1
|
Woodland JG, Coertzen D, Wicht KJ, Hidalgo VF, Pasaje CFA, Godoy LC, Qahash T, Mmonwa MM, Dziwornu GA, Wambua L, Harries S, Korkor CM, Njoroge M, Krugmann L, Taylor D, Leshabane M, Langeveld H, Rabie T, Reader J, van der Watt M, Venter N, Erlank E, Aswat AS, Koekemoer LL, Yeo T, Jeon JH, Fidock DA, Gamo FJ, Wittlin S, Niles JC, Llinas M, Coulson LB, Birkholtz LM, Chibale K. The ATM Kinase Inhibitor AZD0156 Is a Potent Inhibitor of Plasmodium Phosphatidylinositol 4-Kinase (PI4Kβ) and Is an Attractive Candidate for Medicinal Chemistry Optimization Against Malaria. Angew Chem Int Ed Engl 2025:e202425206. [PMID: 40317875 DOI: 10.1002/anie.202425206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
New compounds targeting human malaria parasites are critical for effective malaria control and elimination. Here, we pursued the imidazoquinolinone AZD0156 (MMV1580483), a human ataxia-telangiectasia mutated (ATM) kinase inhibitor that completed Phase I clinical trials as an anticancer agent. We validated its in vitro activity against the two main forms of the Plasmodium falciparum parasite in the human host, viz. the asexual blood (symptomatic) stage and sexual gametocyte (transmission) stage. Resistance selection, cross-resistance, biochemical, and conditional knockdown studies revealed that AZD0156 inhibits P. falciparum phosphatidylinositol 4-kinase type III beta (PfPI4Kβ), a clinically-validated target for the treatment of malaria. Metabolic perturbations, fixed-ratio isobolograms, killing kinetics and morphological evaluation correlated AZD0156 inhibition with other known PI4Kβ inhibitors. The compound showed favorable in vivo pharmacokinetic properties and 81% antimalarial efficacy (4 × 50 mg kg-1) in a P. berghei mouse malaria infection model. Importantly, a cleaner biochemical profile was measured against human kinases (MAP4K4, MINK1) implicated in embryofoetal developmental toxicity associated with the PfPI4Kβ inhibitor MMV390048. This improved kinase selectivity profile and structural differentiation from other PI4Kβ inhibitors, together with its multistage antiplasmodial activity and favorable pharmacokinetic properties, makes AZD0156 an attractive candidate for target-based drug repositioning against malaria via a medicinal chemistry optimization approach.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Charisse Flerida A Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Luiz C Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tarrick Qahash
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Mmakwena M Mmonwa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Lynn Wambua
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Sarah Harries
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Mathew Njoroge
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Liezl Krugmann
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Henrico Langeveld
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Tayla Rabie
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
| | - Nelius Venter
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Erica Erlank
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Ayesha S Aswat
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jin H Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Switzerland
- University of Basel, Basel, 4003, Switzerland
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Lauren B Coulson
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, 0028, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, 7602, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
2
|
Nguyen GB, Cooper CA, McWhorter O, Sharma R, Elliot A, Ruberto A, Freitas R, Pathak AK, Kyle DE, Maher SP. Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol. Malar J 2024; 23:357. [PMID: 39580415 PMCID: PMC11585928 DOI: 10.1186/s12936-024-05155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Malaria, a disease caused by parasites of the genus Plasmodium, continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites. METHODS After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose-response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens' predictive value. RESULTS Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 103 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose-response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity. CONCLUSIONS This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
Collapse
Affiliation(s)
- Gia-Bao Nguyen
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Olivia McWhorter
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ritu Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anne Elliot
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Anthony Ruberto
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Rafael Freitas
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Ashutosh K Pathak
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Naude M, van Heerden A, Reader J, van der Watt M, Niemand J, Joubert D, Siciliano G, Alano P, Njoroge M, Chibale K, Herreros E, Leroy D, Birkholtz LM. Eliminating malaria transmission requires targeting immature and mature gametocytes through lipoidal uptake of antimalarials. Nat Commun 2024; 15:9896. [PMID: 39548094 PMCID: PMC11568134 DOI: 10.1038/s41467-024-54144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Novel antimalarial compounds targeting both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum, would greatly benefit malaria elimination strategies. However, most compounds affecting asexual blood stage parasites show severely reduced activity against gametocytes. The impact of this activity loss on a compound's transmission-blocking activity is unclear. Here, we report the systematic evaluation of the activity loss against gametocytes and investigate the confounding factors contributing to this. A threshold for acceptable activity loss between asexual blood stage parasites and gametocytes was defined, with near-equipotent compounds required to prevent continued gametocyte maturation and onward transmission. Target abundance is not predictive of gametocytocidal activity, but instead, lipoidal uptake is the main barrier of dual activity and is influenced by distinct physicochemical properties. This study provides guidelines for the required profiles of potential dual-active antimalarial agents and facilitates the development of effective transmission-blocking compounds.
