1
|
Wajid Odhafa M, Al-Kadmy I, Pourmand MR, Naderi G, Asadian M, Ghourchian S, Douraghi M. The context of bla OXA-23 gene in Iraqi carbapenem-resistant Acinetobacter baumannii isolates belonging to global clone 1 and global clone 2. BMC Res Notes 2024; 17:300. [PMID: 39380025 PMCID: PMC11463083 DOI: 10.1186/s13104-024-06890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Of the genes conferring resistance to carbapenems in Acinetobacter baumannii, the blaOXA-23 gene is the most widely found across the world. The gene carrying blaOXA-23 transposons in A. baumannii isolates of global clones GC1 and GC2 is found worldwide. Here, we examined whether transposons play a role in the dissemination of the blaOXA-23 in globally distributed clones, GC1 and GC2 A. baumannii isolates from Iraq. MATERIALS AND METHODS The 119 non-repetitive A. baumannii isolates including 94 recovered from clinical specimens and 25 isolates from hospital environment between September 2021 and April 2022 from different medical centers located at various regions in Baghdad, Iraq. The global clones (GC) and the genes encoding carbapenem resistance, including blaOXA-23, blaOXA-24, and blaOXA-58 were identified using multiplex PCR assays. Antibiotic susceptibility testing was performed by the Kirby-Bauer disk diffusion susceptibility method. The transposons carrying blaOXA-23 were examined using PCR mapping. In cases when carbapenem susceptible A. baumannii isolates were found, they were subjected to E test, full length sequencing of blaOXA-Ab (blaOXA-51-like) and Institut Pasteur multi-locus sequence typing scheme. RESULTS All but two isolates (92 clinical and 25 environmental) were identified carbapenem-resistant A. baumannii (CRAB). Of 117 CRAB isolates, 20 belong to GC1, 19 contained blaOXA-23; of them, 17 isolates harbored the blaOXA-23 located on Tn2006. Among the 46 CRAB belonging to GC2, 39 contained blaOXA-23; of them, 34 carried the blaOXA-23 located on Tn2006. The remaining GC1 and GC2 isolates, one GC1 as well as one GC2 isolate, were susceptible to imipenem, doripenem, and meropenem and considered carbapenem-susceptible A. baumannii (CSAB). Full-length sequencing of the blaOXA-Ab and MLST for the two CSAB isolates belonging to GC1 and GC2 confirmed that the GC1 isolate belongs to ST 623 and contained an allele that encodes an blaOXA-69 variant of the blaOXA-Ab while the GC2 belong to ST2 and carried an blaOXA-66 variant. CONCLUSION This study provides evidence for the dissemination of blaOXA-23 on the Tn2006 in CRAB isolates in Baghdad, Iraq. It appears that this transposon is widespread in GC1 and 2 isolates as in the other parts of the world. Interestingly, one GC1 and one GC2 isolate from Iraq were found to be susceptible to carbapenem while the isolates belonging to GC1 and GC2 have so far rarely been found to be susceptible to carbapenem globally.
Collapse
Affiliation(s)
- Melak Wajid Odhafa
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Israa Al-Kadmy
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Mohammad Reza Pourmand
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Asadian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedighe Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lam MMC, Hamidian M. Examining the role of Acinetobacter baumannii plasmid types in disseminating antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:1. [PMID: 39843567 PMCID: PMC11702686 DOI: 10.1038/s44259-023-00019-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2025]
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains has become a global concern. Spread of AMR in A. baumannii is primarily mediated by the acquisition of AMR genes through mobile genetic elements, such as plasmids. Thus, a comprehensive understanding of the role of different plasmid types in disseminating AMR genes is essential. Here, we analysed the distribution of plasmid types, sampling sources, geographic locations, and AMR genes carried on A. baumannii plasmids. A collection of 813 complete plasmid entries was collated and analysed. We previously devised an Acinetobacter Plasmid Typing (APT) scheme where rep types were defined using 95% nucleotide identity and updated the scheme in this study by adding 12 new rep/Rep types (90 types in total). The APT scheme now includes 178 unique Rep variants belonging to three families: R1, R3, and RP. R1-type plasmids were mainly associated with global clone 1 strains, while R3-type plasmids were highly diverse and carried a variety of AMR determinants including carbapenem, aminoglycoside and colistin resistance genes. Similarly, RP-type and rep-less plasmids were identified as important carriers of aminoglycoside and carbapenem resistance genes. This study provides a comprehensive overview of the distribution and characteristics of A. baumannii plasmids, shedding light on their role in the dissemination of AMR genes. The updated APT scheme and findings enhance our understanding of the molecular epidemiology of A. baumannii and provide valuable insights for surveillance and control strategies.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mehrad Hamidian
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
3
|
Crotteau AN, Hubble VB, Marrujo SA, Mattingly AE, Melander RJ, Melander C. Sensitization of Gram-Negative Bacteria to Aminoglycosides with 2-Aminoimidazole Adjuvants. Antibiotics (Basel) 2023; 12:1563. [PMID: 37998765 PMCID: PMC10668796 DOI: 10.3390/antibiotics12111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
In 2019, five million deaths associated with antimicrobial resistance were reported by The Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii, a Gram-negative bacterial pathogen, is among the list of urgent threats. Previously, we reported 2-aminoimidazole (2-AI) adjuvants that potentiate macrolide activity against A. baumannii. In this study, we identify several of these adjuvants that sensitize A. baumannii to aminoglycoside antibiotics. Lead compounds 1 and 7 lower the tobramycin (TOB) minimum inhibitory concentration (MIC) against the TOB-resistant strain AB5075 from 128 μg/mL to 2 μg/mL at 30 μM. In addition, the lead compounds lower the TOB MIC against the TOB-susceptible strain AB19606 from 4 μg/mL to 1 μg/mL and 0.5 μg/mL, respectively, at 30 μM and 15 μM. The evolution of resistance to TOB and 1 in AB5075 revealed mutations in genes related to protein synthesis, the survival of bacteria under environmental stressors, bacteriophages, and proteins containing Ig-like domains.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (A.N.C.)
