1
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Vancomycin-resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies. J Glob Antimicrob Resist 2025; 41:233-252. [PMID: 39880121 DOI: 10.1016/j.jgar.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm are also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach. Advances in genomics have shed light on VREfm's persistence in hospital settings, particularly its adaptation to the gastrointestinal tract of hospitalized patients, recent clonal shifts, and the dominance of specific clonal lineages. Despite extensive research, significant gaps remain in understanding the molecular mechanisms behind VREfm's unique adaptation to clinical environments. In this review, we aim to present an overview of VREfm current prevalence, mechanisms of resistance, and unveil the adaptive traits that have facilitated VREfm's rise and global success. A particular focus is given to key plasmids, namely linear plasmids, virulence factors, and bacteriocins as potential drivers in the global emergence of the ST78 clonal lineage. We also address diagnostic challenges and the limited treatment options available for VREfm, as well as emerging antibiotic alternatives aimed at restoring gut microbiota balance and curbing VREfm proliferation. A multifaceted approach combining research, clinical practices, and public health policies is crucial to mitigate the impact of this superbug and preserve antimicrobial effectiveness for future generations.
Collapse
Affiliation(s)
- Ana C Almeida-Santos
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal.
| |
Collapse
|
2
|
Han YY, Wang JT, Cheng WC, Chen KL, Chi Y, Teng LJ, Wang JK, Wang YL. SERS-based rapid susceptibility testing of commonly administered antibiotics on clinically important bacteria species directly from blood culture of bacteremia patients. World J Microbiol Biotechnol 2023; 39:282. [PMID: 37589866 PMCID: PMC10435613 DOI: 10.1007/s11274-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Bloodstream infections are a growing public health concern due to emerging pathogens and increasing antimicrobial resistance. Rapid antibiotic susceptibility testing (AST) is urgently needed for timely and optimized choice of antibiotics, but current methods require days to obtain results. Here, we present a general AST protocol based on surface-enhanced Raman scattering (SERS-AST) for bacteremia caused by eight clinically relevant Gram-positive and Gram-negative pathogens treated with seven commonly administered antibiotics. Our results show that the SERS-AST protocol achieves a high level of agreement (96% for Gram-positive and 97% for Gram-negative bacteria) with the widely deployed VITEK 2 diagnostic system. The protocol requires only five hours to complete per blood-culture sample, making it a rapid and effective alternative to conventional methods. Our findings provide a solid foundation for the SERS-AST protocol as a promising approach to optimize the choice of antibiotics for specific bacteremia patients. This novel protocol has the potential to improve patient outcomes and reduce the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Yin-Yi Han
- Department of Anesthesiology, National Taiwan University Hospital, 7 Zhongshan S. Road, Taipei, 100225, Taiwan.
- Department of Surgery, National Taiwan University Hospital, 7 Zhongshan S. Road, Taipei, 100225, Taiwan.
- Department of Traumatology, National Taiwan University Hospital, 7 Zhongshan S. Road, Taipei, 100225, Taiwan.
| | - Jann-Tay Wang
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, 7 Zhongshan S. Road, Taipei, 100225, Taiwan
- Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Wei-Chih Cheng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road Sec. 4, Taipei, 10617, Taiwan
| | - Ko-Lun Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road Sec. 4, Taipei, 10617, Taiwan
| | - Yi Chi
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road Sec. 4, Taipei, 10617, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, 1, Roosevelt Road Sec. 4, Taipei, 10048, Taiwan
| | - Juen-Kai Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road Sec. 4, Taipei, 10617, Taiwan.
- Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei, 106319, Taiwan.