Collapse
Affiliation(s)
- Mariska Naude
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Dorè Joubert
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Department of Biochemistry, Stellenbosch University, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Greyling N, van der Watt M, Gwarinda H, van Heerden A, Greenhouse B, Leroy D, Niemand J, Birkholtz LM. Genetic complexity alters drug susceptibility of asexual and gametocyte stages of Plasmodium falciparum to antimalarial candidates. Antimicrob Agents Chemother 2024; 68:e0129123. [PMID: 38259087 PMCID: PMC10916389 DOI: 10.1128/aac.01291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.
Collapse
Affiliation(s)
- Nicola Greyling
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Mariëtte van der Watt
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Hazel Gwarinda
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Bryan Greenhouse
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Reader J, van der Watt ME, Birkholtz LM. Streamlined and Robust Stage-Specific Profiling of Gametocytocidal Compounds Against Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926460. [PMID: 35846744 PMCID: PMC9282888 DOI: 10.3389/fcimb.2022.926460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria elimination is dependent on the ability to target both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum. These forms of the parasite are differentiated by unique developmental stages, each with their own biological mechanisms and processes. These individual stages therefore also respond differently to inhibitory compounds, and this complicates the discovery of multistage active antimalarial agents. The search for compounds with transmission-blocking activity has focused on screening for activity on mature gametocytes, with only limited descriptions available for the activity of such compounds on immature stage gametocytes. This therefore poses a gap in the profiling of antimalarial agents for pan-reactive, multistage activity to antimalarial leads. Here, we optimized an effective and robust strategy for the simple and cost-effective description of the stage-specific action of gametocytocidal antimalarial compounds.
Collapse
Affiliation(s)
- Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mariette E. van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Lyn-Marié Birkholtz,
| |
Collapse
|
6
|
Paonessa G, Siciliano G, Graziani R, Lalli C, Cecchetti O, Alli C, La Valle R, Petrocchi A, Sferrazza A, Bisbocci M, Falchi M, Toniatti C, Bresciani A, Alano P. Gametocyte-specific and all-blood-stage transmission-blocking chemotypes discovered from high throughput screening on Plasmodium falciparum gametocytes. Commun Biol 2022; 5:547. [PMID: 35668202 PMCID: PMC9170688 DOI: 10.1038/s42003-022-03510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Blocking Plasmodium falciparum human-to-mosquito transmission is essential for malaria elimination, nonetheless drugs killing the pathogenic asexual stages are generally inactive on the parasite transmissible stages, the gametocytes. Due to technical and biological limitations in high throughput screening of non-proliferative stages, the search for gametocyte-killing molecules so far tested one tenth the number of compounds screened on asexual stages. Here we overcome these limitations and rapidly screened around 120,000 compounds, using not purified, bioluminescent mature gametocytes. Orthogonal gametocyte assays, selectivity assays on human cells and asexual parasites, followed by compound clustering, brought to the identification of 84 hits, half of which are gametocyte selective and half with comparable activity against sexual and asexual parasites. We validated seven chemotypes, three of which are, to the best of our knowledge, novel. These molecules are able to inhibit male gametocyte exflagellation and block parasite transmission through the Anopheles mosquito vector in a standard membrane feeding assay. This work shows that interrogating a wide and diverse chemical space, with a streamlined gametocyte HTS and hit validation funnel, holds promise for the identification of dual stage and gametocyte-selective compounds to be developed into new generation of transmission blocking drugs for malaria elimination.
