1
|
Rodríguez-Goncer I, Ruiz-Arabi E, Herrera S, Sabé N, Los-Arcos I, Silva JT, Pérez-Nadales E, Machuca I, Álvarez R, Valerio M, Castón JJ, Aguilera V, Bodro M, Cano Á, Cantón R, Carmona P, Carratalà J, Cordero E, Cruzado JM, Fariñas MC, Fernández-Ruiz M, Fondevila C, Fortún J, García-Cosío MD, Gutiérrez-Dalmau A, Iturbe D, Justo I, Len O, López-Medrano F, López Oliva MO, Martín-Dávila P, Martínez-Martínez L, Mazuecos A, Mirabet S, Muñoz P, Oliver A, Pérez-Sáez MJ, Rodríguez-Gómez J, San-Juan R, Sánchez-Céspedes J, Solé A, Vidal Verdú E, Villa J, Torre-Cisneros J, Aguado JM. Management of multidrug-resistant gram-negative bacilli infections in adult solid organ transplant recipients: GESITRA-IC/SEIMC, CIBERINFEC, and SET recommendations update. Transplant Rev (Orlando) 2025; 39:100937. [PMID: 40414085 DOI: 10.1016/j.trre.2025.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Multidrug-resistant (MDR) Gram-negative bacilli (GNB) infections in solid organ transplant (SOT) recipients continue to pose a significant threat despite advances in diagnostics and treatments. The last international consensus guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the management of MDR GNB in adult solid organ transplant (SOT) recipients were published in 2018, underscoring the need for an update to incorporate recent advances, particularly the availability of new drugs that may improve the current standard of care. A working group consisting of members from the Study Group of Infection in Transplantation and Immunocompromised Hosts (GESITRA-IC) of SEIMC, the Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC) and the Spanish Society of Transplantation (SET) developed consensus-based recommendations for managing MDR GNB infections during the transplant procedure. Recommendations were categorized based on evidence quality and strength, utilizing the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The final recommendations were endorsed through a consensus meeting and approved by the expert panel.
Collapse
Affiliation(s)
- Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain.
| | - Elisa Ruiz-Arabi
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Sabina Herrera
- Infectious Diseases Department. Transplant Coordination Service. Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona (IDIBAPS), Spain
| | - Nuria Sabé
- Infectious Diseases Department, Bellvitge University Hospital, Bellvitge. Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - Ibai Los-Arcos
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - José Tiago Silva
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain
| | - Elena Pérez-Nadales
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain
| | - Isabel Machuca
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Rocío Álvarez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Maricela Valerio
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department. Hospital Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Juan José Castón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Victoria Aguilera
- Liver Transplantation and Hepatology Unit, Hospital Universitari i Politécnic La Fe, Valencia, Spain; Center for Biomedical Research in Liver and Digestive Diseases (CIBERehd). Instituto de Salud Carlos III, Spain
| | - Marta Bodro
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department. Transplant Coordination Service. Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona (IDIBAPS), Spain
| | - Ángela Cano
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain
| | - Rafael Cantón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Microbiology Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jordi Carratalà
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Bellvitge University Hospital, Bellvitge. Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Department of Medicine, Faculty of Medicine, Universidad de Sevilla, Spain
| | - Josep María Cruzado
- Nephrology Department, Bellvitge Hospital. University of Barcelona. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - María Carmen Fariñas
- Infectious Diseases Department, Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Cantabria, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Constantino Fondevila
- General and Digestive Surgery Department, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Jesús Fortún
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M Dolores García-Cosío
- Cardiology Department. University Hospital "12 de Octubre". Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Cardiovascular Diseases (CIBERCV), Spain
| | - Alex Gutiérrez-Dalmau