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Road Sec. 4, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Cimen C, Berends MS, Bathoorn E, Lokate M, Voss A, Friedrich AW, Glasner C, Hamprecht A. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control 2023; 12:78. [PMID: 37568229 PMCID: PMC10422769 DOI: 10.1186/s13756-023-01278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs S Berends
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Epidemiology, Certe Medical Diagnostics and Advice Foundation, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Fernández-Cuenca F, López-Hernández I, Cercenado E, Conejo MC, Tormo N, Gimeno C, Pascual A. Reporting antimicrobial susceptibilities and phenotypes of resistance to vancomycin in vancomycin-resistant Enterococcus spp. clinical isolates: A nationwide proficiency study. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023:S2529-993X(22)00310-0. [PMID: 36610833 DOI: 10.1016/j.eimce.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The ability of Spanish microbiology laboratories to (a) determine antimicrobial susceptibility (AS), and (b) correctly detect the vancomycin resistance (VR) phenotype in vancomycin-resistant Enterococcus spp. (VRE) was evaluated. METHODS Three VRE isolates representing the VanA (E. faecium), VanB (E. faecium) and VanC (E. gallinarum) VR phenotypes were sent to 52 laboratories, which were asked for: (a) AS method used; (b) MICs of ampicillin, imipenem, vancomycin, teicoplanin, linezolid, daptomycin, ciprofloxacin, levofloxacin and quinupristin-dalfopristin, and high-level resistance to gentamicin and streptomycin; (c) VR phenotype. RESULTS (a) The most frequently used system was MicroScan; (b) according to the system, the highest percentage of discrepant MICs was found with gradient strips (21.3%). By antimicrobial, the highest rates of discrepant MICs ranged 16.7% (imipenem) to 0.7% (linezolid). No discrepant MICs were obtained with daptomycin or levofloxacin. Mayor errors (MEs) occurred with linezolid (1.1%/EUCAST) and ciprofloxacin (5.0%/CLSI), and very major errors (VMEs) with vancomycin (27.1%/EUCAST and 33.3%/CLSI) and teicoplanin (5.7%/EUCAST and 2.3%/CLSI). For linezolid, ciprofloxacin, and vancomycin, discrepant MICs were responsible for these errors, while for teicoplanin, errors were due to a misassignment of the clinical category. An unacceptable high percentage of VMEs was obtained using gradient strips (14.8%), especially with vancomycin, teicoplanin and daptomycin; (c) 86.4% of the centers identified VanA and VanB phenotypes correctly, and 95.0% the VanC phenotype. CONCLUSION Most Spanish microbiology laboratories can reliably determine AS in VRE, but there is a significant percentage of inadequate interpretations (warning of false susceptibility) for teicoplanin in isolates with the VanB phenotype.
Collapse
Affiliation(s)
- Felipe Fernández-Cuenca
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIs), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Inmaculada López-Hernández
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIs), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cercenado
- Servicio de Microbiología y Enfermedades Infecciosas. Hospital General Universitario Gregorio Marañón, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain; CIBERES, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, CB06/06/0058, Madrid, Spain
| | | | - Nuria Tormo
- Servicio de Microbiología, Hospital General de Valencia, Valencia, Spain; Quality Control Programme (CCS), Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC), Valencia, Spain
| | - Concepción Gimeno
- Servicio de Microbiología, Hospital General de Valencia, Valencia, Spain; Quality Control Programme (CCS), Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC), Valencia, Spain
| | - Alvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIs), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Khan A, Miller WR, Axell-House D, Munita JM, Arias CA. Antimicrobial Susceptibility Testing for Enterococci. J Clin Microbiol 2022; 60:e0084321. [PMID: 35695560 PMCID: PMC9491174 DOI: 10.1128/jcm.00843-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enterococci are major, recalcitrant nosocomial pathogens with a wide repertoire of intrinsic and acquired resistance determinants and the potential of developing resistance to all clinically available antimicrobials. As such, multidrug-resistant enterococci are considered a serious public health threat. Due to limited treatment options and rapid emergence of resistance to all novel agents, the clinical microbiology laboratory plays a critical role in deploying accurate, reproducible, and feasible antimicrobial susceptibility testing methods to guide appropriate treatment of patients with deep-seated enterococcal infections. In this review, we provide an overview of the advantages and disadvantages of existing manual and automated methods that test susceptibility of Enterococcus faecium and Enterococcus faecalis to β-lactams, aminoglycosides, vancomycin, lipoglycopeptides, oxazolidinones, novel tetracycline-derivatives, and daptomycin. We also identify unique problems and gaps with the performance and clinical utility of antimicrobial susceptibility testing for enterococci, provide recommendations for clinical laboratories to circumvent select problems, and address potential future innovations that can bridge major gaps in susceptibility testing.