Collapse
Affiliation(s)
- Giacomo Paonessa
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Graziani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Cristiana Lalli
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Ottavia Cecchetti
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Cristina Alli
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Roberto La Valle
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Monica Bisbocci
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Mario Falchi
- Centro Nazionale AIDS, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Toniatti
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
- Department of Drug Discovery, IRBM S.p.A., Pomezia, Roma, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
7
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
8
|
Lagardère P, Fersing C, Masurier N, Lisowski V. Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents. Pharmaceuticals (Basel) 2021; 15:35. [PMID: 35056092 PMCID: PMC8780093 DOI: 10.3390/ph15010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers-thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines-and their anti-infective properties. Broad-spectrum thienopyrimidines with biological properties such as antibacterial, antifungal, antiparasitic and antiviral inspired us to analyze and compile their structure-activity relationship (SAR) and classify their synthetic pathways. This review explains the main access route to synthesize thienopyrimidines from thiophene derivatives or from pyrimidine analogs. In addition, SAR study and promising anti-infective activity of these scaffolds are summarized in figures and explanatory diagrams. Ligand-receptor interactions were modeled when the biological target was identified and the crystal structure was solved.
Collapse
Affiliation(s)
- Prisca Lagardère
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
| | - Cyril Fersing
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, CEDEX 5, 34298 Montpellier, France
| | - Nicolas Masurier
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
| | - Vincent Lisowski
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
9
|
A New Thienopyrimidinone Chemotype Shows Multistage Activity against Plasmodium falciparum, Including Artemisinin-Resistant Parasites. Microbiol Spectr 2021; 9:e0027421. [PMID: 34724729 PMCID: PMC8557901 DOI: 10.1128/spectrum.00274-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease via the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as “M1” herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC50] = 0.045 μM) and liver (EC50 = 0.45 μM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC50 = 0.227 μM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. IMPORTANCE This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against Plasmodium drug resistance and block interhuman transmission of malaria.
Collapse
|
10
|
Niemand J, van Biljon R, van der Watt M, van Heerden A, Reader J, van Wyk R, Orchard L, Chibale K, Llinás M, Birkholtz LM. Chemogenomic Fingerprints Associated with Stage-Specific Gametocytocidal Compound Action against Human Malaria Parasites. ACS Infect Dis 2021; 7:2904-2916. [PMID: 34569223 DOI: 10.1021/acsinfecdis.1c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinase-focused inhibitors previously revealed compounds with differential activity against different stages of Plasmodium falciparum gametocytes. MMV666810, a 2-aminopyrazine, is more active on late-stage gametocytes, while a pyrazolopyridine, MMV674850, preferentially targets early-stage gametocytes. Here, we probe the biological mechanisms underpinning this differential stage-specific killing using in-depth transcriptome fingerprinting. Compound-specific chemogenomic profiles were observed with MMV674850 treatment associated with biological processes shared between asexual blood stage parasites and early-stage gametocytes but not late-stage gametocytes. MMV666810 has a distinct profile with clustered gene sets associated primarily with late-stage gametocyte development, including Ca2+-dependent protein kinases (CDPK1 and 5) and serine/threonine protein kinases (FIKK). Chemogenomic profiling therefore highlights essential processes in late-stage gametocytes, on a transcriptional level. This information is important to prioritize compounds that preferentially compromise late-stage gametocytes for further development as transmission-blocking antimalarials.