- Kidney Transplant Unit, Nephrology Service, Miguel Servet University Hospital, Aragón Institute for Health Research IIS-Aragón, Zaragoza, Spain
| | - David Iturbe
- Respiratory Medicine Department, Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Cantabria, Spain
| | - Iago Justo
- Unit of Hepato-Pancreato-Biliary Surgery and Abdominal Organ Transplantation, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12). Department of Surgery, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Oscar Len
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Pilar Martín-Dávila
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luis Martínez-Martínez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain; Microbiology Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Auxiliadora Mazuecos
- Kidney Transplant Unit. Department of Nephrology, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Sonia Mirabet
- Center for Biomedical Research in Cardiovascular Diseases (CIBERCV), Spain; Heart Transplantation Unit, Cardiology Department, Hospital Sant Pau, Barcelona, Spain
| | - Patricia Muñoz
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department. Hospital Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Antonio Oliver
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Microbiology Department, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - María José Pérez-Sáez
- Kidney Transplant Unit, Nephrology Department, Hospital del Mar. Hospital del Mar Research Institute. RICORS 2040-Renal, Barcelona, Spain
| | | | - Rafael San-Juan
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Amparo Solé
- Lung Transplant Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Elisa Vidal Verdú
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain
| | - Jennifer Villa
- School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain
| | - Julián Torre-Cisneros
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - José María Aguado
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
2
|
Shafiq M, Ahmad A, Latif K, Saeed M, Ahmed I, Hyder MZ. Prevalence of New Delhi Metallo-β-lactamase (bla NDM) gene in a selected population of drug-resistant clinical isolates. Mol Biol Rep 2025; 52:388. [PMID: 40232532 DOI: 10.1007/s11033-025-10446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVES Drug-resistant Enterobacterales carrying carbapenem-resistant genes cause severe infections in clinical settings worldwide. Among these, the New Dehli Metallo-β-lactamase (blaNDM) gene is significantly prevalent and associated with high morbidity. This study was designed to investigate the susceptibility profiling of Carbapenem-Resistant-Enterobacterales (CRE), prevalence of blaNDM and its variants, and associated risk factors. METHODS CRE isolates from a tertiary care hospital, in Islamabad, Pakistan, were identified and the susceptibility testing was performed using disc diffusion method. MICs were determined for imipenem, tigecycline, and colistin through E-strips and microbroth dilution method respectively. For molecular characterization and typing of the blaNDM gene, PCR products were sequenced, and the phylogenetic analysis was performed using MEGA ver 6.0 software. RESULTS Among 5,134 clinical samples, 42.13% (n = 2,163) yielded pathogens including 42.58% (n = 921) Enterobacterales. On further screening, 39.52% (n = 364) of Enterobacterales were identified as CRE. The blaNDM gene was detected in 75.27% (n = 274) in CRE isolates, comprising blaNDM-1 (44%), blaNDM-5 (53%), and blaNDM-7 (3%) variants. Tigecycline (86.7%) and colistin (100%) were most effective antimicrobial agents with MICs ranging from 0.064 to 8 and 0.125-1 µg/ml respectively. blaNDM-1-harboring bacteria exhibited high antimicrobial resistance compared to blaNDM-5 and blaNDM-7. Cefiderocol was 75.6% and ceftazidime/avibactam with aztreonam was 97.08% effective against blaNDM-harboring bacteria. The phylogenetic analysis indicated that blaNDM variants showed close genetic relationships and homology to the previously described sequences in GenBank databases having diverse connection with worldwide sequences. CONCLUSION The high prevalence of blaNDM in our study has of great concern for clinical practice and public health. Clinicians are left with few therapeutic options. However, ceftazidime/avibactam with aztreonam may show therapeutic success. Continuous surveillance is crucial to monitorgenetic variations of continuously evolving blaNDM gene, which is essential for effective clinical management.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Aftab Ahmad
- Department of Microbiology, Faculty of Biomedical & Life Sciences, Kohsar University Murree, Murree, Pakistan.