Collapse
Affiliation(s)
- Ayesha Khan
- Genomics & Resistant Microbes (GeRM) Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - William R. Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dierdre Axell-House
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jose M. Munita
- Genomics & Resistant Microbes (GeRM) Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cesar A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
6
|
Reporting antimicrobial susceptibilities and phenotypes of resistance to vancomycin in vancomycin-resistant Enterococcus spp. clinical isolates: A nationwide proficiency study. Enferm Infecc Microbiol Clin 2022. [DOI: 10.1016/j.eimc.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Walker SV, Wolke M, Plum G, Weber RE, Werner G, Hamprecht A. Failure of Vitek2 to reliably detect vanB-mediated vancomycin resistance in Enterococcus faecium. J Antimicrob Chemother 2021; 76:1698-1702. [PMID: 33855441 DOI: 10.1093/jac/dkab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/02/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The increasing prevalence of VRE necessitates their reliable detection, especially for low-level resistance mediated by vanB in Enterococcus faecium. In this prospective study we analysed if vanB-mediated vancomycin resistance can be reliably detected by Vitek2. METHODS One thousand, three hundred and forty-four enterococcal isolates from routine clinical specimens were tested by Vitek2 (bioMérieux, Nürtingen, Germany). Additionally, a bacterial suspension (with a turbidity equivalent to that of a 0.5 McFarland standard) was inoculated on chromID VRE screening agar (bioMérieux) and incubated for 48 h. If vancomycin tested susceptible by Vitek2 but growth was detected on the screening agar, PCR for vanA/vanB was performed (GeneXpert vanA/B test, Cepheid, Frankfurt, Germany). For isolates that tested susceptible to vancomycin by Vitek2 but were vanA/B positive, MICs were determined before and after cultivation in broth with increasing concentrations of vancomycin. RESULTS One hundred and fifty-six out of 491 E. faecium were VRE and were predominantly vanB positive (81.0%). Of these, Vitek2 did not identify 14 as VRE (sensitivity 91.0%). By broth microdilution 9/14 isolates demonstrated high MICs (≥32 mg/L) and 5/14 showed low vancomycin MICs, which did not increase despite vancomycin exposure. Three of the 14 isolates demonstrated growth on chromID VRE; after vancomycin exposure seven additional isolates were able to grow on chromID VRE. CONCLUSIONS Vitek2 fails to detect vanB-mediated vancomycin resistance consistently, especially, but not limited to, low-level resistance. As this may lead to treatment failure and further dissemination of vanB VRE, additional methods (e.g. culture on VRE screening agar or PCR) are necessary to reliably identify vanB-positive enterococci in clinical routine.