Collapse
Affiliation(s)
- Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
11
|
El Akkaoui A, Koubachi J, Guillaumet G, El Kazzouli S. Synthesis and Functionalization of Imidazo[1,2‐
b
]Pyridazine by Means of Metal‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed El Akkaoui
- Laboratory of Analytical and Molecular Chemistry (LCAM) Polydisciplinary Faculty of Safi Cadi Ayyad University, Sidi Bouzid, B.P. 4162 46000 Safi Morocco
| | - Jamal Koubachi
- Polydisciplinary Faculty of Taroudant Laboratory of Applied and Environmental Chemistry (LACAPE) Faculty of Sciences Ibn Zohr University of Agadir, B.P 271 83000 Taroudant Morocco
| | - Gérald Guillaumet
- Institute of Organic and Analytical Chemistry University of Orleans, UMR CNRS 7311, BP 6759 45067 Orleans Cedex 2 France
- Euromed Research Centre School of Engineering in Biomedical and Biotechnology Euromed University of Fes (UEMF) Route de Meknès 30000 Fez Morocco
| | - Saïd El Kazzouli
- Euromed Research Centre School of Engineering in Biomedical and Biotechnology Euromed University of Fes (UEMF) Route de Meknès 30000 Fez Morocco
| |
Collapse
|
12
|
Leshabane M, Dziwornu GA, Coertzen D, Reader J, Moyo P, van der Watt M, Chisanga K, Nsanzubuhoro C, Ferger R, Erlank E, Venter N, Koekemoer L, Chibale K, Birkholtz LM. Benzimidazole Derivatives Are Potent against Multiple Life Cycle Stages of Plasmodium falciparum Malaria Parasites. ACS Infect Dis 2021; 7:1945-1955. [PMID: 33673735 DOI: 10.1021/acsinfecdis.0c00910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The continued emergence of resistance to front-line antimalarial treatments is of great concern. Therefore, new compounds that potentially have a novel target in various developmental stages of Plasmodium parasites are needed to treat patients and halt the spread of malaria. Here, several benzimidazole derivatives were screened for activity against the symptom-causing intraerythrocytic asexual blood stages and the transmissible gametocyte stages of P. falciparum. Submicromolar activity was obtained for 54 compounds against asexual blood stage parasites with 6 potent at IC50 < 100 nM while not displaying any marked toxicity against mammalian cells. Nanomolar potency was also observed against gametocytes with two compounds active against early stage gametocytes and two compounds active against late-stage gametocytes. The transmission-blocking potential of the latter was confirmed as they could prevent male gamete exflagellation and the lead compound reduced transmission by 72% in an in vivo mosquito feeding model. These compounds therefore have activity against multiple stages of Plasmodium parasites with potential for differential targets.
Collapse
Affiliation(s)
- Meta Leshabane
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | | | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Phanankosi Moyo
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Kelly Chisanga
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Richard Ferger
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Erica Erlank
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Nelius Venter
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Lizette Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, 2193, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
13
|
van Heerden A, van Wyk R, Birkholtz LM. Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action. Front Cell Infect Microbiol 2021; 11:688256. [PMID: 34268139 PMCID: PMC8277430 DOI: 10.3389/fcimb.2021.688256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022] Open
Abstract
The rapid development of antimalarial resistance motivates the continued search for novel compounds with a mode of action (MoA) different to current antimalarials. Phenotypic screening has delivered thousands of promising hit compounds without prior knowledge of the compounds’ exact target or MoA. Whilst the latter is not initially required to progress a compound in a medicinal chemistry program, identifying the MoA early can accelerate hit prioritization, hit-to-lead optimization and preclinical combination studies in malaria research. The effects of drug treatment on a cell can be observed on systems level in changes in the transcriptome, proteome and metabolome. Machine learning (ML) algorithms are powerful tools able to deconvolute such complex chemically-induced transcriptional signatures to identify pathways on which a compound act and in this manner provide an indication of the MoA of a compound. In this study, we assessed different ML approaches for their ability to stratify antimalarial compounds based on varied chemically-induced transcriptional responses. We developed a rational gene selection approach that could identify predictive features for MoA to train and generate ML models. The best performing model could stratify compounds with similar MoA with a classification accuracy of 76.6 ± 6.4%. Moreover, only a limited set of 50 biomarkers was required to stratify compounds with similar MoA and define chemo-transcriptomic fingerprints for each compound. These fingerprints were unique for each compound and compounds with similar targets/MoA clustered together. The ML model was specific and sensitive enough to group new compounds into MoAs associated with their predicted target and was robust enough to be extended to also generate chemo-transcriptomic fingerprints for additional life cycle stages like immature gametocytes. This work therefore contributes a new strategy to rapidly, specifically and sensitively indicate the MoA of compounds based on chemo-transcriptomic fingerprints and holds promise to accelerate antimalarial drug discovery programs.