| | - Kunza Latif
- Department of Microbiology, Faculty of Biomedical & Life Sciences, Kohsar University Murree, Murree, Pakistan
| | - Muhammad Saeed
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP) Land Resources Research Institute (LRRI), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
3
|
Zohar I, Ben David D, Schwartz O, Pomerantz A, Caliari G, Hoffman E, Maor Y. Amikacin treatment in patients with Enterobacterales bacteraemia: impact of MIC on mortality. J Antimicrob Chemother 2024; 79:3204-3209. [PMID: 39331516 DOI: 10.1093/jac/dkae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Recently, breakpoints of Enterobacterales to amikacin were changed from MIC ≤ 16 mg/L to MIC ≤ 4 mg/L based mainly on laboratory data with little supporting clinical evidence. Our aim was to investigate the relation between MIC of Enterobacterales to amikacin and mortality among patients with Enterobacterales bacteraemia from a urinary tract source treated with amikacin. PATIENTS AND METHODS This retrospective, single-centre study included patients with Enterobacterales urinary source bacteraemia treated with amikacin, with Low (MIC ≤ 4 mg/L) and High (MIC 8 or 16 mg/L) MICs. A cohort of patients treated with ertapenem was used to assess if amikacin MIC is a marker of severity independent of antimicrobial treatment. The primary outcome was 30-day mortality. Multivariate logistic regression analysis was done to assess risk factors for mortality. RESULTS We included 85 patients, 46 (54.1%) were male, and mean age was 79.0 years (SD 11.7). Sixty-one patients (71.8%) had Low MIC and 24 (28.2%) had High MIC. Thirty-day mortality was 8.2% and 29.2% in the Low and High MIC groups, respectively (P = 0.031). Risk factors for 30-day mortality were age, infection by Enterobacterales other than Escherichia coli and high amikacin MIC. In a cohort of 88 patients treated with ertapenem, amikacin MIC was not associated with 30-day mortality. CONCLUSIONS We demonstrated a relation between higher amikacin MIC levels (8 and 16 mg/L) and increased 30-day mortality in patients treated with amikacin for bacteraemia secondary to a urinary source. These findings support the new CLSI breakpoint change of Enterobacterales to amikacin.
Collapse
Affiliation(s)
- Iris Zohar
- Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Debby Ben David
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Infection Control Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Orna Schwartz
- Microbiology Laboratory, Edith Wolfson Medical Center, Holon, Israel
| | - Adam Pomerantz
- Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Gabriel Caliari
- Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Elinoar Hoffman
- Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
| | - Yasmin Maor
- Infectious Disease Unit, Edith Wolfson Medical Center, Holon, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Gatti M, Bonazzetti C, Pascale R, Giannella M, Viale P, Pea F. Real-Time TDM-Guided Optimal Joint PK/PD Target Attainment of Continuous Infusion Piperacillin-Tazobactam Monotherapy Is an Effective Carbapenem-Sparing Strategy for Treating Non-Severe ESBL-Producing Enterobacterales Secondary Bloodstream Infections: Findings from a Prospective Pilot Study. Microorganisms 2024; 12:151. [PMID: 38257978 PMCID: PMC10819442 DOI: 10.3390/microorganisms12010151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Objectives: To assess the impact of optimal joint pharmacokinetic/pharmacodynamic (PK/PD) target attainment of continuous infusion (CI) piperacillin-tazobactam monotherapy on the microbiological outcome of documented ESBL-producing Enterobacterlaes secondary bloodstream infections (BSIs). (2) Methods: Patients hospitalized in the period January 2022-October 2023, having a documented secondary BSI caused by ESBL-producing Enterobacterales, and being eligible for definitive targeted CI piperacillin-tazobactam monotherapy according to specific pre-defined inclusion