1
|
Zhao H, Sun S, Ding X, Zhang Y, Li B, Wang S, Guo G, Zhang J. Activity and Safety Optimization of Mesoricin: A Dual-Domain Antifungal Peptide from Mesorhizobium sp. J Med Chem 2025; 68:8226-8243. [PMID: 40198836 DOI: 10.1021/acs.jmedchem.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Cryptococcus neoformans infections pose a significant global health threat. This study introduces mesoricin, a novel dual-domain antimicrobial peptide (AMP) scaffold derived from Mesorhizobium sp. identified using an in silico quantitative antifungal activity index (AFI). The peptide structure comprises an α-helix domain, which disrupts microbial membranes but exhibits highly hemolytic activity, and a β-sheet domain, which targets intracellular energy metabolism and resilient pathways. Rational design through α-helix domain removal and AFI-guided mutations yielded a mesoricin variant with enhanced antifungal activity and reduced cytotoxicity. The optimized mesoricin exhibited broad-spectrum antifungal activity against various Cryptococcus and Candida species (MIC 8-16 μg/mL) while maintaining high biosafety (IC50 > 128 μg/mL against human cell lines). Particularly, the variant demonstrated enhanced fungicidal effects at sub-MIC levels and superior biofilm control capabilities compared to the prototype peptide. These findings highlight mesoricins as a promising scaffold for AMP development targeting Cryptococcus infections.
Collapse
Affiliation(s)
- Hongwei Zhao
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Simei Sun
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Xiang Ding
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Yiling Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Boyan Li
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| | - Shuyu Wang
- Cancer Molecular Diagnostics Core, Tianjin Medical University, Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Jin Zhang
- School of Public Health/Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education/Translational Medicine Research Center/Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
2
|
Ribeiro ED, de Santana IHG, Viana MRM, Fan S, Mohamed A, Dias JCP, Forte AG, Pereira Júnior JM, Ferreira AJ, Sant'Ana E. Optimal treatment time with systemic antimicrobial therapy in odontogenic infections affecting the jaws: a systematic review. BMC Oral Health 2025; 25:253. [PMID: 39966906 PMCID: PMC11834263 DOI: 10.1186/s12903-025-05585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES This systematic review aimed to analyze the existing literature to determine the most effective and safe duration of antimicrobial treatment in odontogenic infections of the mandible, addressing a critical gap in clinical guidelines regarding optimal treatment duration. MATERIALS AND METHODS A systematic review protocol was registered in PROSPERO (CRD42024551258), and a comprehensive search was conducted in databases including PubMed, Web of Science, Scopus, ScienceDirect, Embase, and Google Scholar for articles published up to June 16, 2024. Randomized clinical trials (RCTs) evaluating different durations of antimicrobial treatment were prioritized. RESULTS The database search yielded 3,446 articles. After removing duplicates using Rayyan© software, 2,653 articles remained, of which 26 met the inclusion criteria. Following a thorough evaluation, 8 studies were deemed highly relevant and included in the final analysis. The findings suggest that shorter antibiotic regimens, typically ranging from 3 to 5 days, are effective when combined with surgical interventions, minimizing complications and bacterial resistance. CONCLUSIONS The evidence indicates that the choice of antibiotic regimen and its duration should be tailored to the patient's clinical condition, the severity of the infection, and local bacterial resistance patterns. While amoxicillin and its derivatives are effective for most cases, alternative antibiotics such as ciprofloxacin or metronidazole may be more suitable in specific scenarios. These findings highlight the importance of individualized treatment plans and the need for further randomized clinical trials to refine evidence-based guidelines.
Collapse
Affiliation(s)
- Eduardo Dias Ribeiro
- Department of Clinical and Social Dentistry (DCOS), Health Sciences Center at the Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | | | - Song Fan
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, People's Republic of China
| | - Abdo Mohamed
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, People's Republic of China
| | | | - Anderson Gomes Forte
- Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | | | - Eduardo Sant'Ana
- Bauru School of Dentistry at the University of São Paulo (FOBUSP), Bauru, Brazil
| |
Collapse
|
3
|
Soares JM, Yakovlev VV, Blanco KC, Bagnato VS. Photodynamic inactivation and its effects on the heterogeneity of bacterial resistance. Sci Rep 2024; 14:28268. [PMID: 39550440 PMCID: PMC11569256 DOI: 10.1038/s41598-024-79743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a growing threat to global public health, requiring innovative approaches for its control. Photodynamic inactivation (PDI) with light-activated photosensitizers has emerged as a strategy to combat resistant bacteria, challenging the intrinsic heterogeneity of bacterial populations. This study evaluates the impact of PDI on both heterogeneity and shape of the distribution profile of resistant bacterial populations, specifically on strains of Staphylococcus aureus resistant to amoxicillin, erythromycin, and gentamicin, for exploring its potential as an adjuvant therapy in the fight against bacterial resistance. Curcumin (10 µM) was used as a photosensitizer and five cycles of PDI were applied on Staphylococcus aureus strains under 450 nm irradiation of 10 J/cm² energy density. The resistance variations amongst bacterial subpopulations were investigated by calculating the minimum inhibitory concentration (MIC) before and after PDI treatment. MIC was significantly reduced by the antibiotics tested post-PDI and a reduction in the heterogeneity of bacterial populations was recorded, suggesting PDI can effectively decrease the resistance diversity of Staphylococcus aureus. The result reinforces the potential of PDI as a valuable adjuvant therapy, offering a promising avenue for mitigating bacterial resistance and promoting more effective treatment strategies against resistant infections.
