1
|
Euteneuer CF, Davis BN, Lui LM, Neville AJ, Davis PH. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025; 14:290. [PMID: 40137776 PMCID: PMC11946689 DOI: 10.3390/pathogens14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The rise of bacterial infections is a global health issue that calls for the development and availability of additional antimicrobial agents. Known for its in vitro effects on Gram-positive organisms, the drug-like small molecule marinopyrrole A was re-examined for the potential of broader efficacy against a wider array of microbes. We uncovered selective efficacy against an important subset of Gram-negative bacteria from three genera: Neisseria, Moraxella, and Campylobacter. This susceptibility is correlated with the absence of canonical LPS in these specific Gram-negative species, a phenomenon observed with other hydrophobic anti-microbial compounds. Further, when exposed to molecules which inhibit the LpxC enzyme of the LPS synthesis pathway, previously resistant LPS-producing Gram-negative bacteria showed increased susceptibility to marinopyrrole A. These results demonstrate marinopyrrole A's efficacy against a broader range of Gram-negative bacteria than previously known, including N. gonorrhea, a species identified as a priority pathogen by the WHO.
Collapse
Affiliation(s)
| | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (C.F.E.); (B.N.D.); (L.M.L.); (A.J.N.)
| |
Collapse
|
2
|
John CM, Otala SA, Jarvis GA. Cyclization increases bactericidal activity of arginine-rich cationic cell-penetrating peptide for Neisseria gonorrhoeae. Microbiol Spectr 2024; 12:e0099724. [PMID: 39105587 PMCID: PMC11370255 DOI: 10.1128/spectrum.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
We previously reported that a linear cationic 12-amino acid cell-penetrating peptide (CPP) was bactericidal for Neisseria gonorrhoeae. In this study, our objectives were to determine the effect of cyclization of the linear CPP on its antibacterial activity for N. gonorrhoeae and cytotoxicity for human cells. We compared the bactericidal effect of 4-hour treatment with the linear CPP to that of CPPs cyclized by a thioether or a disulfide bond on human challenge and multi-drug resistant (MDR) strains of N. gonorrhoeae grown in cell culture media with 10% fetal bovine serum (FBS). The effect of lipooligosaccharide (LOS) sialylation on bactericidal activity was analyzed. We determined the ability of the CPPs to treat human cells infected in vitro with N. gonorrhoeae, to reduce the inflammatory response of human monocytic cells to gonococci, to kill strains of three commensal Neisseria species, and to inhibit gonococcal biofilms. The cyclized CPPs killed 100% of gonococci from all strains at 100 µM and >90% at 20 µM and were more potent than the linear form. The thioether-linked but not the disulfide-linked CPP was less cytotoxic for human cervical cells compared to the linear CPP. LOS sialylation had minimal effect on bactericidal activity. In treating infected human cells, the thioether-linked CPP at 20 µM killed >60% of extra- and intracellular bacteria and reduced TNF-α expression by THP-1 cells. The potency of the CPPs for the pathogenic and the commensal Neisseria was similar. The thioether-linked CPP partially eradicated gonococcal biofilms. Future studies will focus on determining efficacy in the female mouse model of gonorrhea.IMPORTANCENeisseria gonorrhoeae remains a major cause of sexually transmitted infections with 82 million cases worldwide in 2020, and 710,151 confirmed cases in the US in 2021, up 25% from 2017. N. gonorrhoeae can infect multiple tissues including the urethra, cervix, rectum, pharynx, and conjunctiva. The most serious sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause pelvic inflammatory disease, chronic pelvic pain, and infertility in 10%-20% of women. Control of gonococcal infection is widely recognized as increasingly challenging due to the lack of any vaccine. N. gonorrhoeae has quickly developed resistance to all but one class of antibiotics and the emergence of multidrug-resistant strains could result in untreatable infections. As such, gonorrhea is classified by the Center for Disease Control (CDC) as an urgent public health threat. The research presented herein on new therapeutics for gonorrhea has identified a cyclic cell-penetrating peptide (CPP) as a potent molecule targeting N. gonorrhoeae.