criteria (i.e., absence of septic shock at onset; favorable clinical evolution in the first 48 h after starting treatment; low-intermediate risk primary infection source) were prospectively enrolled. A real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program was adopted for optimizing (PK/PD) target attainment of CI piperacillin-tazobactam monotherapy. Steady-state plasma concentrations (Css) of both piperacillin and tazobactam were measured, and the free fractions (f) were calculated based on theoretical protein binding. The joint PK/PD target attainment was considered optimal whenever the piperacillin fCss/MIC ratio was >4 and the tazobactam fCss/target concentration (CT) ratio was >1 (quasi-optimal or suboptimal if only one or neither of the two thresholds were achieved, respectively). Univariate analysis was carried out for assessing variables potentially associated with failure in achieving the optimal joint PK/PD target of piperacillin-tazobactam and microbiological eradication. (3) Results: Overall, 35 patients (median age 79 years; male 51.4%) were prospectively included. Secondary BSIs resulted from urinary tract infections as a primary source in 77.2% of cases. The joint PK/PD target attainment was optimal in as many as 97.1% of patients (34/35). Microbiological eradication occurred in 91.4% of cases (32/35). Attaining the quasi-optimal/suboptimal joint PK/PD target of CI piperacillin-tazobactam showed a trend toward a higher risk of microbiological failure (33.3% vs. 0.0%; p = 0.08) (4) Conclusions: Real-time TDM-guided optimal joint PK/PD target attainment of CI piperacillin-tazobactam monotherapy may represent a valuable and effective carbapenem-sparing strategy when dealing with non-severe ESBL-producing Enterobacterales secondary BSIs.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Cecilia Bonazzetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Renato Pascale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Evaluation of Piperacillin-Tazobactam ETEST for the Detection of OXA-1 Resistance Mechanism among Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 2022; 60:e0143022. [PMID: 36416539 PMCID: PMC9769679 DOI: 10.1128/jcm.01430-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Globally, piperacillin-tazobactam resistance among Escherichia coli and Klebsiella pneumoniae is driven by OXA-1 beta-lactamases. Expression of blaOXA-1 yields piperacillin-tazobactam MICs of 8 to 16 μg/mL, which straddle the susceptible/susceptible-dose dependent breakpoint set by the Clinical and Laboratory Standards Institute in 2022. Variability of the reference broth microdilution method (BMD) was evaluated by manufacturing BMD panels using 2 brands of piperacillin, 2 brands of tazobactam and 2 brands of cation-adjusted Mueller-Hinton broth. In addition, ETEST, which harbors an intermediate dilution of 12 μg/mL was evaluated for the ability to differentiate isolates with and without blaOXA-1. A collection of 200 E. coli and K. pneumoniae, of which 82 harbored a blaOXA-1 gene, were tested. BMD variability was on average 1.3-fold, within the accepted 2-fold variability of MICs. However, categorical agreement (CA) between BMD reads was 74.0% for all isolates and 63.4% for those with a blaOXA-1 gene and 81.3% for those without blaOXA-1 detected (P = 0.004, Pearson's Chi Square). ETEST overall CA with the BMD mode was 68.0% and essential agreement (EA) was 80.5%. For isolates with blaOXA-1, CA was 50.0% and EA was 69.5%, versus 80.5% and 88.1%, respectively, for isolates without blaOXA-1 (P < 0.0001 for both comparisons). All ETEST errors were major errors (false resistance) compared to BMD mode. However, the negative predictive value of the ETEST for the presence of blaOXA-1 was 94.1%, compared to only 74.2% negative predictive value for BMD. Clinicians and microbiologists should be aware of the challenges associated with testing piperacillin-tazobactam in regions where blaOXA-1 is prevalent.
