu Le
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
| | - Long Phi Trieu
- Laboratory of Microbiology, Military Institute of Preventive Medicine, 21 Trung Liet Street, Dong Da District, Hanoi, Vietnam
| | - Christopher M Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam. .,Pharmacological, Medical and Agronomical Biotechnology (PMAB) Department, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.
| | - Huong Minh Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
48
|
Emergence of Neisseria gonorrhoeae Strains Harboring a Novel Combination of Azithromycin-Attenuating Mutations. Antimicrob Agents Chemother 2019; 63:AAC.02313-18. [PMID: 30917979 DOI: 10.1128/aac.02313-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
The nimbleness of Neisseria gonorrhoeae to evade the effect of antibiotics has perpetuated the fight against antibiotic-resistant gonorrhea for more than 80 years. The ability to develop resistance to antibiotics is attributable to its indiscriminate nature in accepting and integrating exogenous DNA into its genome. Here, we provide data demonstrating a novel combination of the 23S rRNA A2059G mutation with a mosaic-multiple transferable resistance (mosaic-mtr) locus haplotype in 14 N. gonorrhoeae isolates with high-level azithromycin MICs (≥256 μg/ml), a combination that may confer more fitness than in previously identified isolates with high-level azithromycin resistance. To our knowledge, this is the first description of N. gonorrhoeae strains harboring this novel combination of resistance determinants. These strains were isolated at two independent jurisdictions participating in the Gonococcal Isolate Surveillance Project (GISP) and in the Strengthening the U.S. Response to Resistant Gonorrhea (SURRG) project. The data suggest that the genome of N. gonorrhoeae continues to shuffle its genetic material. These findings further illuminate the genomic plasticity of N. gonorrhoeae, which allows this pathogen to develop mutations to escape the inhibitory effects of antibiotics.
Collapse
|
49
|
Closed Genome Sequences of Clinical Neisseria gonorrhoeae Strains Obtained from Combined Oxford Nanopore and Illumina Sequencing. Microbiol Resour Announc 2019; 8:MRA00072-19. [PMID: 30834380 PMCID: PMC6395865 DOI: 10.1128/mra.00072-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological agent of gonorrhea, the second most common notifiable disease in the United States. Here, we used a hybrid approach combining Oxford Nanopore Technologies MinION and Illumina MiSeq sequencing data to obtain closed genome sequences of nine clinical N. gonorrhoeae isolates. Neisseria gonorrhoeae is the etiological agent of gonorrhea, the second most common notifiable disease in the United States. Here, we used a hybrid approach combining Oxford Nanopore Technologies MinION and Illumina MiSeq sequencing data to obtain closed genome sequences of nine clinical N. gonorrhoeae isolates.
Collapse
|
50
|
Sánchez-Busó L, Harris SR. Using genomics to understand antimicrobial resistance and transmission in Neisseria gonorrhoeae. Microb Genom 2019; 5:e000239. [PMID: 30698520 PMCID: PMC6421347 DOI: 10.1099/mgen.0.000239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Gonorrhoea infections are on the increase and strains that are resistant to all antimicrobials used to treat the disease have been found worldwide. These observations encouraged the World Health Organization to include Neisseria gonorrhoeae on their list of high-priority organisms in need of new treatments. Fortunately, concurrent resistance to both antimicrobials used in dual therapy is still rare. The fight against antimicrobial resistance (AMR) must begin from an understanding of how it evolves and spreads in sexual networks. Genome-based analyses have allowed the study of the gonococcal population dynamics and transmission, giving a novel perspective on AMR gonorrhoea. Here, we will review past, present and future treatment options for gonorrhoea and explain how genomics is helping to increase our understanding of the changing AMR and transmission landscape. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Infection Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Simon R. Harris
- Infection Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| |
Collapse
|