1
|
Shen C, Luo L, Zhou H, Xiao Y, Zeng J, Zhang L, Pu J, Zeng J, Zhang N, Jiang Y, Xu L, Chen D, Li G, Wu K, Yu H, Wang M, Guo X, Wang J, Huang B, Chen C. Emergence and ongoing outbreak of ST80 vancomycin-resistant Enterococcus faecium in Guangdong province, China from 2021 to 2023: a multicenter, time-series and genomic epidemiological study. Emerg Microbes Infect 2024; 13:2361030. [PMID: 38801248 PMCID: PMC11159589 DOI: 10.1080/22221751.2024.2361030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Surveillance systems revealed that the prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased. We aim to investigate the epidemiological and genomic characteristics of VREfm in China. METHODS We collected 20,747 non-redundant E. faecium isolates from inpatients across 19 hospitals in six provinces between January 2018 and June 2023. VREfm was confirmed by antimicrobial susceptibility testing. The prevalence was analyzed using changepoint package in R. Genomic characteristics were explored by whole-genome sequencing. RESULTS 5.59% (1159/20,747) of E. faecium isolates were resistant to vancomycin. The prevalence of VREfm increased in Guangdong province from 5% before 2021 to 20-50% in 2023 (p < 0.0001), but not in the other five provinces. Two predominant clones before 2021, ST17 and ST78, were substituted by an emerging clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from Guangdong formed a single lineage (SC11) and were genetically distant from the ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm in SC11 carried a new type of plasmid harbouring a vanA cassette, which was embedded in a Tn1546-like structure flanked by IS1678 and ISL3. However, no conjugation-related gene was detected and no transconjugant was obtained in conjugation experiment, indicating that the outbreak of ST80 VREfm could be attributed to clonal transmission. CONCLUSIONS We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harbouring plasmid in Guangdong, China. This clone has also been identified in other provinces and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is needed to inform public health interventions.
Collapse
Affiliation(s)
- Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Li Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hongyun Zhou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yinglun Xiao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jinxiang Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Liling Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Ni Zhang
- Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yueting Jiang
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lingqing Xu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People’s Republic of China
| | - Dingqiang Chen
- Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Gang Li
- Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Kuihai Wu
- Clinical Laboratory, The First People's Hospital of Foshan, Foshan, People’s Republic of China
| | - Hua Yu
- Clinical Laboratory, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, People’s Republic of China
| | - Min Wang
- Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xuemin Guo
- Clinical Laboratory, Meizhou People's Hospital, Meizhou, People’s Republic of China
| | - Juan Wang
- Clinical Laboratory, Zhongshan People's Hospital, Zhongshan, People’s Republic of China
| | - Bin Huang
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Cinthi M, Coccitto SN, Simoni S, D'Achille G, Zeni G, Mazzariol A, Pocognoli A, Di Lodovico S, Di Giulio M, Morroni G, Mingoia M, Vignaroli C, Brenciani A, Giovanetti E. Molecular Characterization of Enterococcus faecium Clinical Isolates Harbouring erm (T) from an Italian Hospital. Curr Microbiol 2024; 81:431. [PMID: 39472351 DOI: 10.1007/s00284-024-03968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
The presence of erm(T) gene conferring resistance to macrolides, lincosamides and streptogramin B (MLSB), was screened in 296 enterococci collected from clinical samples in a central Italy hospital and seven Enterococcus faecium isolates resulted positive to erm(T) by PCR. All isolates were resistant to erythromycin, tetracycline, ciprofloxacin and ampicillin but susceptible to vancomycin and chloramphenicol. Whole Genome Sequencing analysis revealed that in five E. faecium isolates, all belonging to the sequence type ST80 included in the clonal complex CC17 responsible of nosocomial infections, erm (T) gene was chromosome-located, in different genetic contexts. In E. faecium 735,236, erm (T) was on a 4,159-bp region flanked by two IS1216 and inserted at the 3' end of the mp gene. In E. faecium 711,448 and 739,437, erm (T) was found in a 4,463-bp region identical to that detected in E. faecium 735,236 except for 319 bp. In E. faecium 713,729 and 757,415, erm (T) was on a 7,038-bp region flanked by IS1251 and ISEfm2 transposases and encompassed between the genes encoding a recombinase and three hypothetical proteins. erm(T)-carrying minicircles were detected in all isolates by inverse PCR assays demonstrating that erm(T) was included in mobile elements. However, in conjugation assays by filter mating, the erm(T) transferability was unsuccessful. Although macrolides are not used to treat enterococcal infections, the resistance is nonetheless widespread. These antibiotics are critically important in human medicine, but only few studies focused on erm (T)-harbouring clinical enterococci. The emergence of erm (T)-mediated erythromycin resistance among enterococci, potentially transferable to other nosocomial pathogens, should be constantly monitored.