Collapse
|
6
|
Burillo A, Bouza E. Controversies over the management of infections caused by Amp-C- and ESBL-producing Enterobacterales : what questions remain for future studies? Curr Opin Infect Dis 2022; 35:575-582. [PMID: 35942862 DOI: 10.1097/qco.0000000000000863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The continuous rise in infections caused by third-generation cephalosporin-resistant Enterobacterales (e.g. extended-spectrum beta-lactamase- or AmpC-producing Enterobacterales ) is a major health concern. Carbapenems are regarded as the antibiotics of choice for the treatment of these infections. However, their indiscriminant use is not without consequences, and has contributed to the emergence of carbapenem-resistant Enterobacterales .In this review, we discuss the available evidence supporting the use of other betalactams, nonbetalactams and the new betalactams/beta-lactamase inhibitors (BLA/BLI) to treat these infections. We also analyze unresolved issues in this field. RECENT FINDINGS Piperacillin tazobactam (PTZ) was classically recommended as a carbapenem-sparing agent. However, data have emerged against its use and it is now a controversial recommendation. IDSA, European and British guidelines reject the empirical use of PTZ for these pathogens, reserving its use for rare clinical situations.Other issues that continue to generate debate are the use of extended infusion (3 h) PTZ, the use of older antibiotics, a shortened course of carbapenems and reserving the new BLA/BLI for these infections. SUMMARY New treatment strategies should be based on clinical evidence, local epidemiology and the microbiological activity of these drugs.
Collapse
Affiliation(s)
- Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón.,Medicine Department, School of Medicine, Universidad Complutense de Madrid.,Instituto de Investigación Sanitaria Gregorio Marañón
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón.,Medicine Department, School of Medicine, Universidad Complutense de Madrid.,Instituto de Investigación Sanitaria Gregorio Marañón.,CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| |
Collapse
|
7
|
Henriksen TH, Getachew Y, Kindie AD, Mugoro BT, Zewdie SD, Tewabe E, Mihret W, Gissa SB. The neglected importance of high-endemic ESBL sites. JAC Antimicrob Resist 2022; 4:dlac114. [PMID: 36340856 PMCID: PMC9631966 DOI: 10.1093/jacamr/dlac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Yitagesu Getachew
- Department of Internal Medicine, Yekatit 12 Hospital Medical College, Weatherall St, Addis Ababa, Ethiopia
| | - Ayelign Derebe Kindie
- Education Development Center Department, Yekatit 12 Hospital Medical College, Weatherall St, Addis Ababa, Ethiopia
| | - Behailu Tsegaye Mugoro
- Department of Microbiology, Yekatit 12 Hospital Medical College, Weatherall St, Addis Ababa, Ethiopia
| | - Soliyana Dejene Zewdie
- Department of Internal Medicine, Yekatit 12 Hospital Medical College, Weatherall St, Addis Ababa, Ethiopia
| | - Elias Tewabe
- Department of Internal Medicine, Yekatit 12 Hospital Medical College, Weatherall St, Addis Ababa, Ethiopia
| | - Wude Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Selam Bogale Gissa
- Department of Internal Medicine, Yekatit 12 Hospital Medical College, Weatherall St, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Zha L, Li X, Ren Z, Zhang D, Zou Y, Pan L, Li S, Chen S, Tefsen B. Pragmatic Comparison of Piperacillin/Tazobactam versus Carbapenems in Treating Patients with Nosocomial Pneumonia Caused by Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11101384. [PMID: 36290042 PMCID: PMC9598608 DOI: 10.3390/antibiotics11101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of piperacillin/tazobactam for managing nosocomial pneumonia caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is unknown. To answer this question, we conducted a retrospective cohort study in two tertiary teaching hospitals of patients admitted between January 2018 and July 2021 with a diagnosis of nosocomial pneumonia caused by ESBL-producing K. pneumoniae receiving either piperacillin/tazobactam or carbapenems within 24 h from the onset of pneumonia for at least 72 h. Clinical outcomes, including 28-day mortality and 14-day clinical and microbiological cure, were analyzed. Of the 136 total patients, 64 received piperacillin/tazobactam and 72 received carbapenems. The overall 28-day mortality was 19.1% (26/136). In the inverse probability of treatment weighted cohort, piperacillin/tazobactam therapy was not associated with worse clinical outcomes, as the 28-day mortality (OR, 0.82, 95% CI, 0.23–2.87, p = 0.748), clinical cure (OR, 0.94, 95% CI, 0.38–2.35, p = 0.894), and microbiological cure (OR, 1.10, 95% CI, 0.53–2.30, p = 0.798) were comparable to those of carbapenems. Subgroup analyses also did not demonstrate any statistical differences. In conclusion, piperacillin/tazobactam could be an effective alternative to carbapenems for treating nosocomial pneumonia due to ESBL-producing K. pneumoniae when the MICs are ≤8 mg/L.
