1
|
Liang Q, Chen N, Wang W, Zhang B, Luo J, Zhong Y, Zhang F, Zhang Z, Martín–Rodríguez AJ, Wang Y, Xiang L, Xiong X, Hu R, Zhou Y. Co-occurrence of ST412 Klebsiella pneumoniae isolates with hypermucoviscous and non-mucoviscous phenotypes in a short-term hospitalized patient. mSystems 2024; 9:e0026224. [PMID: 38904378 PMCID: PMC11265266 DOI: 10.1128/msystems.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.
Collapse
Affiliation(s)
- Qinghua Liang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Yilong County People’s Hospital, Nanchong, China
| | - Nan Chen
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Biying Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Jinjing Luo
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Ying Zhong
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Alberto J. Martín–Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital,Southwest Medical University, Luzhou, China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medicine University, Luzhou, China
| |
Collapse
|
2
|
Wang L, Zhang X, Zhou X, Bi Y, Wang M, Guo Q, Yang F. Insertion of IS Pa1635 in IS CR1 Creates a Hybrid Promoter for blaPER-1 Resulting in Resistance to Novel β-lactam/β-lactamase Inhibitor Combinations and Cefiderocol. Antimicrob Agents Chemother 2023; 67:e0013523. [PMID: 37212660 PMCID: PMC10269150 DOI: 10.1128/aac.00135-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Eleven blaPER-1-positive Pseudomonas aeruginosa clinical isolates showed variable susceptibility to ceftazidime-avibactam (CZA). The genetic contexts of blaPER-1 were identical (ISCR1-blaPER-1-gst) except for the ST697 isolate HS204 (ISCR1-ISPa1635-blaPER-1-gst). The insertion of ISPa1635 in ISCR1 upstream of blaPER-1 created a hybrid promoter, which elevated the blaPER-1 transcription level and resulted in increased resistance to CZA, ceftolozane-tazobactam, cefepime-zidebactam, and cefiderocol. Diversity in the promoter activity of blaPER-1 partially explains the variable susceptibility to CZA in PER-producing isolates.
Collapse
Affiliation(s)
- Leilei Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xuefei Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xun Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yingmin Bi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fan Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
3
|
Castanheira M, Mendes RE, Gales AC. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin Infect Dis 2023; 76:S166-S178. [PMID: 37125466 PMCID: PMC10150277 DOI: 10.1093/cid/ciad109] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex is the most commonly identified species in the genus Acinetobacter and it accounts for a large percentage of nosocomial infections, including bacteremia, pneumonia, and infections of the skin and urinary tract. A few key clones of A. baumannii-calcoaceticus are currently responsible for the dissemination of these organisms worldwide. Unfortunately, multidrug resistance is a common trait among these clones due to their unrivalled adaptive nature. A. baumannii-calcoaceticus isolates can accumulate resistance traits by a plethora of mechanisms, including horizontal gene transfer, natural transformation, acquisition of mutations, and mobilization of genetic elements that modulate expression of intrinsic and acquired genes.
Collapse
Affiliation(s)
| | | | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Jiang J, Chen L, Chen X, Li P, Xu X, Fowler VG, van Duin D, Wang M. Carbapenemase-Encoding Gene Copy Number Estimator (CCNE): a Tool for Carbapenemase Gene Copy Number Estimation. Microbiol Spectr 2022; 10:e0100022. [PMID: 35863018 PMCID: PMC9431437 DOI: 10.1128/spectrum.01000-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Carbapenemase production is one of the leading mechanisms of carbapenem resistance in Gram-negative bacteria. An increase in carbapenemase gene (blaCarb) copies is an important mechanism of carbapenem resistance. No currently available bioinformatics tools allow for reliable detection and reporting of carbapenemase gene copy numbers. Here, we describe the carbapenemase-encoding gene copy number estimator (CCNE), a ready-to-use bioinformatics tool that was developed to estimate blaCarb copy numbers from whole-genome sequencing data. Its performance on Klebsiella pneumoniae carbapenemase gene (blaKPC) copy number estimation was evaluated by simulation and quantitative PCR (qPCR), and the results were compared with available algorithms. CCNE has two components, CCNE-acc and CCNE-fast. CCNE-acc