1
|
Sibounheuang B, Boutthasavong L, Chommanam D, Phommasone K, Panapruksachat S, Praphasiri V, Bouttavong S, Sisavath H, Christy NCV, Letizia AG, Mayxay M, Vongsouvath M, Ashley EA, Dubot-Pérès A. Dry Swabs and Dried Saliva as Alternative Samples for SARS-CoV-2 Detection in Remote Areas in Lao PDR. Open Forum Infect Dis 2024; 11:ofae433. [PMID: 39145142 PMCID: PMC11322834 DOI: 10.1093/ofid/ofae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background Surveillance of SARS-CoV-2 circulation is mainly based on real-time reverse transcription-polymerase chain reaction, which requires laboratory facilities and cold chain for sample transportation. This is difficult to achieve in remote rural areas of resource-limited settings. The use of dried blood spots shipped at room temperature has shown good efficiency for the detection of arboviral RNA. Using a similar approach, we conducted a study at 3 provincial hospitals in Laos to compare the detection of SARS-CoV-2 from neat and dried spot samples. Methods Between January 2022 and March 2023, patients with respiratory symptoms were recruited. Nasopharyngeal/oropharyngeal swabs in virus transport medium (VTM), dry swabs, saliva, and dried saliva spotted on filter paper were collected. All samples were tested by SARS-CoV-2 real-time reverse transcription-polymerase chain reaction. Results In total, 479 participants were included. The VTM samples tested positive for 288 (60.1%). High positive percent agreements were observed for dry swab (84.8%; 95% CI, 80.2%-88.8%) and saliva (89.2%; 95% CI, 85.1%-92.6%) as compared with VTM. There was a loss of sensitivity when saliva was dried on filter paper (73.6%; 95% CI, 68.1%-78.6%) as compared with saliva. SARS-CoV-2 variant (Delta or Omicron) had no significant impact on the performance of the different sample types. Conclusions Our findings suggest that dry swabs could be a good alternative for sample collection and permit easy shipping at ambient temperature for subsequent viral SARS-CoV-2 RNA purification and molecular investigation. This is a useful tool to consider for a rapid implementation of large-scale surveillance of SARS-CoV-2 in remote areas, which could be extrapolated to other respiratory targets during routine surveillance or in the case of a novel emerging pandemic.
Collapse
Affiliation(s)
- Bountoy Sibounheuang
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Latsaniphone Boutthasavong
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Danoy Chommanam
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Koukeo Phommasone
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Siribun Panapruksachat
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | | | | | | | - Nathaniel C V Christy
- Naval Medical Research Unit INDO PACIFIC, Emerging Infectious Disease Department, Singapore, Singapore
| | - Andrew G Letizia
- Naval Medical Research Unit INDO PACIFIC, Emerging Infectious Disease Department, Singapore, Singapore
| | - Mayfong Mayxay
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Elizabeth A Ashley
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Audrey Dubot-Pérès
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| |
Collapse
|
2
|
Shahi F, Rasti M, Moradi M. Overview of the different methods for RNA preparation in COVID-19 diagnosis process during the pandemic. Anal Biochem 2024; 686:115410. [PMID: 38006951 DOI: 10.1016/j.ab.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The COVID-19 pandemic brought to light the impact of a widespread disease on various aspects of human relationships, communities, and economies. One notable consequence was the increased demand for diagnostic kits, laboratory reagents, and personal health equipment. This surge in testing capacity worldwide led to shortages in the supply of essential items, including RNA extraction kits, which are crucial for detecting COVID-19 infections. To address this scarcity, researchers have proposed alternative and cost-effective strategies for RNA extraction, utilizing both chemical and physical solutions and extraction-free methods. These approaches aim to alleviate the challenges associated with the overwhelming number of tests being conducted in laboratories. The purpose of this review is intends to provide a comprehensive summary of the various kit-free RNA extraction methods available for COVID-19 diagnosis during the pandemic.
