1
|
Ortiz Álvarez J, Barrientos Flores C, Colín Castro CA, Hernández Durán M, Martínez Zavaleta MG, Méndez Sotelo BJ, Hernández Pérez CF, Sohlenkamp C, Franco Cendejas R, López Jácome LE. Unveiling the resistance: comparative genomic analysis of two novel cefiderocol-resistant Stenotrophomonas species from a referral hospital in Mexico City. J Appl Microbiol 2025; 136:lxaf048. [PMID: 40037605 DOI: 10.1093/jambio/lxaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Stenotrophomonas maltophilia is the species most frequently identified by clinical microbiology laboratories due to its presence in the main identification systems databases. Phenotypic identification methods are widely used in laboratories, and the misidentification of Stenotrophomonas spp. is highly probable due to the presence of cryptic species. Our aim was to confirm the identity of five cefiderocol-resistant Stenotrophomonas species, initially identified as S. maltophilia, using genome analysis tools, performing comparative and functional analyses of these clinical strains associated with infectious processes. METHODS Identifications were performed using average nucleotide identity, average amino acid identity, and in silico DNA-DNA hybridization. Virulence factors, resistance mechanisms, prophages, CRISPR elements, and metabolism elements were identified and annotated. RESULTS We confirmed the identity of the strains C960 and C2866 as Stenotrophomonas geniculata, and of strain C1657 as Stenotrophomonas indicatrix. The species designation parameters obtained indicated that the strains C4297 and C2852 are novel species. In comparison with the hypothetical proteome of the S. maltophilia complex species analyzed, elements associated with amino acid metabolism, DNA/RNA processing and repair, envelope biogenesis, and intracellular transport are predominant. Elements probably associated with antibiotic resistance, such as efflux pumps, aminoglycoside transferases, and phosphoethanolamine transferases, were identified, and the presence of genes related to capsule formation, iron acquisition, and intracellular survival probably contributes to virulence. CONCLUSIONS This is the first report of S. geniculata and S. indicatrix as human pathogens. Besides, we proposed two novel species members of Smc: Stenotrophomonas veracruzanensis sp. nov. and Stenotrophomonas mexicanensis sp. nov.
Collapse
Affiliation(s)
- Jossue Ortiz Álvarez
- Programa "Investigadoras e Investigadores por México" (IIXM), Secretaria de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Mexico City, 03940, Mexico
| | | | - Claudia Adriana Colín Castro
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Melissa Hernández Durán
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - María Guadalupe Martínez Zavaleta
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Braulio Josué Méndez Sotelo
- División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Cindy Fabiola Hernández Pérez
- Centro Nacional de Referencia de Inocuidad y Bioseguridad Agroalimentaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Tecámac, Mexico State, 55740, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Rafael Franco Cendejas
- Subdirección de Investigación Biomédica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
| | - Luis Esaú López Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, 14389, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
2
|
Bianco G, Boattini M, Cricca M, Diella L, Gatti M, Rossi L, Bartoletti M, Sambri V, Signoretto C, Fonnesu R, Comini S, Gaibani P. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr Issues Mol Biol 2024; 46:14132-14153. [PMID: 39727974 DOI: 10.3390/cimb46120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, novel antimicrobials have been developed to counter the emergence of antimicrobial resistance and provide effective therapeutic options against multidrug-resistant (MDR) Gram-negative bacilli (GNB). Cefiderocol, a siderophore cephalosporin, represents a novel valuable antimicrobial drug for the treatment of infections caused by MDR-GNB. The mechanism of cefiderocol to penetrate through the outer membrane of bacterial cells, termed "Trojan horse", makes this antimicrobial drug unique and immune to the various resistance strategies adopted by GNB. Its broad spectrum of action, potent antibacterial activity, pharmacokinetics properties, safety, and tolerability make cefiderocol a key drug for the treatment of infections due to MDR strains. Although this novel antimicrobial molecule contributed to revolutionizing the therapeutic armamentarium against MDR-GNB, the recent emergence of cefiderocol-resistant strains has redefined its role in clinical practice and required new strategies to preserve its antibacterial activity. In this review, we provide an updated discussion regarding the mechanism of action, emerging mechanisms of resistance, pharmacokinetic/pharmacodynamic (PK/PD) properties, and efficacy data of cefiderocol against the major Gram-negative bacteria and future prospects.