detects blaCarb copy number in a comprehensive and high-accuracy way, while CCNE-fast rapidly screens blaCarb copy numbers. CCNE-acc achieved the best accuracy (100%) and the lowest root mean squared error (RMSE; 0.07) in simulated noise data sets, compared to the assembly-based method (23.4% accuracy, 1.697 RMSE) and the OrthologsBased method (78.9% accuracy, 0.395 RMSE). In the qPCR validation, a high consistency was observed between the blaKPC copy number determined by qPCR and that determined with CCNE. Reverse transcription-qPCR transcriptional analysis of 40 isolates showed that blaKPC expression was positively correlated with the blaKPC copy numbers detected by CCNE (P < 0.001). An association study of 357 KPC-producing K. pneumoniae isolates and their antimicrobial susceptibility identified a significant association between the estimated blaKPC copy number and MICs of imipenem (P < 0.001) and ceftazidime-avibactam (P < 0.001). Overall, CCNE is a useful genomic tool for the analysis of antimicrobial resistance genes copy number; it is available at https://github.com/biojiang/ccne. IMPORTANCE Globally disseminated carbapenem-resistant Enterobacterales is an urgent threat to public health. The most common carbapenem resistance mechanism is the production of carbapenemases. Carbapenemase-producing isolates often exhibit a wide range of carbapenem MICs. Higher carbapenem MICs have been associated with treatment failure. The increase of carbapenemase gene (blaCarb) copy numbers contributes to increased carbapenem MICs. However, blaCarb gene copy number detection is not routinely conducted during a genomic analysis, in part due to the lack of optimal bioinformatics tools. In this study, we describe a ready-to-use tool we developed and designated the carbapenemase-encoding gene copy number estimator (CCNE) that can be used to estimate the blaCarb copy number directly from whole-genome sequencing data, and we extended the data to support the analysis of all known blaCarb genes and some other antimicrobial resistance genes. Furthermore, CCNE can be used to interrogate the correlations between genotypes and susceptibility phenotypes and to improve our understanding of antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Jianping Jiang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Xin Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Vance G. Fowler
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David van Duin
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Girlich D, Bonnin RA, Proust A, Naas T, Dortet L. Undetectable Production of the VIM-1 Carbapenemase in an Atlantibacter hermannii Clinical Isolate. Front Microbiol 2021; 12:741972. [PMID: 34987484 PMCID: PMC8721206 DOI: 10.3389/fmicb.2021.741972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The differential expression of VIM-1 in Atlantibacter hermannii WEB-2 and Enterobacter hormaechei ssp. hoffmannii WEB-1 clinical isolates from a rectal swab of a hospitalized patient in France was investigated. A. hermannii WEB-2 was resistant to all β-lactams except carbapenems. It produced ESBL SHV-12, but the Carba NP test failed to detect any carbapenemase activity despite the production of VIM-1. Conversely, E. hormaechei WEB-1, previously recovered from the same patient, was positive for the detection of carbapenemase activity. The blaVIM–1 gene was located on a plasmid and embedded within class 1 integron. Both plasmids were of the same IncA incompatibility group and conferred the same resistance pattern when electroporated in Escherichia coli TOP10 or Enterobacter cloacae CIP7933. Quantitative RT-PCR experiments indicated a weaker replication of pWEB-2 in A. hermannii as compared to E. hormaechei. An isogenic mutant of A. hermannii WEB-2 selected after sequential passages with increased concentrations of imipenem possessed higher MICs for carbapenems and cephalosporins including cefiderocol, higher levels of the blaVIM–1 gene transcripts, and detectable carbapenemase activity using the Carba NP test. Assessment of read coverage demonstrated that a duplication of the region surrounding blaVIM–1 gene occurred in the A. hermannii mutant with detectable carbapenemase activity. The lack of detection of the VIM-1 carbapenemase activity in A. hermannii WEB-2 isolate was likely due to a weak replication of the IncA plasmid harboring the blaVIM–1 gene. Imipenem as selective pressure led to a duplication of this gene on the plasmid and to the restoration of a significant carbapenem-hydrolyzing phenotype.
