1
|
Blouin K, Lefebvre B, Trudelle A, Defay F, Perrault-Sullivan G, Gnimatin JP, Labbé AC. Neisseria gonorrhoeae treatment failure to the recommended antibiotic regimen-Québec, Canada, 2015-19. J Antimicrob Chemother 2024; 79:3029-3040. [PMID: 39288011 PMCID: PMC11531823 DOI: 10.1093/jac/dkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To describe Neisseria gonorrhoeae treatment failure to the recommended antimicrobial regimens (azithromycin, cefixime and ceftriaxone). METHODS Our study was a longitudinal analysis of treatment failures from an observational open cohort of gonococcal infection cases collected in Québec, Canada (n = 2547) between September 2015 and December 2019. Epidemiological and clinical data were collected using a self-administered questionnaire, direct case interviews and chart reviews. Antimicrobial susceptibility testing was performed using the agar dilution method. To be retained as a treatment failure, cases must have had (i) a laboratory-confirmed gonococcal infection; (ii) a documented treatment; (iii) a positive test of cure (TOC) performed within a defined period and (iv) no sexual contact (vaginal, oral or anal), even protected with a condom, between the beginning of treatment and the positive TOC. A broader definition, including suspected cases, was also examined. RESULTS Among 1593 cases where a TOC was performed, 83 had a positive TOC: 11 were retained as treatment failure, and 6 were considered suspected cases (overall = 17/1593; 1.1%). Possible explanations for retained or suspected treatment failure included resistance to the antibiotics used for treatment (n = 1), pharyngeal infection (n = 9, of which 5 had been treated with ceftriaxone and 4 with other regimens); and azithromycin monotherapy (n = 1). Some cases had more than one potential explanation. CONCLUSIONS Treatment failure occurred in 1.1% of cases of Neisseria gonorrhoeae infection for which a TOC was performed, including some cases of pharyngeal infection treated with ceftriaxone.
Collapse
Affiliation(s)
- Karine Blouin
- Unité sur les infections transmissibles sexuellement et par le sang, Institut national de santé publique du Québec, Québec, Canada
- Département de médecine sociale et préventive, École de santé publique de l’Université de Montréal, Montréal, Canada
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne de Bellevue, Canada
| | - Annick Trudelle
- Unité sur les infections transmissibles sexuellement et par le sang, Institut national de santé publique du Québec, Québec, Canada
| | - Fannie Defay
- Unité sur les infections transmissibles sexuellement et par le sang, Institut national de santé publique du Québec, Québec, Canada
| | - Gentiane Perrault-Sullivan
- Unité sur les infections transmissibles sexuellement et par le sang, Institut national de santé publique du Québec, Québec, Canada
| | - Jean-Pierre Gnimatin
- Unité sur les infections transmissibles sexuellement et par le sang, Institut national de santé publique du Québec, Québec, Canada
| | - Annie-Claude Labbé
- Direction de santé publique, CIUSSS de l’Est-de-l’île-de Montréal, Montréal, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Increasing azithromycin resistance in
Neisseria gonorrhoeae
due to NG-MAST 12302 clonal spread in Canada, 2015-2018. Antimicrob Agents Chemother 2022; 66:e0168821. [PMID: 34978884 PMCID: PMC8923198 DOI: 10.1128/aac.01688-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives:
Azithromycin resistant (AZIR) gonorrhea has been steadily increasing in Canada over the past decade which is cause for alarm as azithromycin (AZI) has been part of the combination therapy recommended by the Canadian Guidelines on Sexually Transmitted Infections (CGSTI) since 2012.
Method:
Neisseria gonorrhoeae
(NG) with AZI MICs ≥ 1 mg/L collected between 2015 and 2018 as part of the Gonococcal Antimicrobial Surveillance Program-Canada underwent antimicrobial susceptibility testing, molecular typing and whole genome sequencing. Regional, demographic and clinical isolation site comparisons were made to aid in our understanding of AZI susceptibility trending.
