1
|
Prinster T, Harrison A, Dick C, Horvath DJ, Li B, Sievers G, Madamsetty R, Zhang J, Mason KM, Khoo C, Justice SS. Cranberry constituents prevent SOS-mediated filamentation of uropathogenic Escherichia coli. Infect Immun 2025; 93:e0060024. [PMID: 40208062 PMCID: PMC12070744 DOI: 10.1128/iai.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The diameter, length, and shape of bacteria are maintained with such high fidelity that these parameters are classically used as metrics in the distinction of bacterial species. Increasing evidence indicates that bacteria transiently shift their shapes into distinctive morphologies in response to environmental changes. Elongation of bacterial length into a filamentous shape provides unique survival advantages for many bacterial species. Analysis of 42 clinical isolates of uropathogenic Escherichia coli (UPEC) revealed that filamentation to host-derived antimicrobials is a conserved phenotype. Therefore, we hypothesize that filamentation represents a conserved mechanism of pathogenic bacterial persistence that can be targeted for narrow-spectrum, anti-virulence therapies. We demonstrate that cranberries prevent SulA-mediated filamentation of UPEC. Furthermore, we identify multiple fractions of cranberries that retain anti-filamentation properties. These studies provide mechanistic insight into the clinical efficacy of cranberry for patients with recurrent urinary tract infections. Inhibition of filamentation represents a novel approach to promote bacterial pathogen susceptibility to immune and antibiotic-mediated clearance to attenuate disease.
Collapse
Affiliation(s)
- Tracy Prinster
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Christopher Dick
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Dennis J. Horvath
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Birong Li
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Grace Sievers
- The College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | | | - Jingwen Zhang
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Christina Khoo
- Ocean Spray Cranberries, Inc, Lakeville, Massachusetts, USA
| | - Sheryl S. Justice
- The College of Nursing, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Liang S, Cai W, Mao R, Chen M, Dai X, Jin X, Kong W. Three simple and cost-effective assays for AAC(6')-Ib-cr enzyme activity. Front Microbiol 2025; 16:1513425. [PMID: 40351320 PMCID: PMC12061968 DOI: 10.3389/fmicb.2025.1513425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
The enzyme AAC(6')-Ib-cr belongs to plasmid-mediated quinolone resistance (PMQR), first reported in 2006 and now widely disseminating. Here, we developed three phenotypic methods to detect AAC(6')-Ib-cr enzyme-producing Enterobacteriaceae (APE), two of which are proposed innovatively in this research. These tests are based on the following principles: (i) Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) can measure the mass shift of 42 Da resulting from ciprofloxacin acetylation by the AAC(6')-Ib-cr enzyme. (ii) Co-incubation of ciprofloxacin disks with APE results in inactivation of the drug activity, making it unable to inhibit the growth of the indicator organism. We named this test the quinolone inactivation method (QIM). (iii) Based on the principles of the modified Hodge test, we designed the quinolone Hodge test (QHT). Through exploration of optimal conditions for three methods, we found that MALDI-TOF MS provides the most intuitive results after 1 h of incubation. The interpretability of the QIM and QHT results was significantly improved when the indicator organism E. coli ATCC25922 was replaced with a quinolone-slightly-resistant isolate. However, Proteus mirabilis was excluded from both QIM and QHT due to its swarming motility. Next, a validation study was conducted using a prospectively collected set of 187 clinical strains, demonstrating 100% specificity (MSM: 141/141; QIM, QHT: 135/135) and 100% sensitivity (MSM: 46/46; QIM, QHT: 33/33) compared to the genotype. In a word, this study presented three simple, efficient, and cost-effective methods for detecting APE, suitable for clinical microbiology laboratories under various conditions for the prevention and control of hospital infections.