Collapse
Affiliation(s)
- Jennifer M Soares
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil.
| | | | - Kate C Blanco
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
- Biomedical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Lo Sciuto A, D'Angelo F, Spinnato MC, Garcia PS, Genah S, Matteo C, Séchet E, Banin E, Barras F, Imperi F. A molecular comparison of [Fe-S] cluster-based homeostasis in Escherichia coli and Pseudomonas aeruginosa. mBio 2024; 15:e0120624. [PMID: 39360836 PMCID: PMC11559095 DOI: 10.1128/mbio.01206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 11/14/2024] Open
Abstract
Iron-sulfur [Fe-S] clusters are essential protein cofactors allowing bacteria to perceive environmental redox modification and to adapt to iron limitation. Escherichia coli, which served as a bacterial model, contains two [Fe-S] cluster biogenesis systems, ISC and SUF, which ensure [Fe-S] cluster synthesis under balanced and stress conditions, respectively. However, our recent phylogenomic analyses revealed that most bacteria possess only one [Fe-S] cluster biogenesis system, most often SUF. The opportunist human pathogen Pseudomonas aeruginosa is atypical as it harbors only ISC. Here, we confirmed the essentiality of ISC in P. aeruginosa under both normal and stress conditions. Moreover, P. aeruginosa ISC restored viability, under balanced growth conditions, to an E. coli strain lacking both ISC and SUF. Reciprocally, the E. coli SUF system sustained growth and [Fe-S] cluster-dependent enzyme activities of ISC-deficient P. aeruginosa. Surprisingly, an ISC-deficient P. aeruginosa strain expressing E. coli SUF showed defects in resistance to H2O2 stress and paraquat, a superoxide generator. Similarly, the P. aeruginosa ISC system did not confer stress resistance to a SUF-deficient E. coli mutant. A survey of 120 Pseudomonadales genomes confirmed that all but five species have selected ISC over SUF. While highlighting the great versatility of bacterial [Fe-S] cluster biogenesis systems, this study emphasizes that their contribution to cellular homeostasis must be assessed in the context of each species and its own repertoire of stress adaptation functions. As a matter of fact, despite having only one ISC system, P. aeruginosa shows higher fitness in the face of ROS and iron limitation than E. coli. IMPORTANCE ISC and SUF molecular systems build and transfer Fe-S cluster to cellular apo protein clients. The model Escherichia coli has both ISC and SUF and study of the interplay between the two systems established that the ISC system is the house-keeping one and SUF the stress-responding one. Unexpectedly, our recent phylogenomic analysis revealed that in contrast to E. coli (and related enterobacteria such as Salmonella), most bacteria have only one system, and, in most cases, it is SUF. Pseudomonas aeruginosa fits the general rule of having only one system but stands against the rule by having ISC. This study aims at engineering P. aeruginosa harboring E. coli systems and vice versa. Comparison of the recombinants allowed to assess the functional versatility of each system while appreciating their contribution to cellular homeostasis in different species context.
Collapse
Affiliation(s)
| | - Francesca D'Angelo
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | | | - Pierre Simon Garcia
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Shirley Genah
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Rome, Italy
| | | | - Emmanuel Séchet
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Ehud Banin
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
5
|
Zhang M, Yang S, Liu Y, Zou Z, Zhang Y, Tian Y, Zhang R, Liu D, Wu C, Shen J, Song H, Wang Y. Anticancer agent 5-fluorouracil reverses meropenem resistance in carbapenem-resistant Gram-negative pathogens. Int J Antimicrob Agents 2024; 64:107337. [PMID: 39293771 DOI: 10.1016/j.ijantimicag.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
The global increasing incidence of clinical infections caused by carbapenem-resistant Gram-negative pathogens requires urgent and effective treatment strategies. Antibiotic adjuvants represent a promising approach to enhance the efficacy of meropenem against carbapenem-resistant bacteria. This study shows that the anticancer agent 5-fluorouracil (5-FU, 50 µM) significantly reduced the minimum inhibitory concentration of meropenem against blaNDM-5 positive Escherichia coli by 32-fold through cell-based high-throughput screening. Further pharmacological studies indicated that 5-FU exhibited potentiation effects on carbapenem antibiotics against 42 Gram-negative bacteria producing either metallo-β-lactamases (MBLs), such as NDM and IMP, or serine β-lactamases (Ser-BLs), like KPC and OXA. These bacteria included E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp., 32 of which were obtained from human clinical samples. Mechanistic investigations revealed that 5-FU inhibited the transcription and expression of the blaNDM-5 gene. In addition, 5-FU combined with meropenem enhanced bacterial metabolism, and stimulated the production of reactive oxygen species (ROS), thereby rendering bacteria more susceptible to meropenem. In a mouse systemic infection model, 5-FU combined with meropenem reduced bacterial loads and effectively elevated the survival rate of 83.3%, compared with 16.7% with meropenem monotherapy. Collectively, these findings indicate the potential of 5-FU as a novel meropenem adjuvant to improve treatment outcomes against infections caused by carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Muchen Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siyuan Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yongqing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiyu Zou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunrui Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huangwei Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China agricultural University, Beijing, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
6