Collapse
Affiliation(s)
- Marzia Cinthi
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia N Coccitto
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Serena Simoni
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gloria D'Achille
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Guido Zeni
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Antonella Pocognoli
- Clinical Microbiology Laboratory, Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy.
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
3
|
Vancomycin Resistance in Enterococcus faecium from the Dallas, Texas, Area Is Conferred Predominantly on pRUM-Like Plasmids. mSphere 2023; 8:e0002423. [PMID: 36939336 PMCID: PMC10117061 DOI: 10.1128/msphere.00024-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vancomycin-resistant E. faecium (VREfm) is a significant public health concern because of limited treatment options. Genomic surveillance can be used to monitor VREfm transmission and evolution. Genomic analysis of VREfm has not been reported for the Dallas/Fort Worth/Arlington, TX, area, which is currently the 4th largest metropolitan area in the United States. Our study aimed to address this gap in knowledge by analyzing the genomes of 46 VREfm strains and 1 vancomycin-sensitive comparator collected during routine fecal surveillance of high-risk patients upon admission to a Dallas, TX, hospital system (August to October 2015). Thirty-one complete and 16 draft genome sequences were generated. The closed VREfm genomes possessed up to 12 extrachromosomal elements each. Overall, 251 closed putative plasmid sequences assigned to previously described and newly defined rep family types were obtained. Phylogenetic analysis identified 10 different sequence types (STs) among the isolates, with the most prevalent being ST17 and ST18. Strikingly, all but three of the VREfm isolates encoded vanA-type vancomycin resistance within Tn1546-like elements on a pRUM-like (rep17) plasmid backbone. Relative to a previously reported typing scheme for the vanA-carrying Tn1546, new variants of the Tn1546 were identified that harbored a combination of 7 insertion sequences (IS), including 3 novel IS elements reported here (ISEfa16, ISEfa17, and ISEfa18). We conclude that pRUM-like plasmids are important vectors for vancomycin resistance in the Dallas, TX, area and should be a focus of plasmid surveillance efforts. IMPORTANCE Vancomycin is an antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria. Vancomycin resistance is common in clinical isolates of the Gram-positive pathogen Enterococcus faecium. Among E. faecium strains, vancomycin resistance genes can be disseminated by plasmids with different host ranges and transfer efficiencies. Surveillance of resistance plasmids is critical to understanding antibiotic resistance transmission. This study analyzed the genome sequences of VREfm isolates collected from the Dallas, TX, area, with particular focus on the mobile elements associated with vancomycin resistance genes. We found that a single plasmid family, the pRUM-like family, was associated with vancomycin resistance in the majority of isolates sampled. Our work suggests that the pRUM-like plasmids should continue to be studied to understand their mechanisms of maintenance, transmission, and evolution in VREfm.