Collapse
Affiliation(s)
- Lei Zha
- Intensive Care Unit, Conch Hospital of Anhui Medical University, Wuhu 241000, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
- Correspondence: (L.Z.); (B.T.)
| | - Xiang Li
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Zhichu Ren
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Dayan Zhang
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Yi Zou
- Postgraduate School, Wannan Medical College, Wuhu 241000, China
| | - Lingling Pan
- Cardiology Department, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Shirong Li
- Pulmonary and Critical Care Department, The Second People’s Hospital of Wuhu, Wuhu 241000, China
| | - Shanghua Chen
- Intensive Care Unit, The Second People’s Hospital of Wuhu, Wuhu 241000, China
| | - Boris Tefsen
- Department of Molecular Microbiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Natural Sciences, Ronin Institute, Montclair, NJ 07043, USA
- Correspondence: (L.Z.); (B.T.)
| |
Collapse
|
9
|
Schena CA, de’Angelis GL, Carra MC, Bianchi G, de’Angelis N. Antimicrobial Challenge in Acute Care Surgery. Antibiotics (Basel) 2022; 11:1315. [PMID: 36289973 PMCID: PMC9598495 DOI: 10.3390/antibiotics11101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/07/2022] Open
Abstract
The burden of infections in acute care surgery (ACS) is huge. Surgical emergencies alone account for three million admissions per year in the United States (US) with estimated financial costs of USD 28 billion per year. Acute care facilities and ACS patients represent boost sanctuaries for the emergence, development and transmission of infections and multi-resistant organisms. According to the World Health Organization, healthcare-associated infections affected around 4 million cases in Europe and 1.7 million in the US alone in 2011 with 39,000 and 99,000 directly attributable deaths, respectively. In this scenario, antimicrobial resistance arose as a public-health emergency that worsens patients' morbidity and mortality and increases healthcare costs. The optimal patient care requires the application of comprehensive evidence-based policies and strategies aiming at minimizing the impact of healthcare associated infections and antimicrobial resistance, while optimizing the treatment of intra-abdominal infections. The present review provides a snapshot of two hot topics, such as antimicrobial resistance and systemic inflammatory response, and three milestones of infection management, such as source control, infection prevention, and control and antimicrobial stewardship.
Collapse
Affiliation(s)
- Carlo Alberto Schena
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Maria Clotilde Carra
- Rothschild Hospital, AP-HP, Université Paris Cité, U.F.R. of Odontology, 75006 Paris, France
| | - Giorgio Bianchi
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France
| | - Nicola de’Angelis
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France
| |
Collapse
|
10
|
Pérez-Nadales E, Fernández-Ruiz M, Gutiérrez-Gutiérrez B, Pascual Á, Rodríguez-Baño J, Martínez-Martínez L, Aguado JM, Torre-Cisneros J. Extended-spectrum β-lactamase-producing and carbapenem-resistant Enterobacterales bloodstream infection after solid organ transplantation: Recent trends in epidemiology and therapeutic approaches. Transpl Infect Dis 2022; 24:e13881. [PMID: 35691028 PMCID: PMC9540422 DOI: 10.1111/tid.13881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Background Infections caused by multidrug‐resistant gram‐negative bacilli (MDR GNB), in particular extended‐spectrum β‐lactamase‐producing (ESBL‐E) and carbapenem‐resistant Enterobacterales (CRE), pose a major threat in solid organ transplantation (SOT). Outcome prediction and therapy are challenging due to the scarcity of randomized clinical trials (RCTs) or well‐designed observational studies focused on this population. Methods Narrative review with a focus on the contributions provided by the ongoing multinational INCREMENT‐SOT consortium (ClinicalTrials identifier NCT02852902) in the fields of epidemiology and clinical management. Results The Spanish Society of Transplantation (SET), the Group for Study of Infection in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbiology (GESITRA‐SEIMC), and the Spanish Network for Research in Infectious Diseases (REIPI) recently published their recommendations for the management of MDR GNB infections in SOT recipients. We revisit the SET/GESITRA‐SEIMC/REIPI document taking into consideration new evidence that emerged on the molecular epidemiology, prognostic stratification, and treatment of post‐transplant ESBL‐E and CRE infections. Results derived from the INCREMENT‐SOT consortium may support the therapeutic approach to post‐transplant bloodstream infection (BSI). The initiatives devoted to sparing the use of carbapenems in low‐risk ESBL‐E BSI or to repurposing existing non‐β‐lactam antibiotics for CRE in both non‐transplant and transplant patients are reviewed, as well as the eventual positioning in the specific SOT setting of recently approved antibiotics. Conclusion Due to the clinical complexity and relative rarity of ESBL‐E and CRE infections in SOT recipients, multinational cooperative efforts such as the INCREMENT‐SOT Project should be encouraged. In addition, RCTs focused on post‐transplant serious infection remain urgently needed.