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Inosine reverses multidrug resistance in Gram-negative bacteria carrying mobilized RND-type efflux pump gene cluster tmexCD-toprJ. mSystems 2024; 9:e0079724. [PMID: 39254032 PMCID: PMC11495011 DOI: 10.1128/msystems.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is rapidly increasing worldwide, highlighting the urgent need for pharmaceutical and nonpharmaceutical interventions to tackle different-to-treat bacterial infections. Tigecycline, a semi-synthesis glycylcycline for parenteral administration, is widely recognized as one of the few effective therapies available against pan-drug resistant Gram-negative pathogens. Regrettably, the efficacy of multiple drugs, including tigecycline, is currently being undermined due to the emergence of a recently discovered mobilized resistance-nodulation-division-type efflux pump gene cluster tmexCD1-toprJ1. Herein, by employing untargeted metabolomic approaches, we reveal that the expression of tmexCD1-toprJ1 disrupts bacterial purine metabolism, with inosine being identified as a crucial biomarker. Notably, the supplementation of inosine effectively reverses tigecycline resistance in tmexCD1-toprJ1-positive bacteria. Mechanistically, exogenous inosine enhanced bacterial proton motive force, which promotes the uptake of tigecycline. Furthermore, inosine enhances succinate biosynthesis by stimulating the tricarboxylic acid cycle. Succinate interacts with the two-component system EnvZ/OmpR and upregulates OmpK 36, thereby promoting the influx of tigecycline. These actions collectively lead to the increased intracellular accumulation of tigecycline. Overall, our study offers a distinct combinational strategy to manage infections caused by tmexCD-toprJ-positive bacteria. IMPORTANCE TMexCD1-TOprJ1, a mobilized resistance-nodulation-division-type efflux pump, confers phenotypic resistance to multiple classes of antibiotics. Nowadays, tmexCD-toprJ has disseminated among diverse species of clinical pathogens, exacerbating the need for novel anti-infective strategies. In this study, we report that tmexCD1-toprJ1-negative and -positive bacteria exhibit significantly different metabolic flux and characteristics, especially in purine metabolism. Intriguingly, the addition of inosine, a purine metabolite, effectively restores the antibacterial activity of tigecycline by promoting antibiotic uptake. Our findings highlight the correlation between bacterial mechanism and antibiotic resistance, and offer a distinct approach to overcome tmexCD-toprJ-mediated multidrug resistance.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Xiao X, Ma C, Zhang H, Liu W, Huang Y, Meng C, Wang Z. The Food Additive Benzaldehyde Confers a Broad Antibiotic Tolerance by Modulating Bacterial Metabolism and Inhibiting the Formation of Bacterial Flagella. Int J Mol Sci 2024; 25:8843. [PMID: 39201530 PMCID: PMC11354442 DOI: 10.3390/ijms25168843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The rise of antibiotic tolerance in bacteria harboring genetic elements conferring resistance to antibiotics poses an increasing threat to public health. However, the primary factors responsible for the emergence of antibiotic tolerance and the fundamental molecular mechanisms involved remain poorly comprehended. Here, we demonstrate that the commonly utilized food additive Benzaldehyde (BZH) possesses the capacity to induce a significant level of fluoroquinolone tolerance in vitro among resistant Escherichia coli. Our findings from animal models reveal that the pre-administration of BZH results in an ineffective eradication of bacteria through ciprofloxacin treatment, leading to similar survival rates and bacterial loads as observed in the control group. These results strongly indicate that BZH elicits in vivo tolerance. Mechanistic investigations reveal several key factors: BZH inhibits the formation of bacterial flagella and releases proton motive force (PMF), which aids in expelling antibiotics from within cells to reducing their accumulation inside. In addition, BZH suppresses bacterial respiration and inhibits the production of reactive oxygen species (ROS). Moreover, exogenous pyruvate successfully reverses BZH-induced tolerance and restores the effectiveness of antibiotics, highlighting how crucial the pyruvate cycle is in combating antibiotic tolerance. The present findings elucidate the underlying mechanisms of BZH-induced tolerance and highlight potential hazards associated with the utilization of BZH.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (C.M.); (H.Z.); (W.L.); (Y.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Can Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (C.M.); (H.Z.); (W.L.); (Y.H.)
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (C.M.); (H.Z.); (W.L.); (Y.H.)
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (C.M.); (H.Z.); (W.L.); (Y.H.)
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (C.M.); (H.Z.); (W.L.); (Y.H.)
| | - Chuang Meng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.X.); (C.M.); (H.Z.); (W.L.); (Y.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China;
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
9
|
Zhang M, Song H, Yang S, Zhang Y, Tian Y, Wang Y, Liu D. Deciphering the Antibacterial Mechanisms of 5-Fluorouracil in Escherichia coli through Biochemical and Transcriptomic Analyses. Antibiotics (Basel) 2024; 13:528. [PMID: 38927194 PMCID: PMC11200800 DOI: 10.3390/antibiotics13060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens presents a clinical challenge in infection treatment, prompting the repurposing of existing drugs as an essential strategy to address this crisis. Although the anticancer drug 5-fluorouracil (5-FU) has been recognized for its antibacterial properties, its mechanisms are not fully understood. Here, we found that the minimal inhibitory concentration (MIC) of 5-FU against Escherichia coli was 32-64 µg/mL, including strains carrying blaNDM-5, which confers resistance to carbapenems. We further elucidated the antibacterial mechanism of 5-FU against E. coli by using genetic and biochemical analyses. We revealed that the mutation of uracil phosphoribosyltransferase-encoding gene upp increased the MIC of 5-FU against E. coli by 32-fold, indicating the role of the upp gene in 5-FU resistance. Additionally, transcriptomic analysis of E. coli treated with 5-FU at 8 µg/mL and 32 µg/mL identified 602 and 1082 differentially expressed genes involved in carbon and nucleic acid metabolism, DNA replication, and repair pathways. The biochemical assays showed that 5-FU induced bacterial DNA damage, significantly increased intracellular ATP levels and the NAD+/NADH ratio, and promoted reactive oxygen species (ROS) production. These findings suggested that 5-FU may exert antibacterial effects on E. coli through multiple pathways, laying the groundwork for its further development as a therapeutic candidate against carbapenem-resistant bacterial infections.