Collapse
Affiliation(s)
- Gabriele Bianco
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Matteo Boattini
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10129 Turin, Italy
- Lisbon Academic Medical Centre, 1000-001 Lisbon, Portugal
| | - Monica Cricca
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, Section Microbiology, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Cesena, Italy
| | - Lucia Diella
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Section Pharmacology, University of Bologna, 40138 Bologna, Italy
| | - Luca Rossi
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, Section Microbiology, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Cesena, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Rossella Fonnesu
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Paolo Gaibani
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| |
Collapse
|
3
|
Kriz R, Spettel K, Pichler A, Schefberger K, Sanz-Codina M, Lötsch F, Harrison N, Willinger B, Zeitlinger M, Burgmann H, Lagler H. In vitro resistance development gives insights into molecular resistance mechanisms against cefiderocol. J Antibiot (Tokyo) 2024; 77:757-767. [PMID: 39080477 PMCID: PMC11513634 DOI: 10.1038/s41429-024-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 10/29/2024]
Abstract
Cefiderocol, a novel siderophore cephalosporin, demonstrates promising in vitro activity against multidrug-resistant Gram-negative bacteria, including carbapenemase-producing strains. Nonetheless, only a few reports are available regarding the acquisition of resistance in clinical settings, primarily due to its recent usage. This study aimed to investigate cefiderocol resistance using an in vitro resistance development model to gain insights into the underlying molecular resistance mechanisms. Cefiderocol susceptible reference strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa) and a clinical Acinetobacter baumannii complex isolate were exposed to increasing cefiderocol concentrations using a high-throughput resistance development model. Cefiderocol susceptibility testing was performed using broth microdilution. Whole-genome sequencing was employed to identify newly acquired resistance mutations. Our in vitro resistance development model led to several clones of strains exhibiting cefiderocol resistance, with MIC values 8-fold to 512-fold higher than initial levels. In total, we found 42 different mutations in 26 genes, of which 35 could be described for the first time. Putative loss-of-function mutations were detected in the envZ, tonB, and cirA genes in 13 out of 17 isolates, leading to a decrease in cefiderocol influx. Other potential resistance mechanisms included multidrug efflux pumps (baeS, czcS, nalC), antibiotic-inactivating enzymes (ampR, dacB), and target mutations in penicillin-binding-protein genes (mrcB). This study reveals new insights into underlying molecular resistance mechanisms against cefiderocol. While mutations leading to reduced influx via iron transporters was the most frequent resistance mechanism, we also detected several other novel resistance mutations causing cefiderocol resistance.
Collapse
Affiliation(s)
- Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, Austria
| | - Kathrin Spettel
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alina Pichler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, Austria
- Pediatric Laboratory, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Schefberger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Maria Sanz-Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Lötsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nicole Harrison
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Dulanto Chiang A, Dekker JP. Efflux pump-mediated resistance to new beta lactam antibiotics in multidrug-resistant gram-negative bacteria. COMMUNICATIONS MEDICINE 2024; 4:170. [PMID: 39210044 PMCID: PMC11362173 DOI: 10.1038/s43856-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence and spread of bacteria resistant to commonly used antibiotics poses a critical threat to modern medical practice. Multiple classes of bacterial efflux pump systems play various roles in antibiotic resistance, and members of the resistance-nodulation-division (RND) transporter superfamily are among the most important determinants of efflux-mediated resistance in gram-negative bacteria. RND pumps demonstrate broad substrate specificities, facilitating extrusion of multiple chemical classes of antibiotics from the bacterial cell. Several newer beta-lactams and beta-lactam/beta-lactamase inhibitor combinations (BL/BLI) have been developed to treat infections caused by multidrug resistant bacteria. Here we review recent studies that suggest RND efflux pumps in clinically relevant gram-negative bacteria may play critical but underappreciated roles in the development of resistance to beta-lactams and novel BL/BLI combinations. Improved understanding of the genetic and structural basis of RND efflux pump-mediated resistance may identify new antibiotic targets as well as strategies to minimize the emergence of resistance.