Collapse
Affiliation(s)
- Elena Pérez-Nadales
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| | - Mario Fernández-Ruiz
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Unit of Infectious Diseases, "12 de Octubre" University Hospital, Instituto de Investigación Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain
| | - Belén Gutiérrez-Gutiérrez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Álvaro Pascual
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Luis Martínez-Martínez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| | - José María Aguado
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Unit of Infectious Diseases, "12 de Octubre" University Hospital, Instituto de Investigación Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain
| | - Julian Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| |
Collapse
|
11
|
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, de Waele J, Daikos GL, Akova M, Harbarth S, Pulcini C, Garnacho-Montero J, Seme K, Tumbarello M, Lindemann PC, Gandra S, Yu Y, Bassetti M, Mouton JW, Tacconelli E, Baño JR. European Society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by Multidrug-resistant Gram-negative bacilli (endorsed by ESICM -European Society of intensive care Medicine). Clin Microbiol Infect 2021; 28:521-547. [PMID: 34923128 DOI: 10.1016/j.cmi.2021.11.025] [Citation(s) in RCA: 511] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
SCOPE These ESCMID guidelines address the targeted antibiotic treatment of 3rd generation cephalosporin-resistant Enterobacterales (3GCephRE) and carbapenem-resistant Gram-negative bacteria, focusing on the effectiveness of individual antibiotics and on combination vs. monotherapy. METHODS An expert panel was convened by ESCMID. A systematic review was performed including randomized controlled trials and observational studies, examining different antibiotic treatment regimens for the targeted treatment of infections caused by the 3GCephRE, carbapenem-resistant Enterobacterales (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Acinetobacter baumanni (CRAB). Treatments were classified as head-to-head comparisons between individual antibiotics and monotherapy vs. combination therapy regimens, including defined monotherapy and combination regimens only. The primary outcome was all-cause mortality, preferably at 30 days and secondary outcomes included clinical failure, microbiological failure, development of resistance, relapse/recurrence, adverse events and length of hospital stay. The last search of all databases was conducted in December 2019, followed by a focused search for relevant studies up until ECCMID 2021. Data were summarized narratively. The certainty of the evidence for each comparison between antibiotics and between monotherapy vs. combination therapy regimens was classified by the GRADE recommendations. The strength of the recommendations for or against treatments was classified as strong or conditional (weak). RECOMMENDATIONS The guideline panel reviewed the evidence per pathogen, preferably per site of infection, critically appraising the existing studies. Many of the comparisons were addressed in small observational studies at high risk of bias only. Notably, there was very little evidence on the effects of the new, recently approved, beta-lactam beta-lactamase inhibitors on infections caused by carbapenem-resistant Gram-negative bacteria. Most recommendations are based on very-low and low certainty evidence. A high value was placed on antibiotic stewardship considerations in all recommendations, searching for carbapenem-sparing options for 3GCephRE and limiting the recommendations of the new antibiotics for severe infections, as defined by the sepsis-3 criteria. Research needs are addressed.