Collapse
Affiliation(s)
- Muchen Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huangwei Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Siyuan Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yunrui Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Cheng L, Correia MSP, Higdon SM, Romero Garcia F, Tsiara I, Joffré E, Sjöling Å, Boulund F, Norin EL, Engstrand L, Globisch D, Du J. The protective role of commensal gut microbes and their metabolites against bacterial pathogens. Gut Microbes 2024; 16:2356275. [PMID: 38797999 PMCID: PMC11135852 DOI: 10.1080/19490976.2024.2356275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Multidrug-resistant microorganisms have become a major public health concern around the world. The gut microbiome is a gold mine for bioactive compounds that protect the human body from pathogens. We used a multi-omics approach that integrated whole-genome sequencing (WGS) of 74 commensal gut microbiome isolates with metabolome analysis to discover their metabolic interaction with Salmonella and other antibiotic-resistant pathogens. We evaluated differences in the functional potential of these selected isolates based on WGS annotation profiles. Furthermore, the top altered metabolites in co-culture supernatants of selected commensal gut microbiome isolates were identified including a series of dipeptides and examined for their ability to prevent the growth of various antibiotic-resistant bacteria. Our results provide compelling evidence that the gut microbiome produces metabolites, including the compound class of dipeptides that can potentially be applied for anti-infection medication, especially against antibiotic-resistant pathogens. Our established pipeline for the discovery and validation of bioactive metabolites from the gut microbiome as novel candidates for multidrug-resistant infections represents a new avenue for the discovery of antimicrobial lead structures.
Collapse
Affiliation(s)
- Liqin Cheng
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- The Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mário S. P. Correia
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M. Higdon
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Fabricio Romero Garcia
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Ioanna Tsiara
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Elisabeth Lissa Norin
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Daniel Globisch
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Department of Chemistry - BMC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| |
Collapse
|
11
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
12
|
Soares JM, Yakovlev VV, Blanco KC, Bagnato VS. Recovering the susceptibility of antibiotic-resistant bacteria using photooxidative damage. Proc Natl Acad Sci U S A 2023; 120:e2311667120. [PMID: 37729197 PMCID: PMC10523486 DOI: 10.1073/pnas.2311667120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant bacteria are one of the most serious threats to infection control. Few new antibiotics have been developed; however, the lack of an effective new mechanism of their action has worsened the situation. Photodynamic inactivation (PDI) can break antimicrobial resistance, since it potentiates the effect of antibiotics, and induces oxidative stress in microorganisms through the interaction of light with a photosensitizer. This paper addresses the application of PDI for increasing bacterial susceptibility to antibiotics and helping in bacterial persistence and virulence. The effect of photodynamic action on resistant bacteria collected from patients and bacteria cells with induced resistance in the laboratory was investigated. Staphylococcus aureus resistance breakdown levels for each antibiotic (amoxicillin, erythromycin, and gentamicin) from the photodynamic effect (10 µM curcumin, 10 J/cm2) and its maintenance in descendant microorganisms were demonstrated within five cycles after PDI application. PDI showed an innovative feature for modifying the degree of bacterial sensitivity to antibiotics according to dosages, thus reducing resistance and persistence of microorganisms from standard and clinical strains. We hypothesize a reduction in the degree of antimicrobial resistance through photooxidative action combats antibiotic failures.
Collapse
Affiliation(s)
- Jennifer M. Soares
- Institute of Physics of São Carlos, University of São Paulo, São Carlos13566-590, Brazil
- Biomedical Engineering, Texas A&M University, College Station, TX77840
| | | | - Kate C. Blanco
- Institute of Physics of São Carlos, University of São Paulo, São Carlos13566-590, Brazil
| | - Vanderlei S. Bagnato
- Institute of Physics of São Carlos, University of São Paulo, São Carlos13566-590, Brazil
- Biomedical Engineering, Texas A&M University, College Station, TX77840
| |
Collapse
|
13
|
Zhu C, Zhou Y, Kang J, Yang H, Lin J, Fang B. Alkaline arginine promotes the gentamicin-mediated killing of drug-resistant Salmonella by increasing NADH concentration and proton motive force. Front Microbiol 2023; 14:1237825. [PMID: 37795291 PMCID: PMC10546041 DOI: 10.3389/fmicb.2023.1237825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Antimicrobial resistance, especially the development of multidrug-resistant strains, is an urgent public health threat. Antibiotic adjuvants have been shown to improve the treatment of resistant bacterial infections. Methods We verified that exogenous L-arginine promoted the killing effect of gentamicin against Salmonella in vitro and in vivo, and measured intracellular ATP, NADH, and PMF of bacteria. Gene expression was determined using real-time quantitative PCR. Results This study found that alkaline arginine significantly increased gentamicin, tobramycin, kanamycin, and apramycin-mediated killing of drug-resistant Salmonella, including multidrug-resistant strains. Mechanistic studies showed that exogenous arginine was shown to increase the proton motive force, increasing the uptake of gentamicin and ultimately inducing bacterial cell death. Furthermore, in mouse infection model, arginine effectively improved gentamicin activity against Salmonella typhimurium. Discussion These findings confirm that arginine is a highly effective and harmless aminoglycoside adjuvant and provide important evidence for its use in combination with antimicrobial agents to treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chunyang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yanhong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Kang
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jinglin Lin
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Binghu Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207170. [PMID: 36698264 PMCID: PMC10037695 DOI: 10.1002/advs.202207170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/12/2023]
Abstract
Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.