Collapse
Affiliation(s)
- Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
14
|
Horatscheck A, Andrijevic A, Nchinda AT, Le Manach C, Paquet T, Khonde LP, Dam J, Pawar K, Taylor D, Lawrence N, Brunschwig C, Gibhard L, Njoroge M, Reader J, van der Watt M, Wicht K, de Sousa ACC, Okombo J, Maepa K, Egan TJ, Birkholtz LM, Basarab GS, Wittlin S, Fish PV, Street LJ, Duffy J, Chibale K. Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and In Vivo Efficacy in the Plasmodium falciparum NSG Mouse Model. J Med Chem 2020; 63:13013-13030. [PMID: 33103428 DOI: 10.1021/acs.jmedchem.0c01411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.
Collapse
Affiliation(s)
- André Horatscheck
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Ana Andrijevic
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Aloysius T Nchinda
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Tanya Paquet
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Lutete Peguy Khonde
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jean Dam
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kailash Pawar
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, University of Cape Town, Rondebosch 7701, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Kathryn Wicht
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Keletso Maepa
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Gregory S Basarab
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute ,Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | - Paul V Fish
- Alzheimer's Research UK, UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
| | - Leslie J Street
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - James Duffy
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva, Switzerland
| | - Kelly Chibale
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
15
|
Madhav H, Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur J Med Chem 2020; 210:112955. [PMID: 33131885 DOI: 10.1016/j.ejmech.2020.112955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
Malaria is an endemic disease, prevalent in tropical and subtropical regions which cost half of million deaths annually. The eradication of malaria is one of the global health priority nevertheless, current therapeutic efforts seem to be insufficient due to the emergence of drug resistance towards most of the available drugs, even first-line treatment ACT, unavailability of the vaccine, and lack of drugs with a new mechanism of action. Intensification of antimalarial research in recent years has resulted into the development of single dose multistage therapeutic agents which has advantage of overcoming the antimalarial drug resistance. The present review explored the current progress in the development of new promising antimalarials against prominent target proteins that have the potential to be a clinical candidate. Here, we also reviewed different aspects of drug resistance and highlighted new drug candidates that are currently in a clinical trial or clinical development, along with a few other molecules with excellent antimalarial activity overs ACTs. The summarized scientific value of previous approaches and structural features of antimalarials related to the activity are highlighted that will be helpful for the development of next-generation antimalarials.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
16
|
Moyo P, Shamburger W, van der Watt ME, Reader J, de Sousa ACC, Egan TJ, Maharaj VJ, Bringmann G, Birkholtz LM. Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:51-58. [PMID: 32505117 PMCID: PMC7270141 DOI: 10.1016/j.ijpddr.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery and development of multistage antimalarial drugs targeting intra-erythrocytic asexual and sexual Plasmodium falciparum parasites is of utmost importance to achieve the ambitious goal of malaria elimination. Here, we report the validation of naphthylisoquinoline (NIQ) alkaloids and their synthetic analogues as multistage active antimalarial drug candidates. A total of 30 compounds were tested, of which 17 exhibited IC50 values <1 μM against drug-sensitive P. falciparum parasites (NF54 strain); 15 of these retained activity against a panel of drug-resistant strains. These compounds showed low in vitro cytotoxicity against HepG2 cells, with selectivity indices of >10. The tested compounds showed activity in vitro against both early- and late-stage P. falciparum gametocytes while blocking male gamete formation (>70% inhibition of exflagellation at 2 μM). Additionally, five selected compounds were found to have good solubility (≥170 μM in PBS at pH 6.5), while metabolic stability towards human, mouse, and rat microsomes ranged from >90% to >7% after 30 min. Dioncophylline C (2a) emerged as a front runner from the study, displaying activity against both asexual parasites and gametocytes, a lack of cross-resistance to chloroquine, good solubility, and microsomal stability. Overall, this is the first report on the multistage activity of NIQs and their synthetic analogues including gametocytocidal and gametocidal effects induced by this class of compounds. Naphthylisoquinolines (NIQs) validated as antimalarial hit candidates. First report on transmission-blocking properties of NIQs and analogues. 15 compounds active across 9 P. falciparum strains, with acceptable RI <10 and SI >10. 5 compounds show good solubility and microsomal stability. Dioncophylline C is the frontrunner antimalarial candidate with multistage activity.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - William Shamburger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mariëtte E van der Watt