| |
Collapse
|
4
|
Doughty EL, Liu H, Moran RA, Hua X, Ba X, Guo F, Chen X, Zhang L, Holmes M, van Schaik W, McNally A, Yu Y. Endemicity and diversification of carbapenem-resistant Acinetobacter baumannii in an intensive care unit. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 37:100780. [PMID: 37693864 PMCID: PMC10485671 DOI: 10.1016/j.lanwpc.2023.100780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major public health concern globally. Often studied in the context of hospital outbreaks, little is known about the persistence and evolutionary dynamics of endemic CRAB populations. METHODS A three-month cross-sectional observational study was conducted in a 28-bed intensive care unit (ICU) in Hangzhou, China. A total of 5068 samples were collected from the hospital environment (n = 3985), patients (n = 964) and staff (n = 119). CRAB isolates were obtained from 10.5% of these samples (n = 532). All of these isolates, plus an additional 19 from clinical infections, were characterised through whole-genome sequencing. FINDINGS The ICU CRAB population was dominated by OXA-23-producing global clone 2 isolates (99.3% of all isolates) that could be divided into 20 distinct clusters, defined through genome sequencing. CRAB was persistently present in the ICU, driven by regular introductions of distinct clusters. The hospital environment was heavily contaminated, with CRAB isolated from bed units on 183/335 (54.6%) sampling occasions but from patients on only 72/299 (24.1%) occasions. CRAB was spread to adjacent bed units and rooms, and following re-location of patients within the ICU. We also observed three horizontal gene transfer events between CRAB strains in the ICU, involving three different plasmids. INTERPRETATION The epidemiology of CRAB in this setting contrasted with previously described clonal outbreaks in high-income countries, highlighting the importance of environmental CRAB reservoirs in ICU epidemiology and the unique challenges in containing the spread of CRAB in ICUs where this important multidrug-resistant pathogen is endemic. FUNDING This work was undertaken as part of the DETECTIVE research project funded by the Medical Research Council (MR/S013660/1), National Natural Science Foundation of China (81861138054, 32011530116, 31970128, 31770142), Zhejiang Province Medical Platform Backbone Talent Plan (2020RC075), and the National Key Research and Development Program of China grant (2018YFE0102100). W.v.S was also supported by a Wolfson Research Merit Award (WM160092).
Collapse
Affiliation(s)
- Emma L. Doughty
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Feng Guo
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Xiangping Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Mark Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
5
|
Naderi G, Talebi M, Gheybizadeh R, Seifi A, Ghourchian S, Rahbar M, Abdollahi A, Naseri A, Eslami P, Douraghi M. Mobile genetic elements carrying aminoglycoside resistance genes in Acinetobacter baumannii isolates belonging to global clone 2. Front Microbiol 2023; 14:1172861. [PMID: 37213517 PMCID: PMC10196456 DOI: 10.3389/fmicb.2023.1172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Aminoglycosides are used to treat infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. However, resistance to aminoglycosides has increased remarkably in the last few years. Here, we aimed to determine the mobile genetic elements (MGEs) associated with resistance to aminoglycosides in the global clone 2 (GC2) A. baumannii. Among the 315 A. baumannii isolates, 97 isolates were identified as GC2, and 52 of GC2 isolates (53.6%) were resistant to all the aminoglycosides tested. The AbGRI3s carrying armA were detected in 88 GC2 isolates (90.7%), and of them, 17 isolates (19.3%) carried a new variant of AbGRI3 (AbGRI3ABI221). aphA6 was located in TnaphA6 of 30 isolates out of 55 aphA6-harboring isolates, and 20 isolates were found to harbor TnaphA6 on a RepAci6 plasmid. Tn6020 carrying aphA1b was detected in 51 isolates (52.5%), which was located within AbGRI2 resistance islands. The pRAY* carrying the aadB gene was detected in 43 isolates (44.3%), and no isolate was found to contain a class 1 integron harboring this gene. The GC2 A. baumannii isolates contained at least one MGE carrying the aminoglycoside resistance gene, located mostly either in the chromosome within AbGRIs or on the plasmids. Thus, it is likely that these MGEs play a role in the dissemination of aminoglycoside resistance genes in GC2 isolates from Iran.
Collapse
Affiliation(s)
- Ghazal Naderi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Malihe Talebi
| | - Roghayeh Gheybizadeh
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Seifi
- Department of Infectious Diseases, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Iranian Reference Health Laboratory Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital Complex, Tehran University of Medical SciencesTehran, Iran
| | - Abdolhossein Naseri
- Department of Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Eslami
- Department of Microbiology, Milad Hospital, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Masoumeh Douraghi
| |
Collapse
|
6
|
Sharma S, Das A, Garg R, Pramanik S, Marndi P, Singh R, Banerjee T, Yadav G, Kumar A. Reservoir of Carbapenem-Resistant Acinetobacter baumannii in the Hospital Environment and Colonization Pressure: A Surveillance-Based Study in Indian Intensive Care Unit. Microb Drug Resist 2022; 28:1079-1086. [DOI: 10.1089/mdr.2022.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Swati Sharma
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Arghya Das
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Garg
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sangita Pramanik
- Applied Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pooja Marndi
- Applied Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ravindra Singh
- Institute of Medical Sciences, Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ghanshyam Yadav
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|