Collapse
|
4
|
Hawkey J, Wyres KL, Judd LM, Harshegyi T, Blakeway L, Wick RR, Jenney AWJ, Holt KE. ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting. Genome Med 2022; 14:97. [PMID: 35999578 PMCID: PMC9396894 DOI: 10.1186/s13073-022-01103-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. Methods We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. Results We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3–6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. Conclusions Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01103-0.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam W J Jenney
- Microbiology Unit & Department of Infectious Diseases, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
5
|
Li L, Higgs C, Turner AM, Nong Y, Gorrie CL, Sherry NL, Dyet KH, Seemann T, Williamson DA, Stinear TP, Howden BP, Carter GP. Daptomycin Resistance Occurs Predominantly in vanA-Type Vancomycin-Resistant Enterococcus faecium in Australasia and Is Associated With Heterogeneous and Novel Mutations. Front Microbiol 2021; 12:749935. [PMID: 34745054 PMCID: PMC8564391 DOI: 10.3389/fmicb.2021.749935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Healthcare associated infections caused by vancomycin-resistant Enterococcus faecium (VREfm) have a major impact on health outcomes. VREfm is difficult to treat because of intrinsic and acquired resistance to many clinically used antimicrobials, with daptomycin being one of the few last line therapeutic options for treating multidrug-resistant VREfm. The emergence of daptomycin-resistant VREfm is therefore of serious clinical concern. Despite this, the impact that daptomycin-resistant VREfm have on patient health outcomes is not clearly defined and knowledge on the mechanisms and genetic signatures linked with daptomycin resistance in VREfm remains incomplete. To address these knowledge gaps, phenotypic daptomycin susceptibility testing was undertaken on 324 E. faecium isolates from Australia and New Zealand. Approximately 15% of study isolates were phenotypically resistant to daptomycin. Whole genome sequencing revealed a strong association between vanA-VREfm and daptomycin resistance, with 95% of daptomycin-resistant study isolates harbouring vanA. Genomic analyses showed that daptomycin-resistant VREfm isolates were polyclonal and carried several previously characterised mutations in the liaR and liaS genes as well as several novel mutations within the rpoB, rpoC, and dltC genes. Overall, 70% of daptomycin-resistant study isolates were found to carry mutations within the liaR, rpoB, rpoC, or dltC genes. Finally, in a mouse model of VREfm bacteraemia, infection with the locally dominant daptomycin-resistant clone led to reduced daptomycin treatment efficacy in comparison to daptomycin-susceptible E. faecium. These findings have important implications for ongoing VREfm surveillance activities and the treatment of VREfm infections.
Collapse
Affiliation(s)
- Lucy Li
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Higgs
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Adrianna M Turner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Yi Nong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Kristin H Dyet
- The Institute of Environmental Science and Research, Porirua, New Zealand
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,Antimicrobial Reference and Research Unit, Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Wyres KL, Hawkey J, Mirčeta M, Judd LM, Wick RR, Gorrie CL, Pratt NF, Garlick JS, Watson KM, Pilcher DV, McGloughlin SA, Abbott IJ, Macesic N, Spelman DW, Jenney AWJ, Holt KE. Genomic surveillance of antimicrobial resistant bacterial colonisation and infection in intensive care patients. BMC Infect Dis 2021; 21:683. [PMID: 34261450 PMCID: PMC8278603 DOI: 10.1186/s12879-021-06386-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Third-generation cephalosporin-resistant Gram-negatives (3GCR-GN) and vancomycin-resistant enterococci (VRE) are common causes of multi-drug resistant healthcare-associated infections, for which gut colonisation is considered a prerequisite. However, there remains a key knowledge gap about colonisation and infection dynamics in high-risk settings such as the intensive care unit (ICU), thus hampering infection prevention efforts. METHODS We performed a three-month prospective genomic survey of infecting and gut-colonising 3GCR-GN and VRE among patients admitted to an Australian ICU. Bacteria were isolated from rectal swabs (n = 287 and n = 103 patients ≤2 and > 2 days from admission, respectively) and diagnostic clinical specimens between Dec 2013 and March 2014. Isolates were subjected to Illumina whole-genome sequencing (n = 127 3GCR-GN, n = 41 VRE). Multi-locus sequence types (STs) and antimicrobial resistance determinants were identified from de novo assemblies. Twenty-three isolates were selected for sequencing on the Oxford Nanopore MinION device to generate completed reference genomes (one for each ST isolated from ≥2 patients). Single nucleotide variants (SNVs) were identified by read mapping and variant calling against these references. RESULTS Among 287 patients screened on admission, 