Collapse
Affiliation(s)
- Fatemeh Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
3
|
Phillips D, da Conceicao F, Jong JBDC, Rawlin G, Mee P. Stability of Genotube ® Swabs for African Swine Fever Virus Detection Using Loop-Mediated Isothermal (LAMP) Laboratory Testing on Samples Stored without Refrigeration. Viruses 2024; 16:263. [PMID: 38400038 PMCID: PMC10892491 DOI: 10.3390/v16020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever (ASF) is a transboundary viral disease which causes high mortality in pigs. In many low- and middle-income countries and in remote areas where diagnostic surveillance for ASF virus (ASFV) is undertaken, access to trained animal health technicians, sample collection, cold chain storage and transport of samples to suitably equipped laboratories can be limiting when traditional sampling and laboratory tests are used. Previously published studies have demonstrated that alternative sampling matrices such as swabs and filter papers can be tested using PCR without refrigeration for up to a week. This study used Genotube® swabs stored in temperate and tropical climates without refrigeration for four weeks after collection to demonstrate there was no change in test performance and results using loop-mediated isothermal amplification (LAMP) ASFV detection on a series of pig serum samples including serum spiked with a synthetic ASFV positive control, naturally acquired ASFV positive serum from Timor-Leste and negative ASFV serum samples. The use of Genotube® swabs for ASFV detection for surveillance purposes, coupled with testing platforms such as LAMP, can provide an alternative to traditional testing methodology where resources are limited and time from collection to testing of samples is prolonged.
Collapse
Affiliation(s)
- Dianne Phillips
- Agriculture Victoria, Biosecurity and Agriculture Services, Bairnsdale, VIC 3857, Australia
| | - Felisiano da Conceicao
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili 0332, Timor-Leste; (F.d.C.); (J.B.d.C.J.)
| | - Joanita Bendita da Costa Jong
- Ministry of Agriculture, Livestock, Fisheries and Forestry, Government of Timor-Leste, Av. Nicolao Lobato, Comoro, Dili 0332, Timor-Leste; (F.d.C.); (J.B.d.C.J.)
| | - Grant Rawlin
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (G.R.); (P.M.)
| | - Peter Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (G.R.); (P.M.)
| |
Collapse
|
4
|
Tomar SS, Khairnar K. Challenges of SARS-CoV-2 genomic surveillance in India during low positivity rate scenario. Front Public Health 2023; 11:1117602. [PMID: 37441634 PMCID: PMC10335399 DOI: 10.3389/fpubh.2023.1117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Being the second most populous country in the world, India presents valuable lessons for the world about dealing with the SARS-CoV-2 pandemic. From this perspective, we attempted a retrospective evaluation of India's SARS-CoV-2 genomic surveillance strategy and also gave some recommendations for undertaking effective genomic surveillance. The dynamics of the COVID-19 pandemic are continuously evolving, and there is a dire need to modulate the genomic surveillance strategy accordingly. The pandemic is now settling towards a low positivity rate scenario, so it is required to revise the practices and policies formulated for a high positivity rate scenario. The perspective also recommends adopting a decentralised approach for SARS-CoV-2 genomic surveillance with a focus on optimising the workflow of SARS-CoV-2 genomic surveillance to ensure early detection of emerging variants, especially in the low positivity rate scenario. The perspective emphasises a key observation that the SARS-CoV-2 genomic surveillance is an important mitigation effort during the pandemic, the guards of such mitigation efforts should not be lowered during the low positivity rate scenario. We attempt to highlight the limitations faced by the Indian healthcare administration during the SARS-CoV-2 genomic surveillance and, simultaneously, suggest policy interventions derived from our first-hand experience, which may be implementable in a vast, populated country like India.
Collapse
Affiliation(s)
- Siddharth Singh Tomar
- Environmental Virology Cell (EVC), Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Krishna Khairnar
- Environmental Virology Cell (EVC), Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
5
|
Gordhan BG, Ealand CS, Kana BD. Survival and detection of SARS-CoV-2 variants on dry swabs post storage. Front Cell Infect Microbiol 2022; 12:1031775. [PMID: 36467724 PMCID: PMC9715580 DOI: 10.3389/fcimb.2022.1031775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
COVID-19 has resulted in nearly 598 million infections and over 6.46 million deaths since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019. The rapid onset of the pandemic, combined with the emergence of viral variants, crippled many health systems particularly from the perspective of coping with massive diagnostic loads. Shortages of diagnostic kits and capacity forced laboratories to store clinical samples resulting in huge backlogs, the effects of this on diagnostic pickup have not been fully understood. Herein, we investigated the impact of storing SARS-CoV-2 inoculated dry swabs on the detection and viability of four viral strains over a period of 7 days. Viral load, as detected by qRT-PCR, displayed no significant degradation during this time for all viral loads tested. In contrast, there was a ca. 2 log reduction in viral viability as measured by the tissue culture infectious dose (TCID) assay, with 1-3 log viable virus detected on dry swabs after 7 days. When swabs were coated with 102 viral copies of the Omicron variant, no viable virus was detected after 24 hours following storage at 4°C or room temperature. However there was no loss of PCR signal over 7 days. All four strains showed comparable growth kinetics and survival when cultured in Vero E6 cells. Our data provide information on the viability of SARS-CoV-2 on stored swabs in a clinical setting with important implications for diagnostic pickup and laboratory processing protocols. Survival after 7 days of SARS-CoV-2 strains on swabs with high viral loads may impact public health and biosafety practices in diagnostic laboratories.