Collapse
Affiliation(s)
- Delphine Girlich
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Alexis Proust
- Department of Hormonal Biochemistry, Hôpital de Bicêtre, Assistance Publique—Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- LabEx Lermit, Faculty of Medicine, INSERM UMR 1184—Team RESIST, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- *Correspondence: Laurent Dortet,
| |
Collapse
|
6
|
Bonnin RA, Jousset AB, Chiarelli A, Emeraud C, Glaser P, Naas T, Dortet L. Emergence of New Non-Clonal Group 258 High-Risk Clones among Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae Isolates, France. Emerg Infect Dis 2021; 26:1212-1220. [PMID: 32441629 PMCID: PMC7258464 DOI: 10.3201/eid2606.191517] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The worldwide spread of Klebsiella pneumoniae carbapenemase–producing Klebsiella pneumoniae (KPC-Kp) isolates was reported to be caused by dissemination of 1 clonal complex (i.e., clonal group [CG] 258, which includes sequence types [STs] 258 and 512). We conducted whole-genome sequencing and epidemiologic analysis of all KPC-Kp isolates in France in 2018 and found that new successful high-risk clones of ST147, ST307, ST231, and ST383 are now the main drivers of blaKPC genes. The blaKPC genes were mostly carried by Tn4401a and Tn4401d structures and a new non–Tn4401 element. Our epidemiologic investigations showed that the emergence of these non-CG258 KPC-Kp isolates in France was linked to dissemination of these clones from Portugal. Thus, KPC-Kp epidemiology has changed in Europe, at least in several non–KPC-endemic countries of western Europe, such as France and Portugal, where CG258 is not the most prevalent clone.
Collapse
|
7
|
Couvé-Deacon E, Jové T, Afouda P, Barraud O, Tilloy V, Scaon E, Hervé B, Burucoa C, Kempf M, Marcos JY, Ploy MC, Garnier F. Class 1 integrons in Acinetobacter baumannii: a weak expression of gene cassettes to counterbalance the lack of LexA-driven integrase repression. Int J Antimicrob Agents 2019; 53:491-499. [DOI: 10.1016/j.ijantimicag.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/29/2022]
|
8
|
Jousset AB, Rosinski-Chupin I, Takissian J, Glaser P, Bonnin RA, Naas T. Transcriptional Landscape of a bla KPC-2 Plasmid and Response to Imipenem Exposure in Escherichia coli TOP10. Front Microbiol 2018; 9:2929. [PMID: 30559731 PMCID: PMC6286996 DOI: 10.3389/fmicb.2018.02929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC−2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC−2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.
Collapse
Affiliation(s)
- Agnès B Jousset
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Isabelle Rosinski-Chupin
- Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMRS 3525, Paris, France
| | - Julie Takissian
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Glaser
- Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMRS 3525, Paris, France
| | - Rémy A Bonnin
- Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Thierry Naas
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", Faculty of Medicine, Paris-Sud University, Le Kremlin-Bicêtre, France.,Joint Research Unit Evolution and Ecology of Resistance to Antibiotics, Institut Pasteur-APHP-University Paris Sud, Paris, France
| |
Collapse
|
9
|
Molecular Characterization of OXA-198 Carbapenemase-Producing Pseudomonas aeruginosa Clinical Isolates. Antimicrob Agents Chemother 2018; 62:AAC.02496-17. [PMID: 29581118 DOI: 10.1128/aac.02496-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Carbapenemase-producing Pseudomonadaceae have increasingly been reported worldwide, with an ever-increasing heterogeneity of carbapenem resistance mechanisms, depending on the bacterial species and the geographical location. OXA-198 is a plasmid-encoded class D β-lactamase involved in carbapenem resistance in one Pseudomonas aeruginosa isolate from Belgium. In the setting of a multicenter survey of carbapenem resistance in P. aeruginosa strains in Belgian hospitals in 2013, three additional OXA-198-producing P. aeruginosa isolates originating from patients hospitalized in one hospital were detected. To reveal the molecular mechanism underlying the reduced susceptibility to carbapenems, MIC determinations, whole-genome sequencing, and PCR analyses to confirm the genetic organization were performed. The plasmid harboring the blaOXA-198 gene was characterized, along with the genetic relatedness of the four P. aeruginosa isolates. The blaOXA-198 gene was harbored on a class 1 integron carried by an ∼49-kb IncP-type plasmid proposed as IncP-11. The same plasmid was present in all four P. aeruginosa isolates. Multilocus sequence typing revealed that the isolates all belonged to sequence type 446, and single-nucleotide polymorphism analysis revealed only a few differences between the isolates. This report describes the structure of a 49-kb plasmid harboring the blaOXA-198 gene and presents the first description of OXA-198-producing P. aeruginosa isolates associated with a hospital-associated cluster episode.
Collapse
|