17.4 and 8.4% were colonised by 3GCR-GN and VRE, respectively. Escherichia coli was the most common species (n = 36 episodes, 58.1%) and the most common cause of 3GCR-GN infection. Only two VRE infections were identified. The rate of infection among patients colonised with E. coli was low, but higher than those who were not colonised on admission (n = 2/33, 6% vs n = 4/254, 2%, respectively, p = 0.3). While few patients were colonised with 3GCR- Klebsiella pneumoniae or Pseudomonas aeruginosa on admission (n = 4), all such patients developed infections with the colonising strain. Genomic analyses revealed 10 putative nosocomial transmission clusters (≤20 SNVs for 3GCR-GN, ≤3 SNVs for VRE): four VRE, six 3GCR-GN, with epidemiologically linked clusters accounting for 21 and 6% of episodes, respectively (OR 4.3, p = 0.02). CONCLUSIONS 3GCR-E. coli and VRE were the most common gut colonisers. E. coli was the most common cause of 3GCR-GN infection, but other 3GCR-GN species showed greater risk for infection in colonised patients. Larger studies are warranted to elucidate the relative risks of different colonisers and guide the use of screening in ICU infection control.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mirianne Mirčeta
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ryan R Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel F Pratt
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jill S Garlick
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Kerrie M Watson
- Infectious Diseases Clinical Research Unit, The Alfred Hospital, Melbourne, Victoria, Australia
| | - David V Pilcher
- Intensive Care Unit, The Alfred Hospital, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care - Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Steve A McGloughlin
- Intensive Care Unit, The Alfred Hospital, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care - Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Iain J Abbott
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Nenad Macesic
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Denis W Spelman
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Adam W J Jenney
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia.
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
Rogers LA, Strong K, Cork SC, McAllister TA, Liljebjelke K, Zaheer R, Checkley SL. The Role of Whole Genome Sequencing in the Surveillance of Antimicrobial Resistant Enterococcus spp.: A Scoping Review. Front Public Health 2021; 9:599285. [PMID: 34178909 PMCID: PMC8222819 DOI: 10.3389/fpubh.2021.599285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Enterococcus spp. have arisen as important nosocomial pathogens and are ubiquitous in the gastrointestinal tracts of animals and the environment. They carry many intrinsic and acquired antimicrobial resistance genes. Because of this, surveillance of Enterococcus spp. has become important with whole genome sequencing emerging as the preferred method for the characterization of enterococci. A scoping review was designed to determine how the use of whole genome sequencing in the surveillance of Enterococcus spp. adds to our knowledge of antimicrobial resistance in Enterococcus spp. Scoping review design was guided by the PRISMA extension and checklist and JBI Reviewer's Guide for scoping reviews. A total of 72 articles were included in the review. Of the 72 articles included, 48.6% did not state an association with a surveillance program and 87.5% of articles identified Enterococcus faecium. The majority of articles included isolates from human clinical or screening samples. Significant findings from the articles included novel sequence types, the increasing prevalence of vancomycin-resistant enterococci in hospitals, and the importance of surveillance or screening for enterococci. The ability of enterococci to adapt and persist within a wide range of environments was also a key finding. These studies emphasize the importance of ongoing surveillance of enterococci from a One Health perspective. More studies are needed to compare the whole genome sequences of human enterococcal isolates to those from food animals, food products, the environment, and companion animals.
Collapse
Affiliation(s)
- Lindsay A. Rogers
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kayla Strong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C. Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Sylvia L. Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 2021; 12:765. [PMID: 33536414 PMCID: PMC7858641 DOI: 10.1038/s41467-021-20988-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.
Collapse
Affiliation(s)
- Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK
| | - Johan Pensar
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Susan Murray
- Uppsala University, Department for medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| | - Thomas S Wilkinson
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Lisa K Williams
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Jonathan Porter
- National Laboratory Service, Environment Agency, Starcross, UK
| | - Kirsty Kemmett
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK.