Collapse
|
6
|
Mosscrop L, Watber P, Elliot P, Cooke G, Barclay W, Freemont PS, Rosadas C, Taylor GP. Evaluation of the impact of pre-analytical conditions on sample stability for the detection of SARS-CoV-2 RNA. J Virol Methods 2022; 309:114607. [PMID: 35973468 PMCID: PMC9374597 DOI: 10.1016/j.jviromet.2022.114607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Demand for accurate SARS-CoV-2 diagnostics is high. Most samples in the UK are collected in the community and rely on the postal service for delivery to the laboratories. The current recommendation remains that swabs should be collected in Viral Transport Media (VTM) and transported with a cold chain to the laboratory for RNA extraction and RT-qPCR. This is not always possible. We aimed to test the stability of SARS-CoV-2 RNA subjected to different pre-analytical conditions. Swabs were dipped into PBS containing cultured SARS-CoV-2 and placed in either a dry tube or a tube containing either normal saline or VTM. The tubes were then stored at different temperatures (20-50 °C) for variable periods (8 h to 5 days). Samples were tested by RT-qPCR targeting SARS-CoV-2 E gene. VTM outperformed swabs in saline and dry swabs in all conditions. Samples in VTM were stable, independent of a cold chain, for 5 days, with a maximum increase in cycle threshold (Ct) of 1.34 when held at 40 °C. Using normal saline as the transport media resulted in a loss of sensitivity (increased Ct) over time and with increasing temperature (up to 7.8 cycles compared to VTM). SARS-CoV-2 was not detected in 3/9 samples in normal saline when tested after 120 h incubation. Transportation of samples in VTM provides a high level of confidence in the results despite the potential for considerable, uncontrolled variation in temperature and longer transportation periods. False negative results may be seen after 96 h in saline and viral loads will appear lower.
Collapse
Affiliation(s)
- Lucy Mosscrop
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Patricia Watber
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Elliot
- School of Public Health, Imperial College London, London, United Kingdom
| | - Graham Cooke
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S Freemont
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Carolina Rosadas
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Graham P Taylor
- Department of Infectious Disease, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Alfaro‐Núñez A, Crone S, Mortensen S, Rosenstierne MW, Fomsgaard A, Marving E, Nielsen SH, Jørgensen MGP, Polacek C, Cohen AS, Nielsen C. SARS-CoV-2 RNA stability in dry swabs for longer storage and transport at different temperatures. Transbound Emerg Dis 2022; 69:189-194. [PMID: 34609793 PMCID: PMC8662091 DOI: 10.1111/tbed.14339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
During the current COVID-19 pandemic, different methods have been used to evaluate patients with suspected SARS-CoV-2 infection. In this study, we experimentally evaluate the ability of spiked saliva-moist swabs and spiked swabs without any transport medium to retain SARS-CoV-2 for storage and transport at different environmental settings during different incubation time periods. Our results show that at ambient temperature of 20°C, SARS-CoV-2 RNA remains stable for up to 9 days allowing a long-time span for transport and storage without compromising clinical results. Additionally, this study demonstrates that saliva-moist swabs can also be stored at -20°C and +4°C for up to 26 days without affecting RT-qPCR results. Our data are relevant for low-and middle-income countries, which have limited access to rapid refrigerated transport and storage of samples representing an economical alternative. Finally, our study demonstrates the practical and economic advantage of using swabs without transport medium.