Collapse
Affiliation(s)
- Sarah V Walker
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany.,DZIF (German Centre for Infection Research), Partner Site Bonn-Cologne, Cologne, Germany
| | - Martina Wolke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Georg Plum
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Robert E Weber
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Guido Werner
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany.,DZIF (German Centre for Infection Research), Partner Site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Jasuja JK, Zimmermann S, Burckhardt I. Applicability and performance of EUCAST's rapid antimicrobial susceptibility testing (RAST) on primarily sterile body fluids in blood culture bottles in laboratory routine with total lab automation. Eur J Clin Microbiol Infect Dis 2021; 40:1217-1225. [PMID: 33438162 PMCID: PMC8139921 DOI: 10.1007/s10096-020-04146-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022]
Abstract
Optimisation of microbiological diagnostics in primarily sterile body fluids is required. Our objective was to apply EUCAST's RAST on primarily sterile body fluids in blood culture bottles with total lab automation (TLA) and to compare results to our reference method Vitek2 in order to report susceptibility results earlier. Positive blood culture bottles (BACTEC™ Aerobic/Anaerobic/PEDS) inoculated with primarily sterile body fluids were semi-automatically subcultured onto Columbia 5% SB agar, chocolate agar, MacConkey agar, Schaedler/KV agar and Mueller-Hinton agar. On latter, cefoxitin, ampicillin, vancomycin, piperacillin/tazobactam, meropenem and ciprofloxacin were added. After 6 h, subcultures and RAST were imaged and MALDI-TOF MS was performed. Zone sizes were digitally measured and interpreted following RAST breakpoints for blood cultures. MIC values were determined using Vitek2 panels. During a 1-year period, 197 Staphylococcus aureus, 91 Enterococcus spp., 38 Escherichia coli, 11 Klebsiella pneumoniae and 8 Pseudomonas aeruginosa were found. Categorical agreement between RAST and MIC was 96.5%. Comparison showed no very major errors, 2/7 (28.6%) and 1/7 (14.3%) of major errors for P. aeruginosa and meropenem and ciprofloxacin, 1/9 (11.1%) for K. pneumoniae and ciprofloxacin, 4/69 (7.0%) and 3/43 (5.8%) for Enterococcus spp. and vancomycin and ampicillin, respectively. Minor errors for P. aeruginosa and meropenem (1/8; 12.8%) and for E. coli and ciprofloxacin (2/29; 6.5%) were found. 30/550 RAST measurements were within area of technical uncertainty. RAST is applicable and performs well for primarily sterile body fluids in blood culture bottles, partially better than blood-based RAST. Official EUCAST evaluation is needed.
Collapse
Affiliation(s)
- Jasmin Kaur Jasuja
- Department for Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Stefan Zimmermann
- Department for Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Irene Burckhardt
- Department for Infectious Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK. Thirty years of VRE in Germany - "expect the unexpected": The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updat 2020; 53:100732. [PMID: 33189998 DOI: 10.1016/j.drup.2020.100732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Enterococci are commensals of the intestinal tract of many animals and humans. Of the various known and still unnamed new enterococcal species, only isolates of Enterococcus faecium and Enterococcus faecalis have received increased medical and public health attention. According to textbook knowledge, the majority of infections are caused by E. faecalis. In recent decades, the number of enterococcal infections has increased, with the increase being exclusively associated with a rising number of nosocomial E. faecium infections. This increase has been accompanied by the dissemination of certain hospital-acquired strain variants and an alarming progress in the development of antibiotic resistance namely vancomycin resistance. With this review we focus on a description of the specific situation of vancomycin resistance among clinical E. faecium isolates in Germany over the past 30 years. The present review describes three VRE episodes in Germany, each of which is framed by the beginning and end of the respective decade. The first episode is specified by the first appearance of VRE in 1990 and a country-wide spread of specific vanA-type VRE strains (ST117/CT24) until the late 1990s. The second decade was initially marked by regional clusters and VRE outbreaks in hospitals in South-Western Germany in 2004 and 2005, mainly caused by vanA-type VRE of ST203. Against the background of a certain "basic level" of VRE prevalence throughout Germany, an early shift from the vanA genotype to the vanB genotype in clinical isolates already occurred at the end of the 2000s without much notice. With the beginning of the third decade in 2010, VRE rates in Germany have permanently increased, first in some federal states and soon after country-wide. Besides an increase in VRE prevalence, this decade was marked by a sharp increase in vanB-type resistance and a dominance of a few, novel strain variants like ST192 and later on ST117 (CT71, CT469) and ST80 (CT1065). The largest VRE outbreak, which involved about 2,900 patients and lasted over three years, was caused by a novel and until that time, unknown strain type of ST80/CT1013 (vanB). Across all periods, VRE outbreaks were mainly oligoclonal and strain types varied over space (hospital wards) and time. The spread of VRE strains obviously respects political borders; for instance, both vancomycin-variable enterococci which were highly prevalent in Denmark and ST796 VRE which successfully disseminated in Australia and Switzerland, were still completely absent among German hospital patients, until to date.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany.
| | - Bernd Neumann
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | - Robert E Weber
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | | | | | - Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| |
Collapse
|