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
9
|
Arredondo-Alonso S, Top J, Corander J, Willems RJL, Schürch AC. Mode and dynamics of vanA-type vancomycin resistance dissemination in Dutch hospitals. Genome Med 2021; 13:9. [PMID: 33472670 PMCID: PMC7816424 DOI: 10.1186/s13073-020-00825-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Enterococcus faecium is a commensal of the gastrointestinal tract of animals and humans but also a causative agent of hospital-acquired infections. Resistance against glycopeptides and to vancomycin has motivated the inclusion of E. faecium in the WHO global priority list. Vancomycin resistance can be conferred by the vanA gene cluster on the transposon Tn1546, which is frequently present in plasmids. The vanA gene cluster can be disseminated clonally but also horizontally either by plasmid dissemination or by Tn1546 transposition between different genomic locations. METHODS We performed a retrospective study of the genomic epidemiology of 309 vancomycin-resistant E. faecium (VRE) isolates across 32 Dutch hospitals (2012-2015). Genomic information regarding clonality and Tn1546 characterization was extracted using hierBAPS sequence clusters (SC) and TETyper, respectively. Plasmids were predicted using gplas in combination with a network approach based on shared k-mer content. Next, we conducted a pairwise comparison between isolates sharing a potential epidemiological link to elucidate whether clonal, plasmid, or Tn1546 spread accounted for vanA-type resistance dissemination. RESULTS On average, we estimated that 59% of VRE cases with a potential epidemiological link were unrelated which was defined as VRE pairs with a distinct Tn1546 variant. Clonal dissemination accounted for 32% cases in which the same SC and Tn1546 variants were identified. Horizontal plasmid dissemination accounted for 7% of VRE cases, in which we observed VRE pairs belonging to a distinct SC but carrying an identical plasmid and Tn1546 variant. In 2% of cases, we observed the same Tn1546 variant in distinct SC and plasmid types which could be explained by mixed and consecutive events of clonal and plasmid dissemination. CONCLUSIONS In related VRE cases, the dissemination of the vanA gene cluster in Dutch hospitals between 2012 and 2015 was dominated by clonal spread. However, we also identified outbreak settings with high frequencies of plasmid dissemination in which the spread of resistance was mainly driven by horizontal gene transfer (HGT). This study demonstrates the feasibility of distinguishing between modes of dissemination with short-read data and provides a novel assessment to estimate the relative contribution of nested genomic elements in the dissemination of vanA-type resistance.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway.,Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK.,Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anita C Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Neumann B, Bender JK, Maier BF, Wittig A, Fuchs S, Brockmann D, Semmler T, Einsele H, Kraus S, Wieler LH, Vogel U, Werner G. Comprehensive integrated NGS-based surveillance and contact-network modeling unravels transmission dynamics of vancomycin-resistant enterococci in a high-risk population within a tertiary care hospital. PLoS One 2020; 15:e0235160. [PMID: 32579600 PMCID: PMC7314025 DOI: 10.1371/journal.pone.0235160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Vancomycin-resistant E. faecium (VRE) are an important cause of nosocomial infections, which are rapidly transmitted in hospitals. To identify possible transmission routes, we applied combined genomics and contact-network modeling to retrospectively evaluate routine VRE screening data generated by the infection control program of a hemato-oncology unit. Over 1 year, a total of 111 VRE isolates from 111 patients were collected by anal swabs in a tertiary care hospital in Southern Germany. All isolated VRE were whole-genome sequenced, followed by different in-depth bioinformatics analyses including genotyping and determination of phylogenetic relations, aiming to evaluate a standardized workflow. Patient movement data were used to overlay sequencing data to infer transmission events and strain dynamics over time. A predominant clone harboring vanB and exhibiting genotype ST117/CT469 (n = 67) was identified. Our comprehensive combined analyses suggested intra-hospital spread, especially of clone ST117/CT469, despite of extensive screening, single room placement, and contact isolation. A new interactive tool to visualize these complex data was designed. Furthermore, a patient-contact network-modeling approach was developed, which indicates both the periodic import of the clone into the hospital and its spread within the hospital due to patient movements. The analyzed spread of VRE was most likely due to placement of patients in the same room prior to positivity of screening. We successfully demonstrated the added value for this combined strategy to extract well-founded knowledge from interdisciplinary data sources. The combination of patient-contact modeling and high-resolution typing unraveled the transmission dynamics within the hospital department and, additionally, a constant VRE influx over time.