Results:
3,447 NG with AZI MICs ≥ 1 mg/L were identified in Canada, increasing from 6.3% in 2015 to 26.5% of isolates in 2018. Central Canada had the highest proportion rising from 9.2% in 2015 to 31.2% in 2018. 273 different NG-MAST sequence types were identified among these isolates with ST-12302 the most prevalent (50.9%). Whole genome sequencing identified the
Neisseria lactamica
-like mosaic
mtr
locus as the mechanism of AZIR in isolates of ST-12302 and isolates genetically similar (differ by ≤ 5 base pairs) designated as the ST-12302 genogroup, accounting for 65.2% of study isolateswhich were originally identified in central Canada but spread to other regions by 2018.
Conclusion:
Genomic analysis indicated that AZIR in Canadian NG expanded rapidly due to clonal spread of the ST-12302 genogroup. The rapid expansion of this AZIR clonal group in all regions of Canada is of concern. CGSTI are currently under review to address the increase in AZIR in Canada.
Collapse
|
3
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
4
|
The Accuracy of Molecular Detection Targeting the Mutation C2611T for Detecting Moderate-Level Azithromycin Resistance in Neisseria gonorrhoeae: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10091027. [PMID: 34572609 PMCID: PMC8471969 DOI: 10.3390/antibiotics10091027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neisseria gonorrhoeae (N. gonorrhoeae) is now recognized as a commonly reported sexually transmitted pathogen, and the increasing drug resistance of N. gonorrhoeae has become a serious public health problem. The accuracy of molecular detection for detecting moderate-level azithromycin resistance is not well-established. We summarized the data from studies of the N. gonorrhoeae 23S rRNA mutation at position 2611 with azithromycin resistance to determine the relationship between the mutation and resistance. METHODS AND FINDINGS In this systematic review and meta-analysis, two researchers independently searched six databases for studies with data for the azithromycin minimum inhibitory concentrations (MICs) and the 23S rRNA mutation C2611T of each N. gonorrhoeae isolate. Since the breakpoint of moderate-level resistance to azithromycin (ML-AzmR) was not determined, we divided the moderate level into two groups according to the range of MICs (moderate resistance limited to 2-128 mg/L or 4-128 mg/L) for data extraction. A random-effects model was used to calculate the pooled sensitivity rate, the specificity rate, the pooled positive likelihood ratio (PLR), the negative likelihood ratio (NLR), and the diagnostic odds ratio (DOR). Meta-regression analyses by detection method, isolates sampling (a random sample or not), location, and sample size were performed to explore the possible causes of heterogeneity. The potential publication bias of the included studies was conducted by the Deeks' test. We included 20 studies in our study: 20 studies have data of N. gonorrhoeae with MICs between 2 and 128 mg/L with mutation or without mutation at position 2611(4759 samples), and 14 studies have data of N. gonorrhoeae with MICs between 4 and 128 mg/L (3367 samples). In the group with the moderate level of 2-128 mg/L, the pooled sensitivity rate of the molecular assays was determined to be 71.9% (95% CI, 67.6-74%), the pooled specificity rate was 98.7% (95% CI, 98.2-99.0%), and the DOR ranged from 55.0 to 351.3 (mean, 139.1). In the 4-128 mg/L group, the pooled sensitivity rate was 91.9% (95% CI, 88.9-94.2%), the pooled specificity rate was 95.9% (95% CI, 95.1-96.6%), and the DOR ranged from 41.9 to 364.1 (mean, 123.6). CONCLUSION Through this meta-analysis, we found that the C2611T mutation of 23S rRNA is valuable for the molecular diagnostic of moderate-level azithromycin resistance (ML-AzmR) in N. gonorrhoeae, especially when the moderate level is set at 4-128 mg/L. This rapid molecular detection method can be used for the rapid identification of ML-AzmR isolates in the clinic.
Collapse
|
5
|
Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, Cole MJ, Grad YH, Martin I, Raphael BH, Shafer WM, Town K, Wi T, Harris SR, Unemo M, Aanensen DM. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med 2021; 13:61. [PMID: 33875000 PMCID: PMC8054416 DOI: 10.1186/s13073-021-00858-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance. METHODS Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization. RESULTS AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern. CONCLUSIONS The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Collapse
Affiliation(s)
- Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain.