Collapse
Affiliation(s)
- Alonzo Alfaro‐Núñez
- Department of Virus and Microbiological Special DiagnosticsStatens Serum InstitutCopenhagen SDenmark
- Section for Evolutionary GenomicsGLOBE InstituteUniversity of CopenhagenCopenhagen KDenmark
| | | | - Shila Mortensen
- Department of Virus and Microbiological Special DiagnosticsStatens Serum InstitutCopenhagen SDenmark
| | | | - Anders Fomsgaard
- Department of Virus and Microbiological Special DiagnosticsStatens Serum InstitutCopenhagen SDenmark
| | - Ellinor Marving
- Department of Virus and Microbiological Special DiagnosticsStatens Serum InstitutCopenhagen SDenmark
| | | | | | - Charlotta Polacek
- Department of Virus and Microbiological Special DiagnosticsStatens Serum InstitutCopenhagen SDenmark
| | - Arieh S. Cohen
- TestCenter DanmarkStatens Serum InstitutCopenhagen SDenmark
| | - Claus Nielsen
- Department of Virus and Microbiological Special DiagnosticsStatens Serum InstitutCopenhagen SDenmark
| |
Collapse
|
8
|
Chaves SS, Park JH, Prill MM, Whitaker B, Park R, Chew GL. Side-by-side comparison of parent vs. technician-collected respiratory swabs in low-income, multilingual, urban communities in the United States. BMC Public Health 2022; 22:103. [PMID: 35031041 PMCID: PMC8760092 DOI: 10.1186/s12889-022-12523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Home-based swabbing has not been widely used. The objective of this analysis was to compare respiratory swabs collected by mothers of 7–12-year-olds living in low-income, multilingual communities in the United States with technician collected swabs. Methods Retrospective data analysis of respiratory samples collected at home by mothers compared to technicians. Anterior nasal and throat specimens collected using flocked swabs were combined in dry tubes. Test was done using TaqMan array cards for viral and bacterial pathogens. Cycle threshold (Ct) values of ribonuclease P (RNP) gene were used to assess specimen quality. Ct < 40 was interpreted as a positive result. Concordance of pathogen yield from mother versus technician collected swabs were analyzed using Cohen’s Kappa coefficients. Correlation analysis, paired t-test, and Wilcoxon signed-rank test for paired samples were used for RNP Ct values. Results We enrolled 36 households in Cincinnati (African American) and 44 (predominately Chinese or Latino) in Boston. In Cincinnati, eight of 32 (25%) mothers did not finish high school, and 11 (34%) had finished high school only. In Boston, 13 of 44 (30%) mothers had less than a high school diploma, 23 (52%) had finished high school only. Mother versus technician paired swabs (n = 62) had similar pathogen yield (paired t-test and Wilcoxon signed rank test p-values = 0.62 and 0.63, respectively; 95% confidence interval of the difference between the two measurements = − 0.45–0.75). Median Ct value for RNP was 22.6 (interquartile range, IQR = 2.04) for mother-collected and 22.4 (IQR = 2.39) for technician-collected swabs (p = 0.62). Agreement on pathogen yield between samples collected by mothers vs. technicians was higher for viruses than for bacterial pathogens, with high concordance for rhinovirus/enterovirus, human metapneumovirus, and adenovirus (Cohen’s kappa coefficients ≥80%, p < 0.0001). For bacterial pathogens, concordance was lower to moderate, except for Chlamydia pneumoniae, for which kappa coefficient indicated perfect agreement. Conclusion Mothers with a range of education levels from low-income communities were able to swab their children equally well as technicians. Home-swabbing using dry tubes, and less invasive collection procedures, could enhance respiratory disease surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-12523-3.
Collapse
Affiliation(s)
- Sandra S Chaves
- CDC, National Center for Immunization and Respiratory Diseases, Influenza Division, Atlanta, USA.
| | - Ju-Hyeong Park
- CDC, National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, USA
| | - Mila M Prill
- CDC, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, USA
| | - Brett Whitaker
- CDC, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Atlanta, USA
| | - Reena Park
- Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Ginger L Chew
- CDC, National Center for Environmental Health, Division of Environmental Health Science and Practice, Atlanta, USA
| |
Collapse
|
9
|
Gokulan CG, Kiran U, Kuncha SK, Mishra RK. Temporal stability and detection sensitivity of the dry swab-based diagnosis of SARS-CoV-2. J Biosci 2021. [PMID: 34728592 PMCID: PMC8556569 DOI: 10.1007/s12038-021-00216-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapid spread and evolution of various strains of SARS-CoV-2, the virus responsible for COVID-19, continues to challenge the disease controlling measures globally. Alarming concern is, the number of second wave infections surpassed the first wave and the onset of severe symptoms manifesting rapidly. In this scenario, testing of maximum population in less time and minimum cost with existing diagnostic amenities is the only possible way to control the spread of the virus. The previously described RNA extraction-free methods using dry swab have been shown to be advantageous in these critical times by different studies. In this work, we show the temporal stability and performance of the dry swab viral detection method at two different temperatures. Contrived dry swabs holding serially diluted SARS-CoV-2 strains A2a and A3i at 25°C (room temperature; RT) and 4°C were subjected to direct RT-PCR and compared with standard VTM-RNA based method. The results clearly indicate that dry swab method of RNA detection is as efficient as VTM-RNA-based method in both strains, when checked for up to 72 h. The lesser CT values of dry swab samples in comparison to that of the VTM-RNA samples suggest better sensitivity of the method within 48 h of time. The results collectively suggest that dry swab samples are stable at RT for 24 h and the detection of SARS-CoV-2 RNA by RT-PCR do not show variance from VTM-RNA. This extraction free, direct RT-PCR method holds phenomenal standing in the present life-threatening circumstances due to SARS-CoV-2.