Collapse
Affiliation(s)
- Bernd Neumann
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
- * E-mail:
| | - Jennifer K. Bender
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Benjamin F. Maier
- Computational Epidemiology, Robert Koch Institute, Berlin, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Alice Wittig
- Computational Epidemiology, Robert Koch Institute, Berlin, Germany
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Stephan Fuchs
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Dirk Brockmann
- Computational Epidemiology, Robert Koch Institute, Berlin, Germany
- Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | | | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Wüzburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Wüzburg, Germany
| | | | - Ulrich Vogel
- Institute for Hygiene and Microbiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
11
|
Sun L, Xu J, Wang W, He F. Emergence of vanA-Type Vancomycin-Resistant Enterococcus faecium ST 78 Strain with a rep2-Type Plasmid Carrying a Tn1546-Like Element Isolated from a Urinary Tract Infection in China. Infect Drug Resist 2020; 13:949-955. [PMID: 32308438 PMCID: PMC7135120 DOI: 10.2147/idr.s247569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The emergence of vancomycin-resistant enterococci (VRE) dramatically narrows therapeutic options. Although the prevalence of VRE in China has maintained a low level, VRE outbreaks have been reported in some tertiary hospitals in the developed areas of China. The clonal background of vanA-positive Enterococcus faecium strains has not been well characterized in China. Here, we report the whole-genome sequence of a vanA-type vancomycin-resistant E. faecium belonging to sequence type (ST) 78 isolated from a urinary tract infection in China. Patients and Methods A vancomycin-resistant E. faecium was isolated from a 66-year-old male patient diagnosed with brainstem hemorrhage. Antibiotic susceptibility assays were performed according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Complete genome sequencing was performed using both the HiSeqTM 4000 platform and the MinION platform. Plasmid, genomic and phylogenetic relationship analysis were further performed. Results E. faecium VRE1 was resistant to all antimicrobials tested except for tetracyclines and oxazolidinones. The whole genome of E. faecium VRE1 was composed of one chromosomal DNA and four plasmids. Two virulence genes and five antimicrobial resistance genes were identified. In silico multilocus sequence typing (MLST) showed that it belonged to ST78 (clonal complex CC17), a well-known epidemic clone that is widespread in Europe and the United States. Three antimicrobial resistance genes, including aminoglycoside resistance genes ant(6)-Ia and aph(3ʹ)-III; and glycopeptide resistance gene vanA, were located on a rep2-type plasmid carrying a Tn1546-like element that has not been reported. The most closely related strain harboring a similar plasmid backbone was recovered from fodder sample in China that differed by 178 cgMLST loci. Conclusion Our study characterizes the genomic feature of a vancomycin-resistant E. faecium ST78 strain harboring a vanA-carrying plasmid in China. The ST78 clonal group possessed the potential to emerge as a successful vanA-carrying epidemic lineage in China.
Collapse
Affiliation(s)
- Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou Maternity and Child Health Care Hospital, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Juan Xu
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, People's Republic of China
| | - Weizhong Wang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Fang He
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
12
|
Ravi A, Halstead FD, Bamford A, Casey A, Thomson NM, van Schaik W, Snelson C, Goulden R, Foster-Nyarko E, Savva GM, Whitehouse T, Pallen MJ, Oppenheim BA. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microb Genom 2019; 5. [PMID: 31526447 PMCID: PMC6807385 DOI: 10.1099/mgen.0.000293] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
Collapse
Affiliation(s)
- Anuradha Ravi
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Fenella D Halstead
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Amy Bamford
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Snelson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | | | | | - George M Savva
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Tony Whitehouse
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Mark J Pallen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK.,School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK
| | - Beryl A Oppenheim
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| |
Collapse
|
13
|
Lemonidis K, Salih TS, Dancer SJ, Hunter IS, Tucker NP. Emergence of an Australian-like pstS-null vancomycin resistant Enterococcus faecium clone in Scotland. PLoS One 2019; 14:e0218185. [PMID: 31194809 PMCID: PMC6563996 DOI: 10.1371/journal.pone.0218185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Multi-locus sequencing typing (MLST) is widely used to monitor the phylogeny of microbial outbreaks. However, several strains of vancomycin-resistant Enterococcus faecium (VREfm) with a missing MLST locus (pstS) have recently emerged in Australia, with a few cases also reported in England. Here, we identified similarly distinct strains circulating in two neighbouring hospitals in Scotland. Whole genome sequencing of five VREfm strains isolated from these hospitals identified four pstS-null strains in both hospitals, while the fifth was multi-locus sequence type (ST) 262, which is the first documented in the UK. All five Scottish isolates had an insertion in the tetM gene, which is associated with increased susceptibility to tetracyclines, providing no other tetracycline-resistant gene is present. Such an insertion, which encompasses a dfrG gene and two currently uncharacterised genes, was additionally identified in all tested vanA-type pstS-null VREfm strains (5 English and 68 Australian). Phylogenetic comparison with other VREfm genomes indicates that the four pstS-null Scottish isolates sequenced in this study are more closely related to pstS-null strains from Australia rather than the English pstS-null isolates. Given how rapidly such pstS-null strains have expanded in Australia, the emergence of this clone in Scotland raises concerns for a potential outbreak.