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Benjamin Taylor
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Richard J Goater
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
- European Molecular Biology Lab, Heidelberg, Baden-Wuerttemberg, Germany
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Khalil Abudahab
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Golparian
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, London, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Brian H Raphael
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA, USA
| | - Katy Town
- Division of STD prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, World Health Organization, Geneva, Switzerland
| | - Simon R Harris
- Microbiotica, Biodata Innovation Centre, Cambridge, Cambridgeshire, UK
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
6
|
Jacobsson S, Cole MJ, Spiteri G, Day M, Unemo M. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in European Union/European Economic Area and patients' gender, sexual orientation and anatomical site of infection, 2009-2016. BMC Infect Dis 2021; 21:273. [PMID: 33736608 PMCID: PMC7976712 DOI: 10.1186/s12879-021-05931-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The emergence and spread of antimicrobial resistance (AMR) in Neisseria gonorrhoeae, nationally and internationally, is a serious threat to the management and control of gonorrhoea. Limited and conflicting data regarding the epidemiological drivers of gonococcal AMR internationally have been published. We examined the antimicrobial susceptibility/resistance of gonococcal isolates (n = 15,803) collected across 27 European Union/European Economic Area (EU/EEA) countries in 2009-2016, in conjunction to epidemiological and clinical data of the corresponding patients, to elucidate associations between antimicrobial susceptibility/resistance and patients' gender, sexual orientation and anatomical site of infection. METHODS In total, 15,803 N. gonorrhoeae isolates from the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP), 2009-2016, were examined. Associations between gonococcal susceptibility/resistance and patients' gender, sexual orientation and anatomical site of infection were investigated using univariate and multivariate logistic regression analysis. Statistical significance was determined by Pearson χ2-test or Fisher's exact test with two-tailed p-values of < 0.05 indicating significance. RESULTS The overall gonococcal resistance from 2009 to 2016 was 51.7% (range during the years: 46.5-63.5%), 7.1% (4.5-13.2%), 4.3% (1.8-8.7%), and 0.2% (0.0-0.5%) to ciprofloxacin, azithromycin, cefixime, and ceftriaxone, respectively. The level of resistance combined with decreased susceptibility to ceftriaxone was 10.2% (5.7-15.5%). Resistance to cefixime and ciprofloxacin, and resistance combined with decreased susceptibility to ceftriaxone were positively associated with urogenital infections and heterosexual males, males with sexual orientation not reported and females (except for ciprofloxacin), i.e. when compared to men-who-have-sex-with-men (MSM). Azithromycin resistance was positively associated with heterosexual males, but no association was significant regarding anatomical site of infection. CONCLUSIONS Overall, sexual orientation was the main variable associated with gonococcal AMR. Strongest positive associations were identified with heterosexual patients, particularly males, and not MSM. To provide evidence-based understanding and mitigate gonococcal AMR emergence and spread, associations between antimicrobial susceptibility/resistance and patients' gender, sexual orientation and anatomical site of infection need to be further investigated in different geographic settings. In general, these insights will support identification of groups at increased risk and targeted public health actions such as intensified screening, 3-site testing using molecular diagnostics, sexual contact tracing, and surveillance of treatment failures.
Collapse
Affiliation(s)
- Susanne Jacobsson
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Michelle J Cole
- National Infection Service, Public Health England, Colindale, UK
| | | | - Michaela Day
- National Infection Service, Public Health England, Colindale, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
7
|
Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, Taiaroa G, Rubin DHF, Wang Y, Williamson DA, Unemo M, Harris SR, Grad YH. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020; 11:4126. [PMID: 32807804 PMCID: PMC7431566 DOI: 10.1038/s41467-020-17980-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae is an urgent public health threat due to rapidly increasing incidence and antibiotic resistance. In contrast with the trend of increasing resistance, clinical isolates that have reverted to susceptibility regularly appear, prompting questions about which pressures compete with antibiotics to shape gonococcal evolution. Here, we used genome-wide association to identify loss-of-function (LOF) mutations in the efflux pump mtrCDE operon as a mechanism of increased antibiotic susceptibility and demonstrate that these mutations are overrepresented in cervical relative to urethral isolates. This enrichment holds true for LOF mutations in another efflux pump, farAB, and in urogenitally-adapted versus typical N. meningitidis, providing evidence for a model in which expression of these pumps in the female urogenital tract incurs a fitness cost for pathogenic Neisseria. Overall, our findings highlight the impact of integrating microbial population genomics with host metadata and demonstrate how host environmental pressures can lead to increased antibiotic susceptibility.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|