Collapse
Affiliation(s)
- Shizhou Liang
- Department of Clinical Laboratory, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Wenpin Cai
- Department of Clinical Laboratory, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
- Department of TCM Science and Research Center, Wenzhou, Zhejiang, China
| | - Ruiben Mao
- Department of Clinical Laboratory, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Clinical Laboratory, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Xianning Dai
- Department of Clinical Laboratory, Wenzhou People’s Hospital, Wenzhou Women and Children’s Hospital, Wenzhou, Zhejiang, China
| | - Xiaoli Jin
- Department of Clinical Laboratory, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Wanzhong Kong
- Department of Clinical Laboratory, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Bush NG, Diez-Santos I, Sankara Krishna P, Clavijo B, Maxwell A. Insights into antibiotic resistance promoted by quinolone exposure. Antimicrob Agents Chemother 2025; 69:e0099724. [PMID: 39589140 PMCID: PMC11784200 DOI: 10.1128/aac.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Quinolone-induced antibiotic resistance (QIAR) refers to the phenomenon by which bacteria exposed to sublethal levels of quinolones acquire resistance to non-quinolone antibiotics. We have explored this in Escherichia coli MG1655 using a variety of compounds and bacteria carrying a quinolone-resistance mutation in gyrase, mutations affecting the SOS response, and mutations in error-prone polymerases. The nature of the antibiotic-resistance mutations was determined by whole-genome sequencing. Exposure to low levels of most quinolones tested led to mutations conferring resistance to chloramphenicol, ampicillin, kanamycin, and tetracycline. The mutations included point mutations and deletions and could mostly be correlated with the resistance phenotype. QIAR depended upon DNA gyrase and involved the SOS response but was not dependent on error-prone polymerases. Only moxifloxacin, among the quinolones tested, did not display a significant QIAR effect. We speculate that the lack of QIAR with moxifloxacin may be attributable to it acting via a different mechanism. In addition to the concerns about antimicrobial resistance to quinolones and other compounds, QIAR presents an additional challenge in relation to the usage of quinolone antibacterials.
Collapse
Affiliation(s)
- Natassja G. Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Isabel Diez-Santos
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Pilla Sankara Krishna
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bernardo Clavijo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
4
|
Cebrero-Cangueiro T, Herrera-Espejo S, Paniagua M, Labrador-Herrera G, Cisneros JM, Pachón J, Pachón-Ibáñez ME. Could the Adoptive Transfer of Memory Lymphocytes be an Alternative Treatment for Acinetobacter baumannii Infections? Int J Mol Sci 2024; 25:10550. [PMID: 39408879 PMCID: PMC11477510 DOI: 10.3390/ijms251910550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
We evaluated the efficacy of the adoptive transfer of memory B, CD4+, and CD8+ T lymphocytes compared with sulbactam and tigecycline in an experimental murine pneumonia model by two multidrug-resistant Acinetobacter baumannii strains, colistin-susceptible AbCS01 and colistin-resistant AbCR17. Pharmacodynamically optimized antimicrobial dosages were administered for 72 h, and intravenous administration of 2 × 106 of each of the memory cells in a single dose 30 min post-infection. Bacterial lung and blood counts and mortality rates were analyzed. Results showed that a single dose of memory B or CD4+ T cells was as effective as sulbactam in terms of bacterial clearance from the lungs and blood compared with the untreated mice or the tigecycline-treated mice inoculated with the AbCS01 strain. In the pneumonia model by AbCR17, a single dose of memory B or CD4+ T cells also reduced the bacterial load in the lungs compared with both antibiotic groups and was more efficacious than tigecycline in terms of blood clearance. Regarding survival, the adoptive transfer of memory B or CD4+ T cells was as effective as three days of sulbactam treatment for both strains. These data suggest that adoptive memory cell transfer could be a new effective treatment of multidrug-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Tania Cebrero-Cangueiro
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (T.C.-C.); (S.H.-E.); (M.P.); (G.L.-H.); (J.M.C.)
| | - Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (T.C.-C.); (S.H.-E.); (M.P.); (G.L.-H.); (J.M.C.)
| | - María Paniagua
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (T.C.-C.); (S.H.-E.); (M.P.); (G.L.-H.); (J.M.C.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gema Labrador-Herrera
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (T.C.-C.); (S.H.-E.); (M.P.); (G.L.-H.); (J.M.C.)