Collapse
Affiliation(s)
- Constance M. John
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Gary A. Jarvis
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
3
|
Kamal El-Sagheir AM, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. Rational design, synthesis, molecular modeling, biological activity, and mechanism of action of polypharmacological norfloxacin hydroxamic acid derivatives. RSC Med Chem 2023; 14:2593-2610. [PMID: 38099058 PMCID: PMC10718593 DOI: 10.1039/d3md00309d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 12/17/2023] Open
Abstract
Fluoroquinolones are broad-spectrum antibiotics that target gyrase and topoisomerase IV, involved in DNA compaction and segregation. We synthesized 28 novel norfloxacin hydroxamic acid derivatives with additional metal-chelating and hydrophobic pharmacophores, designed to enable interactions with additional drug targets. Several compounds showed equal or better activity than norfloxacin against Gram-positive, Gram-negative, and mycobacteria, with MICs as low as 0.18 μM. The most interesting derivatives were selected for in silico, in vitro, and in vivo mode of action studies. Molecular docking, enzyme inhibition, and bacterial cytological profiling confirmed inhibition of gyrase and topoisomerase IV for all except two tested derivatives (10f and 11f). Further phenotypic analysis revealed polypharmacological effects on peptidoglycan synthesis for four derivatives (16a, 17a, 17b, 20b). Interestingly, compounds 17a, 17b, and 20b, showed never seen before effects on cell wall synthetic enzymes, including MreB, MurG, and PonA, suggesting a novel mechanism of action, possibly impairing the lipid II cycle.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
| | | | - Ahmed S Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Jonatan Persson
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Farghaly A Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
4
|
Niu Z, Lei P, Wang Y, Wang J, Yang J, Zhang J. Small molecule LpxC inhibitors against gram-negative bacteria: Advances and future perspectives. Eur J Med Chem 2023; 253:115326. [PMID: 37023679 DOI: 10.1016/j.ejmech.2023.115326] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metalloenzyme with zinc ions as cofactors and is a key enzyme in the essential structural outer membrane lipid A synthesis commitment step of gram-negative bacteria. As LpxC is extremely homologous among different Gram-negative bacteria, it is conserved in almost all gram-negative bacteria, which makes LpxC a promising target. LpxC inhibitors have been reported extensively in recent years, such as PF-5081090 and CHIR-090 were found to have broad-spectrum antibiotic activity against P. aeruginosa and E. coli. They are mainly classified into hydroxamate inhibitors and non-hydroxamate inhibitors based on their structure, but no LpxC inhibitors have been marketed due to safety and activity issues. This review, therefore, focuses on small molecule inhibitors of LpxC against gram-negative pathogenic bacteria and covers recent advances in LpxC inhibitors, focusing on their structural optimization process, structure-activity relationships, and future directions, with the aim of providing ideas for the development of LpxC inhibitors and clinical research.
Collapse
|
5
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Lin EY, Adamson PC, Klausner JD. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021; 81:1153-1169. [PMID: 34097283 PMCID: PMC8182353 DOI: 10.1007/s40265-021-01530-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae is the second most common bacterial sexually transmitted infection in the world after Chlamydia trachomatis. The pathogen has developed resistance to every antibiotic currently approved for treatment, and multidrug-resistant strains have been identified globally. The current treatment recommended by the World Health Organization is ceftriaxone and azithromycin dual therapy. However, resistance to azithromycin and ceftriaxone are increasing and treatment failures have been reported. As a result, there is a critical need to develop novel strategies for mitigating the spread of antimicrobial-resistant N. gonorrhoeae through improved diagnosis and treatment of resistant infections. Strategies that are currently being pursued include developing molecular assays to predict resistance, utilizing higher doses of ceftriaxone, repurposing older antibiotics, and developing newer agents. In addition, efforts to discover a vaccine for N. gonorrhoeae have been reignited in recent years with the cross-protectivity provided by the N. meningitidis vaccine, with several new strategies and targets. Despite the significant progress that has been made, there is still much work ahead to combat antimicrobial-resistant N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 52-215, Los Angeles, CA 90095 USA
| | - Jeffrey D. Klausner
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USA
| |
Collapse
|
7
|