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Ana Carolina C de Sousa
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany; Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
17
|
Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep 2020; 10:2355. [PMID: 32047203 PMCID: PMC7012883 DOI: 10.1038/s41598-020-59298-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
The epigenome of the malaria parasite, Plasmodium falciparum, is associated with regulation of various essential processes in the parasite including control of proliferation during asexual development as well as control of sexual differentiation. The unusual nature of the epigenome has prompted investigations into the potential to target epigenetic modulators with novel chemotypes. Here, we explored the diversity within a library of 95 compounds, active against various epigenetic modifiers in cancerous cells, for activity against multiple stages of P. falciparum development. We show that P. falciparum is differentially susceptible to epigenetic perturbation during both asexual and sexual development, with early stage gametocytes particularly sensitive to epi-drugs targeting both histone and non-histone epigenetic modifiers. Moreover, 5 compounds targeting histone acetylation and methylation show potent multistage activity against asexual parasites, early and late stage gametocytes, with transmission-blocking potential. Overall, these results warrant further examination of the potential antimalarial properties of these hit compounds.
Collapse
Affiliation(s)
- Nanika Coetzee
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Daniel Opperman
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
18
|
Moyo P, Kunyane P, Selepe MA, Eloff JN, Niemand J, Louw AI, Maharaj VJ, Birkholtz LM. Bioassay-guided isolation and identification of gametocytocidal compounds from Artemisia afra (Asteraceae). Malar J 2019; 18:65. [PMID: 30849984 PMCID: PMC6408838 DOI: 10.1186/s12936-019-2694-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Optimal adoption of the malaria transmission-blocking strategy is currently limited by lack of safe and efficacious drugs. This has sparked the exploration of different sources of drugs in search of transmission-blocking agents. While plant species have been extensively investigated in search of malaria chemotherapeutic agents, comparatively less effort has been channelled towards exploring them in search of transmission-blocking drugs. Artemisia afra (Asteraceae), a prominent feature of South African folk medicine, is used for the treatment of a number of diseases, including malaria. In search of transmission-blocking compounds aimed against Plasmodium parasites, the current study endeavoured to isolate and identify gametocytocidal compounds from A. afra. METHODS A bioassay-guided isolation approach was adopted wherein a combination of solvent-solvent partitioning and gravity column chromatography was used. Collected fractions were continuously screened in vitro for their ability to inhibit the viability of primarily late-stage gametocytes of Plasmodium falciparum (NF54 strain), using a parasite lactate dehydrogenase assay. Chemical structures of isolated compounds were elucidated using UPLC-MS/MS and NMR data analysis. RESULTS Two guaianolide sesquiterpene lactones, 1α,4α-dihydroxybishopsolicepolide and yomogiartemin, were isolated and shown to be active (IC50 < 10 μg/ml; ~ 10 μM) against both gametocytes and intra-erythrocytic asexual P. falciparum parasites. Interestingly, 1α,4α-dihydroxybishopsolicepolide was significantly more potent against late-stage gametocytes than to early-stage gametocytes and intra-erythrocytic asexual P. falciparum parasites. Additionally, both isolated compounds were not overly cytotoxic against HepG2 cells in vitro. CONCLUSION This study provides the first instance of isolated compounds from A. afra against P. falciparum gametocytes as a starting point for further investigations on more plant species in search of transmission-blocking compounds.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Phaladi Kunyane
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mamoalosi A Selepe
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort, Pretoria, 0110, South Africa
| | - Jandeli Niemand
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Abraham I Louw
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
19
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
20
|
UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrob Agents Chemother 2018; 62:AAC.00012-18. [PMID: 29941635 PMCID: PMC6125526 DOI: 10.1128/aac.00012-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.
Collapse
|