| | - José Miguel Cisneros
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (T.C.-C.); (S.H.-E.); (M.P.); (G.L.-H.); (J.M.C.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain;
| | - Jerónimo Pachón
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain;
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (T.C.-C.); (S.H.-E.); (M.P.); (G.L.-H.); (J.M.C.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Recacha E, Kuropka B, Díaz-Díaz S, García-Montaner A, González-Tortuero E, Docobo-Pérez F, Rodríguez-Rojas A, Rodríguez-Martínez JM. Impact of suppression of the SOS response on protein expression in clinical isolates of Escherichia coli under antimicrobial pressure of ciprofloxacin. Front Microbiol 2024; 15:1379534. [PMID: 38659986 PMCID: PMC11039860 DOI: 10.3389/fmicb.2024.1379534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction/objective Suppression of the SOS response in combination with drugs damaging DNA has been proposed as a potential target to tackle antimicrobial resistance. The SOS response is the pathway used to repair bacterial DNA damage induced by antimicrobials such as quinolones. The extent of lexA-regulated protein expression and other associated systems under pressure of agents that damage bacterial DNA in clinical isolates remains unclear. The aim of this study was to assess the impact of this strategy consisting on suppression of the SOS response in combination with quinolones on the proteome profile of Escherichia coli clinical strains. Materials and methods Five clinical isolates of E. coli carrying different chromosomally- and/or plasmid-mediated quinolone resistance mechanisms with different phenotypes were selected, with E. coli ATCC 25922 as control strain. In addition, from each clinical isolate and control, a second strain was created, in which the SOS response was suppressed by deletion of the recA gene. Bacterial inocula from all 12 strains were then exposed to 1xMIC ciprofloxacin treatment (relative to the wild-type phenotype for each isogenic pair) for 1 h. Cell pellets were collected, and proteins were digested into peptides using trypsin. Protein identification and label-free quantification were done by liquid chromatography-mass spectrometry (LC-MS) in order to identify proteins that were differentially expressed upon deletion of recA in each strain. Data analysis and statistical analysis were performed using the MaxQuant and Perseus software. Results The proteins with the lowest expression levels were: RecA (as control), AphA, CysP, DinG, DinI, GarL, PriS, PsuG, PsuK, RpsQ, UgpB and YebG; those with the highest expression levels were: Hpf, IbpB, TufB and RpmH. Most of these expression alterations were strain-dependent and involved DNA repair processes and nucleotide, protein and carbohydrate metabolism, and transport. In isolates with suppressed SOS response, the number of underexpressed proteins was higher than overexpressed proteins. Conclusion High genomic and proteomic variability was observed among clinical isolates and was not associated with a specific resistant phenotype. This study provides an interesting approach to identify new potential targets to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Esther Recacha
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sara Díaz-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Andrea García-Montaner
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Fernando Docobo-Pérez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jose Manuel Rodríguez-Martínez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Jaramillo AVC, Cory MB, Li A, Kohli RM, Wuest WM. Exploration of inhibitors of the bacterial LexA repressor-protease. Bioorg Med Chem Lett 2022; 65:128702. [PMID: 35351585 DOI: 10.1016/j.bmcl.2022.128702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Resistant and tolerant bacterial infections lead to billions in healthcare costs and cause hundreds of thousands of deaths each year. The bulk of current antibiotic research efforts focus on molecules which, although novel, are not immune from acquired resistance and seldomly affect tolerant populations. The bacterial SOS response has been implicated in several resistance and tolerance mechanisms, making it an attractive antibiotic target. Using small molecule inhibitors targeting a key step in the deployment of the SOS response, our approach focused on preventing the deployment of mechanisms such as biofilm formation, horizontal gene transfer, and error-prone DNA repair. Herein we report the synthesis and testing of analogs of a triazole-containing tricyclic inhibitor of LexA proteolysis, the key event in the SOS response. Our results hint that our inhibitor's may function by adopting a β-hairpin conformation, reminiscent of the native cleavage loop of LexA.
Collapse
Affiliation(s)
| | - Michael B Cory
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
8
|
Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Appl Microbiol Biotechnol 2021; 105:3495-3505. [PMID: 33893838 DOI: 10.1007/s00253-021-11291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/13/2023]
Abstract
Antibiotics play a key role in the prevention and treatment of bacterial diseases for human and animals. The widespread use of antibiotics results in bacterial exposure to the concentrations that are lower than the MIC (that is, sub-inhibitory concentration (sub-MIC)) in the environment, humans, and livestock, which can lead to antibiotic resistance. In this review, we focus on the impact of sub-MIC antibiotics in bacterial virulence. This paper summarized the known relationships between sub-MIC antibiotics in the environment and bacterial virulence. Together, considering the impact of sub-MIC antibiotics and their alternative products in the virulence of bacteria, it is helpful to the rational use of antibiotics and the development of antibiotic alternative products to provide new insights.Key points• Sub-MIC level antibiotics exist in the environment, humans, and livestock.• The review includes mechanisms of sub-MIC antibiotics in bacterial virulence.• New antibacterial strategies and agents are being a new way to weaken virulence. Graphical Abstract.