Yarlagadda V, Rao VN, Kaur M, Guitor AK, Wright GD. A Screen of Natural Product Extracts Identifies Moenomycin as a Potent Antigonococcal Agent. ACS Infect Dis 2021; 7:1569-1577. [PMID: 33826296 DOI: 10.1021/acsinfecdis.1c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increasing multidrug resistance in Neisseria gonorrheae is a growing public health crisis. Resistance to the last line therapies, cephalosporins and azithromycin, are of particular concern, fueling the need to discover new treatments. Here, we identified the phosphoglycolipid moenomycin from a screen of microbial natural products against drug-resistant N. gonorrheae as a potent antigonococcal agent. Moenomycin demonstrates excellent activity (MIC = 0.004-0.03 μg/mL) against a variety of multidrug-resistant N. gonorrheae. Importantly, moenomycin, thought to be a Gram-positive specific antibiotic, penetrates the Gram-negative gonococcal outer membrane. Moenomycin causes intracellular accumulation of peptidoglycan precursors, cell blebbing, and rupture of the cell envelope, all consistent with cell wall biosynthesis inhibition. Serial bacterial exposure to moenomycin for 14 days revealed slow development of resistance (MICDay14 = 0.03-0.06 μg/mL), unlike the clinically used drug azithromycin. Our results offer the potential utility of moenomycin as a lead for antigonococcal therapeutic candidates and warrant further investigation.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Vishwas N. Rao
- Medical Scientist Training Program, School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Manpreet Kaur
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Allison K. Guitor
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
8
|
John CM, Li M, Feng D, Jarvis GA. Cationic cell-penetrating peptide is bactericidal against Neisseria gonorrhoeae. J Antimicrob Chemother 2020; 74:3245-3251. [PMID: 31424547 DOI: 10.1093/jac/dkz339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Cell-penetrating peptides (CPPs) have been evaluated for intracellular delivery of molecules and several CPPs have bactericidal activity. Our objectives were to determine the effect of a 12 amino acid CPPs on survival and on the invasive and inflammatory potential of Neisseria gonorrhoeae. METHODS Survival of MDR and human challenge strains of N. gonorrhoeae grown in cell culture medium with 10% FBS was determined after treatment with the CPP and human antimicrobial peptide LL-37 for 4 h. Confocal microscopy was used to examine penetration of FITC-labelled CPP into bacterial cells. The ability of the CPP to prevent invasion of human ME-180 cervical epithelial cells and to reduce the induction of TNF-α in human THP-1 monocytic cells in response to gonococcal infection was assessed. Cytotoxicity of the CPP towards the THP-1 cells was determined. RESULTS The CPP was bactericidal, with 95%-100% killing of all gonococcal strains at 100 μM. Confocal microscopy of gonococci incubated with FITC-labelled CPP revealed the penetration of the peptide. CPP treatment of N. gonorrhoeae inhibited gonococcal invasion of ME-180 cells and reduced the expression of TNF-α induced in THP-1 cells by gonococci. The CPP showed no cytotoxicity towards human THP-1 cells. CONCLUSIONS Based on these promising results, future studies will focus on testing of CPP in the presence of other types of host cells and exploration of structural modifications of the CPP that could decrease its susceptibility to proteolysis and increase its potency.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Min Li
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Dongxiao Feng
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Pereira JC, Daher SS, Zorn KM, Sherwood M, Russo R, Perryman AL, Wang X, Freundlich MJ, Ekins S, Freundlich JS. Machine Learning Platform to Discover Novel Growth Inhibitors of Neisseria gonorrhoeae. Pharm Res 2020; 37:141. [PMID: 32661900 DOI: 10.1007/s11095-020-02876-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To advance fundamental biological and translational research with the bacterium Neisseria gonorrhoeae through the prediction of novel small molecule growth inhibitors via naïve Bayesian modeling methodology. METHODS Inspection and curation of data from the publicly available ChEMBL web site for small molecule growth inhibition data of the bacterium Neisseria gonorrhoeae resulted in a training set for the construction of machine learning models. A naïve Bayesian model for bacterial growth inhibition was utilized in a workflow to predict novel antibacterial agents against this bacterium of global health relevance from a commercial library of >105 drug-like small molecules. Follow-up efforts involved empirical assessment of the predictions and validation of the hits. RESULTS Specifically, two small molecules were found that exhibited promising activity profiles and represent novel chemotypes for agents against N. gonorrrhoeae. CONCLUSIONS This represents, to the best of our knowledge, the first machine learning approach to successfully predict novel growth inhibitors of this bacterium. To assist the chemical tool and drug discovery fields, we have made our curated training set available as part of the Supplementary Material and the Bayesian model is accessible via the web. Graphical Abstract.
Collapse
Affiliation(s)
- Janaina Cruz Pereira
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Samer S Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Matthew Sherwood
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Alexander L Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA.,Repare Therapeutics,, 7210 Rue Frederick-Banting Suite 100, Montreal, QC, H4S 2A1, Canada
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Madeleine J Freundlich
- Stuart Country Day School of the Sacred Heart, 1200 Stuart Road, Princeton, NJ, 08540, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.,Collaborations in Chemistry, Inc. 5616 Hilltop Needmore Road, Fuquay-, Varina, NC, 27526, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
10
|
|