Collapse
Affiliation(s)
- Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - John P Dekker
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Krajewska J, Tyski S, Laudy AE. In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective. Pharmaceuticals (Basel) 2024; 17:1068. [PMID: 39204172 PMCID: PMC11357384 DOI: 10.3390/ph17081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Environmental Health and Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology and Laboratory Diagnostic, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Long DR, Holmes EA, Lo HY, Penewit K, Almazan J, Hodgson T, Berger NF, Bishop ZH, Lewis JD, Waalkes A, Wolter DJ, Salipante SJ. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog 2024; 20:e1012394. [PMID: 38991026 PMCID: PMC11265673 DOI: 10.1371/journal.ppat.1012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nova F. Berger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Zoe H. Bishop
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Fouad A, Nicolau SE, Tamma PD, Simner PJ, Nicolau DP, Gill CM. Assessing the impact of meropenem exposure on ceftolozane/tazobactam-resistance development in Pseudomonas aeruginosa using in vitro serial passage. J Antimicrob Chemother 2024; 79:1176-1181. [PMID: 38562061 DOI: 10.1093/jac/dkae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Patients infected with difficult-to-treat Pseudomonas aeruginosa are likely to receive meropenem (MEM) empirically before escalation to ceftolozane/tazobactam (C/T). We assessed whether pre-exposure to MEM affected C/T resistance development on C/T exposure. MATERIALS AND METHODS Nine clinical P. aeruginosa isolates were exposed to MEM 16 mg/L for 72 h. Then, isolates were serially passaged in the presence of C/T (concentration of 10 mg/L) for 72 h as two groups: an MEM-exposed group inoculated with MEM pre-exposed isolates and a non-MEM control group. At 24 h intervals, samples were plated on drug-free and drug-containing agar (C/T concentration 16/8 mg/L) and incubated to quantify bacterial densities (log10 cfu/mL). Growth on C/T agar indicated resistance development, and resistant population was calculated by dividing the cfu/mL on C/T plates by the cfu/mL on drug-free agar. RESULTS At 72 h, resistant populations were detected in 6/9 isolates. In five isolates, MEM exposure significantly increased the prevalence of ceftolozane/tazobactam-resistance development; the percentages of resistance population were 100%, 100%, 53.5%, 31% and 3% for the MEM-exposed versus 0%, 0%, 2%, 0.35% and ≤0.0003% in the unexposed groups. One isolate had a similar resistant population at 72 h between the two groups. The remaining isolates showed no development of resistance, regardless of previous MEM exposure. CONCLUSIONS MEM exposure may pre-dispose to C/T resistance development and thus limit the therapeutic utility of this β-lactam/β-lactamase inhibitor. Resistance may be a result of stress exposure or molecular-level mutations conferring cross-resistance. Further in vivo studies are needed to assess clinical implications of these findings.
Collapse
Affiliation(s)
- Aliaa Fouad
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA
| | | | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| | - Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA
| |
Collapse
|
8
|
Mikhailovich V, Heydarov R, Zimenkov D, Chebotar I. Stenotrophomonas maltophilia virulence: a current view. Front Microbiol 2024; 15:1385631. [PMID: 38741741 PMCID: PMC11089167 DOI: 10.3389/fmicb.2024.1385631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen intrinsically resistant to multiple and broad-spectrum antibiotics. Although the bacterium is considered a low-virulence pathogen, it can cause various severe diseases and contributes significantly to the pathogenesis of multibacterial infections. During the COVID-19 pandemic, S. maltophilia has been recognized as one of the most common causative agents of respiratory co-infections and bacteremia in critically ill COVID-19 patients. The high ability to adapt to unfavorable environments and new habitat niches, as well as the sophisticated switching of metabolic pathways, are unique mechanisms that attract the attention of clinical researchers and experts studying the fundamental basis of virulence. In this review, we have summarized the current knowledge on the molecular aspects of S. maltophilia virulence and putative virulence factors, partially touched on interspecific bacterial interactions and iron uptake systems in the context of virulence, and have not addressed antibiotic resistance.
Collapse
Affiliation(s)
- Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Heydarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Danila Zimenkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor Chebotar
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Bianco G, Boattini M, Comini S, Gaibani P, Cavallo R, Costa C. Performance evaluation of Bruker UMIC ® microdilution panel and disc diffusion to determine cefiderocol susceptibility in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans and Burkolderia species. Eur J Clin Microbiol Infect Dis 2024; 43:559-566. [PMID: 38240988 DOI: 10.1007/s10096-024-04745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Cefiderocol susceptibility testing (AST) represents an open challenge for clinical microbiology. Herein, we evaluated the performance of the UMIC® Cefiderocol broth microdilution (BMD) test and disc diffusion on Gram-negative species. METHODS UMIC® Cefiderocol BMD test, disc diffusion and reference BMD were in parallel performed on a collection of 256 clinical isolates. Categorical agreement (CA), essential agreement (EA), bias, major errors (MEs) and very major errors (VMEs) were calculated for both AST methods. RESULTS The UMIC® Cefiderocol BMD strip exhibited an EA < 90% (85.5%), a CA higher than 90% (93.7%) and a low number of VMEs (n = 4, 4.2%) and MEs (n = 12, 7.4%). UMIC® Cefiderocol identified 96.2% of the resistant isolates [Enterobacterales, (39/40); P. aeruginosa (19/19); A. xylosoxidans (5/6); S. maltophilia (5/6); Burkholderia spp. (8/8)]. Disc diffusion showed a high CA (from 94.9 to 100%) regardless of disc manufacturer in Enterobacterales, P. aeuroginosa, A. baumannii and S. maltophilia. However, high rates of results falling in the area of technical uncertainty (ATU) were observed in Enterobacterales (34/90, 37.8%) and P. aeruginosa (16/40, 40%). Disc diffusion showed a poor performance in A. xylosoxidans and Burkholderia spp. if PK/PD breakpoint was used (overall, 5/9 VMEs; in contrast, the use of P. aeruginosa-specific breakpoints resulted in 100% of CA with 24.6% of results in the ATU). CONCLUSION In conclusion, disc diffusion and UMIC® Cefiderocol are valid methods for the determination of cefiderocol susceptibility. Given the high number of results in the ATU by disc diffusion, a combined use of both AST methods may represent a solution to overcome the challenge of cefiderocol susceptibility testing in routine microbiology laboratories.