Collapse
|
9
|
Synergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress. Antimicrob Agents Chemother 2021; 65:AAC.02004-20. [PMID: 33526493 DOI: 10.1128/aac.02004-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Suppression of the recA SOS response gene and reactive oxygen species (ROS) overproduction have been shown, separately, to enhance fluoroquinolone activity and lethality. Their putative synergistic impact as a strategy to potentiate the efficacy of bactericidal antimicrobial agents such as fluoroquinolones is unknown. We generated Escherichia coli mutants that exhibited a suppressed ΔrecA gene in combination with inactivated ROS detoxification system genes (ΔsodA, ΔsodB, ΔkatG, ΔkatE, and ΔahpC) or inactivated oxidative stress regulator genes (ΔoxyR and ΔrpoS) to evaluate the interplay of both DNA repair and detoxification systems in drug response. Synergistic sensitization effects, ranging from 7.5- to 30-fold relative to the wild type, were observed with ciprofloxacin in double knockouts of recA and inactivated detoxification system genes. Compared to recA knockout, inactivation of an additional detoxification system gene reduced MIC values up to 8-fold. In growth curves, no growth was evident in mutants doubly deficient for recA gene and oxidative detoxification systems at subinhibitory concentrations of ciprofloxacin, in contrast to the recA-deficient strain. There was a marked reduction of viable bacteria in a short period of time when the recA gene and other detoxification system genes (katG, sodA, or ahpC) were inactivated (using absolute ciprofloxacin concentrations). At 4 h, a bactericidal effect of ciprofloxacin was observed for ΔkatG ΔrecA and ΔahpC ΔrecA double mutants compared to the single ΔrecA mutant (Δ3.4 log10 CFU/ml). Synergistic quinolone sensitization, by targeting the recA gene and oxidative detoxification stress systems, reinforces the role of both DNA repair systems and ROS in antibiotic-induced bacterial cell death, opening up a new pathway for antimicrobial sensitization.
Collapse
|
10
|
Lukačišinová M, Fernando B, Bollenbach T. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat Commun 2020; 11:3105. [PMID: 32561723 PMCID: PMC7305214 DOI: 10.1038/s41467-020-16932-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics.
Collapse
Affiliation(s)
- Marta Lukačišinová
- University of Cologne, Institute for Biological Physics, Zülpicher Straße 77, 50937, Cologne, Germany
- IST Austria, Am Campus 1, 3400, Klosterneuburg, Austria
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Booshini Fernando
- University of Cologne, Institute for Biological Physics, Zülpicher Straße 77, 50937, Cologne, Germany
| | - Tobias Bollenbach
- University of Cologne, Institute for Biological Physics, Zülpicher Straße 77, 50937, Cologne, Germany.
| |
Collapse
|
11
|
Xu J, Xia K, Li P, Qian C, Li Y, Liang X. Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917. Appl Microbiol Biotechnol 2020; 104:6731-6747. [PMID: 32535695 PMCID: PMC7293176 DOI: 10.1007/s00253-020-10733-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin systems (TASs) have attracted much attention due to their important physiological functions. These small genetic factors have been widely studied mostly in commensal Escherichia coli strains, whereas the role of TASs in the probiotic E. coli Nissle 1917 (EcN) is still elusive. Here, the physiological role of chromosomally encoded type II TASs in EcN was examined. We showed that gene pair ECOLIN_00240-ECOLIN_00245 and ECOLIN_08365-ECOLIN_08370 were two functional TASs encoding CcdAB and HipAB, respectively. The homologs of CcdAB and HipAB were more conserved in E. coli species belonging to pathogenic groups, suggesting their important roles in EcN. CRISPRi-mediated repression of ccdAB and hipAB significantly reduced the biofilm formation of EcN in the stationary phase. Moreover, ccdAB and hipAB were shown to be responsible for the persister formation in EcN. Biofilm and persister formation of EcN controlled by the ccdAB and hipAB were associated with the expression of genes involved in DNA synthesis, SOS response, and stringent response. Besides, CRISPRi was proposed to be an efficient tool in annotating multiple TASs simultaneously. Collectively, our results advance knowledge and understanding of the role of TASs in EcN, which will enhance the utility of EcN in probiotic therapy. Key points • Two TASs in EcN were identified as hipAB and ccdAB. • Knockdown of HipAB and CcdAB resulted in decreased biofilm formation of EcN. • Transcriptional silencing of hipAB and ccdAB affected the persister formation of EcN. • An attractive link between TASs and stress response was unraveled in EcN. • CRISPRi afforded a fast and in situ annotation of multiple TASs simultaneously.