Collapse
Affiliation(s)
- Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Pilar Retamar
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Roni Bitterman
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA;; VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| | - Jan de Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George L Daikos
- First Department of Medicine, National and Kapodistrian University of Athens
| | - Murat Akova
- Hacettepe University School of Medicine, Department Of Infectious Diseases, Ankara, Turkey
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Celine Pulcini
- Université de Lorraine, APEMAC, Nancy, France; Université de Lorraine, CHRU-Nancy, Infectious Diseases Department, Nancy, France
| | | | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Italy
| | | | - Sumanth Gandra
- Division of Infectious Diseases, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; Clinica Malattie Infettive, San Martino Policlinico Hospital, Genoa, Italy
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| | - Jesus Rodriguez Baño
- Departamento de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/ Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
12
|
Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 2021; 3:dlab092. [PMID: 34286272 PMCID: PMC8284625 DOI: 10.1093/jacamr/dlab092] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Gram-negative pathogens are a major cause of resistance to expanded-spectrum β-lactam antibiotics. Since their discovery in the early 1980s, they have spread worldwide and an are now endemic in Enterobacterales isolated from both hospital-associated and community-acquired infections. As a result, they are a global public health concern. In the past, TEM- and SHV-type ESBLs were the predominant families of ESBLs. Today CTX-M-type enzymes are the most commonly found ESBL type with the CTX-M-15 variant dominating worldwide, followed in prevalence by CTX-M-14, and CTX-M-27 is emerging in certain parts of the world. The genes encoding ESBLs are often found on plasmids and harboured within transposons or insertion sequences, which has enabled their spread. In addition, the population of ESBL-producing Escherichia coli is dominated globally by a highly virulent and successful clone belonging to ST131. Today, there are many diagnostic tools available to the clinical microbiology laboratory and include both phenotypic and genotypic tests to detect β-lactamases. Unfortunately, when ESBLs are not identified in a timely manner, appropriate antimicrobial therapy is frequently delayed, resulting in poor clinical outcomes. Several analyses of clinical trials have shown mixed results with regards to whether a carbapenem must be used to treat serious infections caused by ESBLs or whether some of the older β-lactam-β-lactamase combinations such as piperacillin/tazobactam are appropriate. Some of the newer combinations such as ceftazidime/avibactam have demonstrated efficacy in patients. ESBL-producing Gram-negative pathogens will continue to be major contributor to antimicrobial resistance worldwide. It is essential that we remain vigilant about identifying them both in patient isolates and through surveillance studies.
Collapse
|
13
|
Tamma PD, Mathers AJ. Navigating treatment approaches for presumed ESBL-producing infections. JAC Antimicrob Resist 2021; 3:dlaa111. [PMID: 33659895 PMCID: PMC7903050 DOI: 10.1093/jacamr/dlaa111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ESBL-producing Enterobacterales (ESBL-E) remain a significant global threat. In several regions of the world, ESBLs are produced by over half of Escherichia coli or Klebsiella pneumoniae infections, contributing to significant morbidity and mortality. Though it is accepted that carbapenems are effective for the treatment of invasive ESBL-E infections, controversy remains as to whether carbapenem alternatives can be considered in select cases. Indiscriminate carbapenem use for the treatment of ESBL-E infections will likely further the international antimicrobial resistance crisis, underscoring the importance of investigating the role of non-carbapenem options. In this issue of JAC-Antimicrobial Resistance, we present a PRO/CON debate exploring whether carbapenems are necessary for all infections caused by ceftriaxone-resistant Enterobacterales.
Collapse
Affiliation(s)
- Pranita D Tamma
- Johns Hopkins University School of Medicine, Department of Pediatrics, Baltimore, MD, USA
| | - Amy J Mathers
- University of Virginia, Department of Medicine and Pathology, Charlottesville, VA, USA
| |
Collapse
|