Collapse
Affiliation(s)
- Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy.
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy.
| | - Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Jesi, Ancona, Italy
| | - Paolo Gaibani
- Department of Diagnostic and Public Health, Microbiology Section, Verona University, 37134, Verona, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| |
Collapse
|
10
|
Kunz Coyne AJ, Herbin S, Caniff K, Rybak MJ. Steno-sphere: Navigating the enigmatic world of emerging multidrug-resistant Stenotrophomonas maltophilia. Pharmacotherapy 2023; 43:833-846. [PMID: 37199104 DOI: 10.1002/phar.2828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen and frequent cause of serious nosocomial infections. Patient populations at greatest risk for these infections include the immunocompromised and those with chronic respiratory illnesses and prior antibiotic exposure, notably to carbapenems. Its complex virulence and resistance profile drastically limit available antibiotics, and incomplete breakpoint and pharmacokinetic/pharmacodynamic (PK/PD) data to inform dose optimization further complicates therapeutic approaches. Clinical comparison data of first-line agents, including trimethoprim-sulfamethoxazole (TMP-SMX), quinolones, and minocycline, are limited to conflicting observational data with no clear benefit of a single agent or combination therapy. Newer antibiotic approaches, including cefiderocol and aztreonam- avibactam, are promising alternatives for extensively drug-resistant isolates; however, clinical outcomes data are needed. The potential clinical utility of bacteriophage for compassionate use in treating S. maltophilia infections remains to be determined since data is limited to in-vitro and sparse in-vivo work. This article provides a review of available literature for S. maltophilia infection management focused on related epidemiology, resistance mechanisms, identification, susceptibility testing, antimicrobial PK/PD, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Kaylee Caniff
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|
11
|
Domingues S, Lima T, Saavedra MJ, Da Silva GJ. An Overview of Cefiderocol's Therapeutic Potential and Underlying Resistance Mechanisms. Life (Basel) 2023; 13:1427. [PMID: 37511802 PMCID: PMC10382032 DOI: 10.3390/life13071427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria José Saavedra
- CITAB-Inov4Agro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-AL4AnimalS, Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
12
|
Wicky PH, Poiraud J, Alves M, Patrier J, d'Humières C, Lê M, Kramer L, de Montmollin É, Massias L, Armand-Lefèvre L, Timsit JF. Cefiderocol Treatment for Severe Infections due to Difficult-to-Treat-Resistant Non-Fermentative Gram-Negative Bacilli in ICU Patients: A Case Series and Narrative Literature Review. Antibiotics (Basel) 2023; 12:991. [PMID: 37370310 DOI: 10.3390/antibiotics12060991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Cefiderocol (FDC) is a siderophore cephalosporin now recognized as a new weapon in the treatment of difficult-to-treat-resistant (DTR) Gram-negative pathogens, including carbapenemase-producing enterobacterales and non-fermentative Gram-negative bacilli (GNB). This article reports our experience with an FDC-based regimen in the treatment of 16 extremely severe patients (invasive mechanical ventilation, 15/16; extracorporeal membrane oxygenation, 9/16; and renal replacement therapy, 8/16) infected with DTR GNB. Our case series provides detailed insight into the pharmacokinetic profile and the microbiological data in real-life conditions. In the narrative review, we discuss the interest of FDC in the treatment of non-fermentative GNB in critically ill patients. We reviewed the microbiological spectrum, resistance mechanisms, pharmacokinetics/pharmacodynamics, efficacy and safety profiles, and real-world evidence for FDC. On the basis of our experience and the available literature, we discuss the optimal FDC-based regimen, FDC dosage, and duration of therapy in critically ill patients with DTR non-fermentative GNB infections.