Collapse
Affiliation(s)
- C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| |
Collapse
|
10
|
Srivatsan S, Heidl S, Pfau B, Martin BK, Han PD, Zhong W, van Raay K, McDermot E, Opsahl J, Gamboa L, Smith N, Truong M, Cho S, Barrow KA, Rich LM, Stone J, Wolf CR, McCulloch DJ, Kim AE, Brandstetter E, Sohlberg SL, Ilcisin M, Geyer RE, Chen W, Gehring J, Kosuri S, Bedford T, Rieder MJ, Nickerson DA, Chu HY, Konnick EQ, Debley JS, Shendure J, Lockwood CM, Starita LM. SwabExpress: An end-to-end protocol for extraction-free covid-19 testing. Clin Chem 2021; 68:143-152. [PMID: 34286830 DOI: 10.1093/clinchem/hvab132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.
Collapse
Affiliation(s)
- Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sarah Heidl
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Brian Pfau
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Peter D Han
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Weizhi Zhong
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | | | - Evan McDermot
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Jordan Opsahl
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Luis Gamboa
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Nahum Smith
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Melissa Truong
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Shari Cho
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jeremy Stone
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Caitlin R Wolf
- Department of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Denise J McCulloch
- Department of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Ashley E Kim
- Department of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | | | - Sarah L Sohlberg
- Department of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Misja Ilcisin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rachel E Geyer
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jase Gehring
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Sriram Kosuri
- Octant, Inc. Emeryville CA, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Trevor Bedford
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Brotman Baty Institute For Precision Medicine, Seattle, WA, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark J Rieder
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| | - Helen Y Chu
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA.,Department of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Brotman Baty Institute For Precision Medicine, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Brotman Baty Institute For Precision Medicine, Seattle, WA, USA.,Howard Hughes Medical Institute. Seattle, WA, USA
| | - Christina M Lockwood
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Brotman Baty Institute For Precision Medicine, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Brotman Baty Institute For Precision Medicine, Seattle, WA, USA
| |
Collapse
|
11
|
Complementary methods for SARS-CoV-2 diagnosis in times of material shortage. Sci Rep 2021; 11:11899. [PMID: 34099796 PMCID: PMC8185005 DOI: 10.1038/s41598-021-91457-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
The pandemic caused by SARS-CoV-2 resulted in increasing demands for diagnostic tests, leading to a shortage of recommended testing materials and reagents. This study reports on the performance of self-sampled alternative swabbing material (ordinary Q-tips tested against flocked swab and rayon swab), of reagents for classical RNA extraction (phenol/guanidine-based protocol against a commercial kit), and of intercalating dye-based one-step quantitative reverse transcription real-time PCRs (RT-qPCR) compared against the gold standard hydrolysis probe-based assays for SARS-CoV-2 detection. The study found sampling with Q-tips, RNA extraction with classical protocol and intercalating dye-based RT-qPCR as a reliable and comparably sensitive strategy for detection of SARS-CoV-2-particularly valuable in the current period with a resurgent and dramatic increase in SARS-CoV-2 infections and growing shortage of diagnostic materials especially for regions limited in resources.