Collapse
Affiliation(s)
- Dan Fang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Tianqi Xu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingyi Sun
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingru Shi
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Fulei Li
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yanqing Yin
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Zhiqiang Wang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yuan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
15
|
Tuersong W, Liu X, Wang Y, Wu S, Qin P, Zhu S, Liu F, Wang C, Hu M. Comparative Metabolome Analyses of Ivermectin-Resistant and -Susceptible Strains of Haemonchus contortus. Animals (Basel) 2023; 13:ani13030456. [PMID: 36766346 PMCID: PMC9913829 DOI: 10.3390/ani13030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Resistance to anthelmintics such as ivermectin (IVM) is currently a major problem in the treatment of Haemonchus contortus, an important parasitic nematode of small ruminants. Although many advances have been made in understanding the IVM resistance mechanism, its exact mechanism remains unclear for H. contortus. Therefore, understanding the resistance mechanism becomes increasingly important for controlling haemonchosis. Recent research showed that the metabolic state of bacteria influences their susceptibility to antibiotics. However, little information is available on the roles of metabolites and metabolic pathways in IVM resistance of H. contortus. In this study, comparative analyses of the metabolomics of IVM-susceptible and -resistant adult H. contortus worms were carried out to explore the role of H. contortus metabolism in IVM resistance. In total, 705 metabolites belonging to 42 categories were detected, and 86 differential metabolites (17 upregulated and 69 downregulated) were identified in the IVM-resistant strain compared to the susceptible one. A KEGG pathway analysis showed that these 86 differential metabolites were enriched in 42 pathways that mainly included purine metabolism; the biosynthesis of amino acids; glycine, serine, and threonine metabolism; and cysteine and methionine metabolism. These results showed that amino acid metabolism may be mediated by the uptake of IVM and related with IVM resistance in H. contortus. This study contributes to our understanding of the mechanisms of IVM resistance and may provide effective approaches to manage infection by resistant strains of H. contortus.
Collapse
|
16
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
17
|
Shi J, Chen C, Wang D, Wang Z, Liu Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun Biol 2022; 5:926. [PMID: 36071151 PMCID: PMC9452538 DOI: 10.1038/s42003-022-03899-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
The prevalence of multidrug-resistant (MDR) pathogens raises public fears of untreatable infections and represents a huge health risk. There is an urgent need to exploit novel antimicrobial agents. Due to the unique mechanisms, antimicrobial peptides (AMPs) with a low probability to achieve resistance are regarded as potential antibiotic alternatives to address this issue. Herein, we develop a panel of synthetic peptide compounds with novel structures based on the database filters technology (DFT), and the lead peptide LI14 shows potent antibacterial activity against all tested drug-resistant bacteria. LI14 exhibits rapid bactericidal activity and excellent anti-biofilm and -persisters activity, simultaneously showing a low propensity to induce resistance. Moreover, LI14 shows tolerance against pH, temperatures, and pepsin treatment, and no detectable toxicity both in vitro and in vivo. Mechanistic studies revealed that LI14 induces membrane damage by targeting bacterial-specific membrane components and dissipates the proton motive force (PMF), thereby resulting in metabolic perturbations and the accumulation of toxic metabolic products. Furthermore, LI14 sensitizes clinically relevant antibiotics against MDR bacteria. In animal models of infection, LI14 or combined with antibiotics are effective against drug-resistant pathogens. These findings suggest that LI14 is a promising antibiotic candidate to tackle MDR bacterial infections. A synthetic peptide LI14 demonstrates potent antibacterial activity against drug-resistant bacteria in vitro and in vivo by inducing membrane damage and disrupting membrane potential leading to metabolic perturbation.
Collapse
Affiliation(s)
- Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Dejuan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Chung WY, Abdul Rahim N, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Zhu Y, Wong EH. In silico genome-scale metabolic modeling and in vitro static time-kill studies of exogenous metabolites alone and with polymyxin B against Klebsiella pneumoniae. Front Pharmacol 2022; 13:880352. [PMID: 35991875 PMCID: PMC9386545 DOI: 10.3389/fphar.2022.880352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae is a top-prioritized Gram-negative pathogen with a high incidence in hospital-acquired infections. Polymyxins have resurged as a last-line therapy to combat Gram-negative “superbugs”, including MDR K. pneumoniae. However, the emergence of polymyxin resistance has increasingly been reported over the past decades when used as monotherapy, and thus combination therapy with non-antibiotics (e.g., metabolites) becomes a promising approach owing to the lower risk of resistance development. Genome-scale metabolic models (GSMMs) were constructed to delineate the altered metabolism of New Delhi metallo-β-lactamase- or extended spectrum β-lactamase-producing K. pneumoniae strains upon addition of exogenous metabolites in media. The metabolites that caused significant metabolic perturbations were then selected to examine their adjuvant effects using in vitro static time–kill studies. Metabolic network simulation shows that feeding of 3-phosphoglycerate and ribose 5-phosphate would lead to enhanced central carbon metabolism, ATP demand, and energy consumption, which is converged with metabolic disruptions by polymyxin treatment. Further static time–kill studies demonstrated enhanced antimicrobial killing of 10 mM 3-phosphoglycerate (1.26 and 1.82 log10 CFU/ml) and 10 mM ribose 5-phosphate (0.53 and 0.91 log10 CFU/ml) combination with 2 mg/L polymyxin B against K. pneumoniae strains. Overall, exogenous metabolite feeding could possibly improve polymyxin B activity via metabolic modulation and hence offers an attractive approach to enhance polymyxin B efficacy. With the application of GSMM in bridging the metabolic analysis and time–kill assay, biological insights into metabolite feeding can be inferred from comparative analyses of both results. Taken together, a systematic framework has been developed to facilitate the clinical translation of antibiotic-resistant infection management.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | | | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Gombak, Selangor, Malaysia
| | | | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Yan Zhu, ; Eng Hwa Wong,
| | - Eng Hwa Wong
- School of Medicine, Taylor’s University, Subang Jaya, Selangor, Malaysia
- *Correspondence: Yan Zhu, ; Eng Hwa Wong,
| |
Collapse
|
19
|
Liu Y, Fang D, Yang K, Xu T, Su C, Li R, Xiao X, Wang Z. Sodium dehydroacetate confers broad antibiotic tolerance by remodeling bacterial metabolism. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128645. [PMID: 35299107 DOI: 10.1016/j.jhazmat.2022.128645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic tolerance has been a growing crisis that is seriously threatening global public health. However, little is known about the exogenous factors capable of triggering the development of antibiotic tolerance, particularly in vivo. Here we uncovered that an previously approved food additive termed sodium dehydroacetate (DHA-S) supplementation remarkably impaired the activity of bactericidal antibiotics against various bacterial pathogens. Mechanistic studies indicated that DHA-S induced glyoxylate shunt and reduced bacterial cellular respiration by inhibiting the enzymatic activity of α-ketoglutarate dehydrogenase (α-KGDH). Furthermore, DHA-S mitigated oxidative stress imposed by bactericidal antibiotics and enhanced the function of multidrug efflux pumps. These actions worked together to induce bacterial tolerance to antibiotic killing. Interestingly, the addition of five exogenous amino acids, particularly cysteine and proline, effectively reversed antibiotic tolerance elicited by DHA-S both in vitro and in mouse models of infection. Taken together, these findings advance our understanding of the potential risks of DHA-S in the treatment of bacterial infections, and shed new insights into the relationships between antibiotic tolerance and bacterial metabolism.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Dan Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tianqi Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chengrui Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
20
|
Emwas AH, Szczepski K, Al-Younis I, Lachowicz JI, Jaremko M. Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways. Front Pharmacol 2022; 13:805782. [PMID: 35387341 PMCID: PMC8977530 DOI: 10.3389/fphar.2022.805782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Inas Al-Younis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Interrogation of Essentiality in the Reconstructed Haemophilus influenzae Metabolic Network Identifies Lipid Metabolism Antimicrobial Targets: Preclinical Evaluation of a FabH β-Ketoacyl-ACP Synthase Inhibitor. mSystems 2022; 7:e0145921. [PMID: 35293791 PMCID: PMC9040583 DOI: 10.1128/msystems.01459-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expediting drug discovery to fight antibacterial resistance requires holistic approaches at system levels. In this study, we focused on the human-adapted pathogen Haemophilus influenzae, and by constructing a high-quality genome-scale metabolic model, we rationally identified new metabolic drug targets in this organism. Contextualization of available gene essentiality data within in silico predictions identified most genes involved in lipid metabolism as promising targets. We focused on the β-ketoacyl-acyl carrier protein synthase III FabH, responsible for catalyzing the first step in the FASII fatty acid synthesis pathway and feedback inhibition. Docking studies provided a plausible three-dimensional model of FabH in complex with the synthetic inhibitor 1-(5-(2-fluoro-5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetic acid (FabHi). Validating our in silico predictions, FabHi reduced H. influenzae viability in a dose- and strain-dependent manner, and this inhibitory effect was independent of fabH gene expression levels. fabH allelic variation was observed among H. influenzae clinical isolates. Many of these polymorphisms, relevant for stabilization of the dimeric active form of FabH and/or activity, may modulate the inhibitory effect as part of a complex multifactorial process with the overall metabolic context emerging as a key factor tuning FabHi activity. Synergies with antibiotics were not observed and bacteria were not prone to develop resistance. Inhibitor administration during H. influenzae infection on a zebrafish septicemia infection model cleared bacteria without signs of host toxicity. Overall, we highlight the potential of H. influenzae metabolism as a source of drug targets, metabolic models as target-screening tools, and FASII targeting suitability to counteract this bacterial infection. IMPORTANCE Antimicrobial resistance drives the need of synergistically combined powerful computational tools and experimental work to accelerate target identification and drug development. Here, we present a high-quality metabolic model of H. influenzae and show its usefulness both as a computational framework for large experimental data set contextualization and as a tool to discover condition-independent drug targets. We focus on β-ketoacyl-acyl carrier protein synthase III FabH chemical inhibition by using a synthetic molecule with good synthetic and antimicrobial profiles that specifically binds to the active site. The mechanistic complexity of FabH inhibition may go beyond allelic variation, and the strain-dependent effect of the inhibitor tested supports the impact of metabolic context as a key factor driving bacterial cell behavior. Therefore, this study highlights the systematic metabolic evaluation of individual strains through computational frameworks to identify secondary metabolic hubs modulating drug response, which will facilitate establishing synergistic and/or more precise and robust antibacterial treatments.