Collapse
Affiliation(s)
- Paul-Henri Wicky
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Joséphine Poiraud
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
- Bacteriology Laboratory, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Manuel Alves
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
| | - Juliette Patrier
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Camille d'Humières
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
- Bacteriology Laboratory, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Minh Lê
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
- Pharmacology Department, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Laura Kramer
- Pharmacy, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Étienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
| | - Laurent Massias
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
- Pharmacology Department, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Laurence Armand-Lefèvre
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
- Bacteriology Laboratory, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Hospital, Paris Cité University, F-75018 Paris, France
- IAME INSERM UMR 1137, Paris Cité University, F-75018 Paris, France
| |
Collapse
|
13
|
Long DR, Penewit K, Lo HY, Almazan J, Holmes EA, Bryan AB, Wolter DJ, Lewis JD, Waalkes A, Salipante SJ. In Vitro Selection Identifies Staphylococcus aureus Genes Influencing Biofilm Formation. Infect Immun 2023; 91:e0053822. [PMID: 36847490 PMCID: PMC10016075 DOI: 10.1128/iai.00538-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Staphylococcus aureus generates biofilms during many chronic human infections, which contributes to its growth and persistence in the host. Multiple genes and pathways necessary for S. aureus biofilm production have been identified, but knowledge is incomplete, and little is known about spontaneous mutations that increase biofilm formation as infection progresses. Here, we performed in vitro selection of four S. aureus laboratory strains (ATCC 29213, JE2, N315, and Newman) to identify mutations associated with enhanced biofilm production. Biofilm formation increased in passaged isolates from all strains, exhibiting from 1.2- to 5-fold the capacity of parental lines. Whole-genome sequencing identified nonsynonymous mutations affecting 23 candidate genes and a genomic duplication encompassing sigB. Six candidate genes significantly impacted biofilm formation as isogenic transposon knockouts: three were previously reported to impact S. aureus biofilm formation (icaR, spdC, and codY), while the remaining three (manA, narH, and fruB) were newly implicated by this study. Plasmid-mediated genetic complementation of manA, narH, and fruB transposon mutants corrected biofilm deficiencies, with high-level expression of manA and fruB further enhancing biofilm formation over basal levels. This work recognizes genes not previously identified as contributing to biofilm formation in S. aureus and reveals genetic changes able to augment biofilm production by that organism.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew B. Bryan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
Cefiderocol resistance genomics in sequential chronic Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect 2022; 29:538.e7-538.e13. [PMID: 36435424 DOI: 10.1016/j.cmi.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the activity of cefiderocol against sequential P. aeruginosa isolates from chronically-infected cystic fibrosis patients as well as to investigate the potential mechanisms involved in resistance through whole genome sequencing. METHODS Three sequential P. aeruginosa isolates from each of 50 chronically-colonized cystic fibrosis patients were studied. MICs for novel and classical antipseudomonal agents were determined by broth microdilution and whole genome sequences (n = 150) were obtained to investigate the presence of mutations within a set of chromosomal genes involved in P. aeruginosa antibiotic resistance (n = 40) and iron uptake (n = 120). RESULTS Cefiderocol showed the lowest MIC50/90 values and its susceptibility rate was comparable to other novel antipseudomonal agents. Clinical resistance was documented in 9 isolates from 6 patients. Resistance genes associated with a statistically significant increase in cefiderocol MICs included ampC, pmrAB, galU, fusA1 and those coding the penicillin-binding proteins PBP2 and PBP3. Likewise, mutations within several genes participating in different iron-uptake systems were found to be significantly associated with resistance, including genes participating in the pyochelin and pyoverdin biosynthesis and several tonB-dependent receptors. Mutator and small colony variants isolates were also associated with increased cefiderocol MICs. DISCUSSION Cefiderocol resistance is modulated by a complex mutational resistome, potentially conferring cross-resistance to novel beta-lactam beta-lactamase combinations, as well as an extended list of mutated iron-uptake genes. Monitoring the acquisition of mutations in all these genes will be helpful to guide treatments and mitigate the emergence and spread of resistance to this novel antibiotic.
Collapse
|
15
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060723. [PMID: 35740130 PMCID: PMC9220290 DOI: 10.3390/antibiotics11060723] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.
Collapse
|