Collapse
|
12
|
Würstle S, Spinner CD, Voit F, Hoffmann D, Hering S, Weidlich S, Schneider J, Zink A, Treiber M, Iakoubov R, Schmid RM, Protzer U, Erber J. Self-sampling versus health care professional-guided swab collection for SARS-CoV-2 testing. Infection 2021; 49:927-934. [PMID: 33970430 PMCID: PMC8107404 DOI: 10.1007/s15010-021-01614-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022]
Abstract
Purpose To evaluate the diagnostic reliability and practicability of self-collected oropharyngeal swab samples for the detection of SARS-CoV-2 infection as self-sampling could enable broader testing availability and reduce both personal protective equipment and potential exposure. Methods Hospitalized SARS-CoV-2-infected patients were asked to collect two oropharyngeal swabs (SC-OPS1/2), and an additional oropharyngeal swab was collected by a health care professional (HCP-OPS). SARS-CoV-2 PCR testing for samples from 58 participants was performed, with a 48-h delay in half of the self-collected samples (SC-OPS2). The sensitivity, probability of concordance, and interrater reliability were calculated. Univariate and multivariate analyses were performed to assess predictive factors. Practicability was evaluated through a questionnaire. Results The test sensitivity for HCP-OPS, SC-OPS1, and SC-OPS2 was 88%, 78%, and 77%, respectively. Combining both SC-OPS results increased the estimated sensitivity to 88%. The concordance probability between HCP-OPS and SC-OPS1 was 77.6% and 82.5% between SC-OPS1 and SC-OPS2, respectively. Of the participants, 69% affirmed performing future self-sampling at home, and 34% preferred self-sampling over HCP-guided testing. Participants with both positive HCP-OPS1 and SC-OPS1 indicating no challenges during self-sampling had more differences in viral load levels between HCP-OPS1 and SC-OPS1 than those who indicated challenges. Increasing disease duration and the presence of anti-SARS-CoV-2-IgG correlated with negative test results in self-collected samples of previously confirmed SARS-CoV-2 positive individuals. Conclusion Oropharyngeal self-sampling is an applicable testing approach for SARS-CoV-2 diagnostics. Self-sampling tends to be more effective in early versus late infection and symptom onset, and the collection of two distinct samples is recommended to maintain high test sensitivity. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-021-01614-9.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph D Spinner
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany. .,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Florian Voit
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Svenja Hering
- Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jochen Schneider
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Treiber
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Iakoubov
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Johanna Erber
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
13
|
Srivatsan S, Heidl S, Pfau B, Martin BK, Han PD, Zhong W, van Raay K, McDermot E, Opsahl J, Gamboa L, Smith N, Truong M, Cho S, Barrow KA, Rich LM, Stone J, Wolf CR, McCulloch DJ, Kim AE, Brandstetter E, Sohlberg SL, Ilcisin M, Geyer RE, Chen W, Gehring J, Seattle Flu Study Investigators, Kosuri S, Bedford T, Rieder MJ, Nickerson DA, Chu HY, Konnick EQ, Debley JS, Shendure J, Lockwood CM, Starita LM. SwabExpress: An end-to-end protocol for extraction-free COVID-19 testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.04.22.056283. [PMID: 32511368 PMCID: PMC7263496 DOI: 10.1101/2020.04.22.056283] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.
Collapse
Affiliation(s)
- Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Sarah Heidl
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Brian Pfau
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Peter D. Han
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Weizhi Zhong
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | | | - Evan McDermot
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Jordan Opsahl
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Luis Gamboa
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Nahum Smith
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Melissa Truong
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Shari Cho
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Kaitlyn A. Barrow
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle WA, USA
| | - Lucille M. Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle WA, USA
| | - Jeremy Stone
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Caitlin R. Wolf
- Department of Allergy and Infectious Disease, University of Washington, Seattle WA, USA
| | - Denise J. McCulloch
- Department of Allergy and Infectious Disease, University of Washington, Seattle WA, USA
| | - Ashley E. Kim
- Department of Allergy and Infectious Disease, University of Washington, Seattle WA, USA
| | | | - Sarah L. Sohlberg
- Department of Allergy and Infectious Disease, University of Washington, Seattle WA, USA
| | - Misja Ilcisin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rachel E. Geyer
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Jase Gehring
- Department of Genome Sciences, University of Washington, Seattle WA, USA
| | | | - Sriram Kosuri
- Octant, Inc. Emeryville CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles CA, USA
| | - Trevor Bedford
- Department of Genome Sciences, University of Washington, Seattle WA, USA
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark J. Rieder
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle WA, USA
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| | - Helen Y. Chu
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
- Department of Allergy and Infectious Disease, University of Washington, Seattle WA, USA
| | - Eric Q. Konnick
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
- Department of Laboratory Medicine and Pathology, Seattle WA, USA
| | - Jason S. Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle WA, USA
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
- Howard Hughes Medical Institute. Seattle WA, USA
| | - Christina M. Lockwood
- Department of Genome Sciences, University of Washington, Seattle WA, USA
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
- Department of Laboratory Medicine and Pathology, Seattle WA, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle WA, USA
- Brotman Baty Institute For Precision Medicine, Seattle WA, USA
| |
Collapse
|