Collapse
|
22
|
Lv B, Bian M, Huang X, Sun F, Gao Y, Wang Y, Fu Y, Yang B, Fu X. n-Butanol Potentiates Subinhibitory Aminoglycosides against Bacterial Persisters and Multidrug-Resistant MRSA by Rapidly Enhancing Antibiotic Uptake. ACS Infect Dis 2022; 8:373-386. [PMID: 35100802 DOI: 10.1021/acsinfecdis.1c00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potentiation of traditional antibiotics is of significance for combating antibiotic-resistant bacteria that have become a severe threat to human and animal health. Here, we report that 1 min co-treatment with n-butanol greatly and specifically enhances the bactericidal action of aminoglycosides by 5 orders of magnitude against stationary-phase Staphylococcus aureus cells, with n-propanol and isobutanol showing less potency. This combined treatment also rapidly kills various S. aureus persisters, methicillin-resistant S. aureus (MRSA) cells, and numerous Gram-positive and -negative pathogens including some clinically isolated multidrug-resistant pathogens (e.g., S. aureus, Staphylococcus epidermidis, and Enterococcus faecalis) in vitro, as well as S. aureus in mice. Mechanistically, the potentiation results from the actions of aminoglycosides on their conventional target ribosome rather than the antiseptic effect of n-butanol and is achieved by rapidly enhancing the bacterial uptake of aminoglycosides, while salts and inhibitors of proton motive force (e.g., CCCP) can diminish this uptake. Importantly, such n-butanol-enhanced antibiotic uptake even enables subinhibitory concentrations of aminoglycosides to rapidly kill both MRSA and conventional S. aureus cells. Given n-butanol is a non-metabolite in the pathogens we tested, our work may open avenues to develop a metabolite-independent strategy for aminoglycoside potentiation to rapidly eliminate antibiotic-resistant/tolerant pathogens, as well as for reducing the toxicity associated with aminoglycoside use.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Mengmeng Bian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Xuebing Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Fengqi Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yajuan Fu
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350117, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| |
Collapse
|
23
|
Shen C, Shen Y, Zhang H, Xu M, He L, Qie J. Comparative Proteomics Demonstrates Altered Metabolism Pathways in Cotrimoxazole- Resistant and Amikacin-Resistant Klebsiella pneumoniae Isolates. Front Microbiol 2021; 12:773829. [PMID: 34867912 PMCID: PMC8637018 DOI: 10.3389/fmicb.2021.773829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance (AMR) has always been a hot topic all over the world and its mechanisms are varied and complicated. Previous evidence revealed the metabolic slowdown in resistant bacteria, suggesting the important role of metabolism in antibiotic resistance. However, the molecular mechanism of reduced metabolism remains poorly understood, which inspires us to explore the global proteome change during antibiotic resistance. Here, the sensitive, cotrimoxazole-resistant, amikacin-resistant, and amikacin/cotrimoxazole -both-resistant KPN clinical isolates were collected and subjected to proteome analysis through liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). A deep coverage of 2,266 proteins were successfully identified and quantified in total, representing the most comprehensive protein quantification data by now. Further bioinformatic analysis showed down-regulation of tricarboxylic acid cycle (TCA) pathway and up-regulation of alcohol metabolic or glutathione metabolism processes, which may contribute to ROS clearance and cell survival, in drug-resistant isolates. These results indicated that metabolic pathway alteration was directly correlated with antibiotic resistance, which could promote the development of antibacterial drugs from “target” to “network.” Moreover, combined with minimum inhibitory concentration (MIC) of cotrimoxazole and amikacin on different KPN isolates, we identified nine proteins, including garK, uxaC, exuT, hpaB, fhuA, KPN_01492, fumA, hisC, and aroE, which might contribute mostly to the survival of KPN under drug pressure. In sum, our findings provided novel, non-antibiotic-based therapeutics against resistant KPN.
Collapse
Affiliation(s)
- Chunmei Shen
- Department of Hospital Infection Management, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ying Shen
- Department of Hospital Infection Management, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Clinical Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Maosuo Xu
- Department of Clinical Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Leqi He
- Department of Clinical Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jingbo Qie
- Department of Hospital Infection Management, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat Microbiol 2021; 6:874-884. [PMID: 34017107 DOI: 10.1038/s41564-021-00912-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Antibiotic tolerance, the ability of a typically susceptible microorganism to survive extended periods of exposure to antibiotics, has a critical role in chronic and recurrent bacterial infections, and facilitates the evolution of antibiotic resistance. However, the physiological factors that contribute to the development of antibiotic tolerance, particularly in vivo, are not fully known. Despite the fact that a high-fat diet (HFD) is implicated in several human diseases, the relationship between HFD and antibiotic efficacy is still poorly understood. Here, we evaluated the efficacy of multiple clinically relevant bactericidal antibiotics in HFD-fed mice infected with methicillin-resistant Staphylococcus aureus (MRSA) or Escherichia coli. We found that HFD-fed mice had higher bacterial burdens and these bacteria displayed lower susceptibility to bactericidal antibiotic treatment compared with mice that were fed a standard diet, while microbiota-depleted standard-diet- or HFD-fed mice showed similar susceptibility. Faecal microbiota transplantation from HFD-fed mice impaired antibiotic activity in mice fed a standard diet, indicating that alteration of the gut microbiota and related metabolites in HFD-fed mice may account for the decreased antibiotic activity. 16S rRNA sequencing and metabolomics analysis of faecal samples revealed decreased microbial diversity and differential metabolite profiles in HFD-fed mice. Notably, the tryptophan metabolite indole-3-acetic acid (IAA) was significantly decreased in HFD-fed mice. Further in vitro studies showed that IAA supplementation inhibited the formation of bacterial persisters and promoted the elimination of persisters in combination with antibiotic treatment, potentially through the activation of bacterial metabolic pathways. In vivo, the combination of IAA and ciprofloxacin increased the survival rate of HFD-fed mice infected with MRSA persisters. Overall, our data reveal that a HFD has an antagonistic effect on antibiotic treatment in a mouse model, and this is associated with the alteration of the gut microbiota and IAA production.