Collapse
Affiliation(s)
- Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Pinyi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chenggong Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
12
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
13
|
Marx P, Sang Y, Qin H, Wang Q, Guo R, Pfeifer C, Kreth J, Merritt J. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. NPJ Biofilms Microbiomes 2020; 6:17. [PMID: 32221309 PMCID: PMC7101444 DOI: 10.1038/s41522-020-0128-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/28/2023] Open
Abstract
Transcription regulators from the LexA-like Protein Superfamily control a highly diverse assortment of genetic pathways in response to environmental stress. All characterized members of this family modulate their functionality and stability via a strict coordination with the coprotease function of RecA. Using the LexA-like protein IrvR from Streptococcus mutans, we demonstrate an exception to the RecA paradigm and illustrate how this evolutionary innovation has been coopted to diversify the stress responsiveness of S. mutans biofilms. Using a combination of genetics and biophysical measurements, we demonstrate how non-SOS stresses and SOS stresses each trigger separate regulatory mechanisms that stimulate production of a surface lectin responsible for remodeling the viscoelastic properties of extant biofilms during episodes of environmental stress. These studies demonstrate how changes in the external environment or even anti-biofilm therapeutic agents can activate biofilm-specific adaptive mechanisms responsible for bolstering the integrity of established biofilm communities. Such changes in biofilm community structure are likely to play central roles in the notorious recalcitrance of biofilm infections.
Collapse
Affiliation(s)
- Patrick Marx
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Yu Sang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Hua Qin
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Qingjing Wang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Rongkai Guo
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Carmem Pfeifer
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jens Kreth
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Justin Merritt
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
14
|
Zhu DM, Li QH, Shen Y, Zhang Q. Risk factors for quinolone-resistant Escherichia coli infection: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:11. [PMID: 31938541 PMCID: PMC6953284 DOI: 10.1186/s13756-019-0675-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Antimicrobial resistance to quinolone is rising worldwide, especially in Escherichia coli causing various infections. Although many studies have been conducted to identify the risk factors for quinolone-resistant Escherichia coli (QREC) infection, the results are inconsistent and have not been systematically reported. The aim of the present study is to conduct a systematic review and meta-analysis to evaluate the potential risk factors for QREC infection. Methods A systematic search was performed to collect published data in the EMBASE, PubMed, and the Cochrane Library up to April 2019. Risk factors were analyzed using the pooled odds ratio (ORs) with 95% confidence interval (CIs). Results Twenty-seven trials involving 67,019 participants were included in the present study. The following risk factors associated with QREC infection were identified: (1) male (OR = 1.41), (2) hepatic cirrhosis (OR = 2.05), (3) diabetes mellitus (OR = 1.62), (4) cardiovascular disease (OR = 1.76), (5) neurogenic bladder (OR = 8.66), (6) renal dysfunction (OR = 2.47), (7) transplantation (OR = 2.37), (8) urinary tract infection (OR = 2.79) and urinary tract abnormality (OR = 1.85), (9) dementia (OR = 5.83), (10) heart failure (OR = 5.63), (11) neurologic disease (OR = 2.80), (12) immunosuppressive drugs (OR = 2.02), (13) urinary catheter (OR = 4.39), (14) nursing home resident (OR = 4.63), (15) prior surgery (OR = 2.54), (16) quinolones (OR = 7.67), (17) other antibiotics (OR = 2.74), (18) hospitalization (OR = 2.06) and (19) nosocomial infection acquisition (OR = 2.35). Conclusions QREC infection was associated with nineteen risk factors including prior quinolones use, hospitalization, and several comorbidities. Reducing exposure to these risk factors and modification of antibiotic use are important to prevent quinolone resistance.
Collapse
Affiliation(s)
- Dong-Mei Zhu
- Department of Hospital Infection Control, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, Chongqing, 400013 China
| | - Qiu-Hong Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, Chongqing, 400013 China
| | - Yan Shen
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, Chongqing, 400013 China
| | - Qin Zhang
- Department of Hospital Infection Control, Chongqing Health Center for Women and Children, 120 Longshan Road, Chongqing, Chongqing, 400013 China
| |
Collapse
|