Collapse
Affiliation(s)
- Kimon Lemonidis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| | - Talal S. Salih
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stephanie J. Dancer
- Department of Microbiology, Hairmyres Hospital, NHS Lanarkshire, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
Douglas AP, Marshall C, Baines SL, Ritchie D, Szer J, Madigan V, Chan HT, Ballard SA, Howden BP, Buising K, Slavin MA. Utilizing genomic analyses to investigate the first outbreak of vanA vancomycin-resistant Enterococcus in Australia with emergence of daptomycin non-susceptibility. J Med Microbiol 2019; 68:303-308. [PMID: 30663951 DOI: 10.1099/jmm.0.000916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The majority of vancomycin-resistant Enterococcus faecium (VREfm) in Australia is of the vanB genotype. An outbreak of vanA VREfm emerged in our haematology/oncology unit between November 2014 and May 2015. The first case of daptomycin non-susceptible E. faecium (DNSEfm) detected was a patient with vanA VREfm bacteraemia who showed clinical failure of daptomycin therapy, prompting microbiologic testing confirming daptomycin non-susceptibility. OBJECTIVES To describe the patient profiles, antibiotic susceptibility and genetic relatedness of vanA VREfm isolates in the outbreak. METHODS Chart review of vanA VREfm colonized and infected patients was undertaken to describe the demographics, clinical features and outcomes of therapy. Whole genome sequencing of vanA VREfm isolates involved in the outbreak was conducted to assess clonality. RESULTS In total, 29 samples from 24 patients tested positive for vanA VREfm (21 screening swabs and 8 clinical isolates). Five isolates were DNSEfm (four patients colonized, one patient with bacteraemia), with only one patient exposed to daptomycin previously. In silico multi-locus sequence typing of the isolates identified 25/26 as ST203, and 1/26 as ST796. Comparative genomic analysis revealed limited core genome diversity amongst the ST203 isolates, consistent with an outbreak of a single clone of vanA VREfm. CONCLUSIONS Here we describe an outbreak of vanA VREfm in a haematology/oncology unit. Genomic analysis supports transmission of an ST203 vanA VRE clone within this unit. Daptomycin non-susceptibility in 5/24 patients left linezolid as the only treatment option. Daptomycin susceptibility cannot be assumed in vanA VREfm isolates and confirmatory testing is recommended.
Collapse
Affiliation(s)
- Abby P Douglas
- 2 Peter MacCallum Cancer Centre, Melbourne, Australia.,1 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
| | - Caroline Marshall
- 1 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia.,3 The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,4 Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Sarah L Baines
- 5 Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David Ritchie
- 2 Peter MacCallum Cancer Centre, Melbourne, Australia.,4 Department of Medicine, University of Melbourne, Melbourne, Australia.,6 Department of Clinical Haematology and Bone Marrow Transplantation, Royal Melbourne Hospital, Melbourne, Australia
| | - Jeff Szer
- 2 Peter MacCallum Cancer Centre, Melbourne, Australia.,4 Department of Medicine, University of Melbourne, Melbourne, Australia.,6 Department of Clinical Haematology and Bone Marrow Transplantation, Royal Melbourne Hospital, Melbourne, Australia
| | - Victoria Madigan
- 7 Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| | - Hiu Tat Chan
- 7 Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| | - Susan A Ballard
- 8 Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P Howden
- 8 Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kirsty Buising
- 1 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia.,3 The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,4 Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Monica A Slavin
- 1 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia.,3 The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,2 Peter MacCallum Cancer Centre, Melbourne, Australia.,4 Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|