Collapse
|
25
|
Liu Y, Yang K, Jia Y, Shi J, Tong Z, Wang Z. Thymine Sensitizes Gram-Negative Pathogens to Antibiotic Killing. Front Microbiol 2021; 12:622798. [PMID: 33584625 PMCID: PMC7875874 DOI: 10.3389/fmicb.2021.622798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Diminished antibiotic susceptibility of bacterial pathogens is an increasingly serious threat to human and animal health. Alternative strategies are required to combat antibiotic refractory bacteria. Bacterial metabolic state has been shown to play a critical role in its susceptibility to antibiotic killing. However, the adjuvant potential of nucleotides in combination with antibiotics to kill Gram-negative pathogens remains unknown. Herein, we found that thymine potentiated ciprofloxacin killing against both sensitive and resistant-E. coli in a growth phase-independent manner. Similar promotion effects were also observed for other bactericidal antibiotics, including ampicillin and kanamycin, in the fight against four kinds of Gram-negative bacteria. The mechanisms underlying this finding were that exogenous thymine could upregulate bacterial metabolism including increased TCA cycle and respiration, which thereby promote the production of ATP and ROS. Subsequently, metabolically inactive bacteria were converted to active bacteria and restored its susceptibility to antibiotic killing. In Galleria mellonella infection model, thymine effectively improved ciprofloxacin activity against E. coli. Taken together, our results demonstrated that thymine potentiates bactericidal antibiotics activity against Gram-negative pathogens through activating bacterial metabolism, providing a universal strategy to overcome Gram-negative pathogens.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
26
|
Liu Y, Yang K, Zhang H, Jia Y, Wang Z. Combating Antibiotic Tolerance Through Activating Bacterial Metabolism. Front Microbiol 2020; 11:577564. [PMID: 33193198 PMCID: PMC7642520 DOI: 10.3389/fmicb.2020.577564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of antibiotic tolerance enables genetically susceptible bacteria to withstand the killing by clinically relevant antibiotics. As is reported, an increasing body of evidence sheds light on the critical and underappreciated role of antibiotic tolerance in the disease burden of bacterial infections. Considering this tense situation, new therapeutic strategies are urgently required for combating antibiotic tolerance. Herein, we provide an insightful illustration to distinguish between antibiotic resistance and tolerance, and highlight its clinical significance and complexities of drug-tolerant bacteria. Then, we discuss the close relationship between antibiotic tolerance and bacterial metabolism. As such, a bacterial metabolism-based approach was proposed to counter antibiotic tolerance. These exogenous metabolites including amino acids, tricarboxylic acid cycle (TCA cycle) metabolites, and nucleotides effectively activate bacterial metabolism and convert the tolerant cells to sensitive cells, and eventually restore antibiotic efficacy. A better understanding of molecular mechanisms of antibiotic tolerance particularly in vivo would substantially drive the development of novel strategies targeting bacterial metabolism.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Liu Y, Shi J, Tong Z, Jia Y, Yang K, Wang Z. Potent Broad-Spectrum Antibacterial Activity of Amphiphilic Peptides against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:microorganisms8091398. [PMID: 32932906 PMCID: PMC7564829 DOI: 10.3390/microorganisms8091398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence and prevalence of multidrug-resistant (MDR) bacteria particularly Gram-negative bacteria presents a global crisis for human health. Colistin and tigecycline were recognized as the last resort of defenses against MDR Gram-negative pathogens. However, the emergence and prevalence of MCR or Tet(X)-mediated acquired drug resistance drastically impaired their clinical efficacy. It has been suggested that antimicrobial peptides might act a crucial role in combating antibiotic resistant bacteria owing to their multiple modes of action and characteristics that are not prone to developing drug resistance. Herein, we report a safe and stable tryptophan-rich amphiphilic peptide termed WRK-12 with broad-spectrum antibacterial activity against various MDR bacteria, including MRSA, colistin and tigecycline-resistant Escherichia coli. Mechanistical studies showed that WRK-12 killed resistant E. coli through permeabilizing the bacterial membrane, dissipating membrane potential and triggering the production of reactive oxygen species (ROS). Meanwhile, WRK-12 significantly inhibited the formation of an E. coli biofilm in a dose-dependent manner. These findings revealed that amphiphilic peptide WRK-12 is a promising drug candidate in the fight against MDR bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.L.); (J.S.); (Z.T.); (Y.J.); (K.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
28
|
Liu Y, Yang K, Jia Y, Shi J, Tong Z, Wang Z. Cysteine Potentiates Bactericidal Antibiotics Activity Against Gram-Negative Bacterial Persisters. Infect Drug Resist 2020; 13:2593-2599. [PMID: 32801796 PMCID: PMC7397215 DOI: 10.2147/idr.s263225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Bacterial metabolism regulators offer a novel productive strategy in the eradication of antibiotic refractory bacteria, particularly bacterial persisters. However, the potential of amino acids in the fight against Gram-negative bacterial persisters has not been fully explored. The aim of this study is to investigate the potentiation of amino acids to antibiotics in combating Gram-negative bacterial persisters and to reveal the underlying mechanisms of action. Methods Bactericidal activity of antibiotics in the absence or presence of amino acids was evaluated through detecting the reduction of bacterial CFUs. The ratio of NAD+/NADH in E. coli B2 persisters was determined using assay kit with WST-8. Bacterial respiration and ROS production were measured by the reduction of iodonitrotetrazolium chloride and fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Results In this study, we found that cysteine possesses excellent synergistic bactericidal activity with ciprofloxacin against multiple Gram-negative bacterial persisters. Furthermore, the potentiation of cysteine was evaluated in exponential and stationary-phase E. coli ATCC 25922 and E. coli B2. Interestingly, cysteine significantly improves three bactericidal antibiotics killing against stationary-phase bacteria, but not exponential-phase bacteria, implying that the effect of cysteine correlates with the metabolic state of bacteria. Mechanistic studies revealed that cysteine accelerates the bacterial TCA cycle and promotes bacterial respiration and ROS production. These metabolic regulation effects of cysteine re-sensitive bacterial persisters to antibiotic killing. Conclusion Collectively, our study highlights the synergistic bactericidal activity of bacterial metabolism regulators such as cysteine with commonly used antibiotics against Gram-negative bacterial persisters.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|