1
|
Kaplan‐Arabaci O, Dančišinová Z, Paulsen RE. The Chicken Embryo: An Alternative Animal Model in Development, Disease and Pharmacological Treatment. Pharmacol Res Perspect 2025; 13:e70086. [PMID: 40113588 PMCID: PMC11925699 DOI: 10.1002/prp2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/14/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
To examine various medications and substances, in vivo models such as rats and mice are routinely used. However, it is utterly desirable to reduce extensive amounts of animals for these experimental models, which are costly and time-consuming. Animals are frequently put through a variety of procedures that could cause them pain, distress, or even harm; therefore, it is important to think about the ethical ramifications of using them in research. Thus, by following the three R's of animal research: reduction, replacement, and refinement, living animals used in studies should be minimized. The embryo of Gallus gallus, the domestic chicken, is a great model to research many different diseases and conditions. Its efficient blood supply from the chorioallantoic membrane gives us a unique possibility to administer chemicals or cells to the embryo in a noninvasive manner. In this review, we evaluate some advantages and disadvantages of using the developing chicken as an alternative in vivo model for development, disease, and pharmacological treatment. We focus on the top two leading causes of death: neurological disorders and cancer. We present a number of studies that describe the use of the chicken embryo in neuroscience and neurodevelopment research, in cancer research, and pharmacodynamic and pharmacokinetic studies. These studies show that the chicken embryo is an inexpensive, readily available, self-sufficient model with a short incubation period, high accessibility, and ideal for drug screening, making it an appealing model that can provide insightful biological and pharmacological information.
Collapse
Affiliation(s)
- Oykum Kaplan‐Arabaci
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyFaculty of Mathematics and Natural Sciences, University of OsloOsloNorway
| | - Zuzana Dančišinová
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyFaculty of Mathematics and Natural Sciences, University of OsloOsloNorway
- Institute of NeurobiologyBiomedical Research Center, Slovak Academy of SciencesKošiceSlovakia
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyFaculty of Mathematics and Natural Sciences, University of OsloOsloNorway
| |
Collapse
|
2
|
Gazzano V, Ogi A, Cecchi F, Curadi MC, Marchese M, Gazzano A. Cognitive Bias in Adult Zebrafish ( Danio rerio): A Systematic Review. Vet Sci 2025; 12:71. [PMID: 39852946 PMCID: PMC11768733 DOI: 10.3390/vetsci12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVE In recent years, the use of zebrafish (Danio rerio) as laboratory models has significantly increased. Ensuring their welfare is crucial, with the cognitive bias test emerging as a valuable tool to assess their emotional state. This systematic review examines the application of the cognitive bias test in zebrafish research. DATA The review adhered to PRISMA guidelines. SOURCES A systematic search was conducted in scientific databases, including PubMed and Scopus, yielding 30 articles. Additionally, one abstract identified through bibliographic screening of selected papers was included. STUDY SELECTION Six studies were selected for analysis, and their quality was assessed using SYRCLE's risk-of-bias tool. RESULTS Three experimental models were employed to conduct the cognitive bias test in zebrafish, focusing on the relationship between their affective state and environmental conditions, cognitive abilities, and life-history strategies but none of the studies adequately reported the techniques employed to reduce bias. DISCUSSION The cognitive bias test proved effective in assessing the emotional state of zebrafish; however, methodological biases may have influenced the results. CONCLUSION The cognitive bias test offers valuable insights into how emotional states affect cognitive abilities, responses to environmental changes (e.g., physical enrichment), and stress responses. Further research addressing methodological limitations is necessary to validate these findings and improve data reproducibility.
Collapse
Affiliation(s)
- Valentina Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.G.); (F.C.); (M.C.C.); (A.G.)
| | - Asahi Ogi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Francesca Cecchi
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.G.); (F.C.); (M.C.C.); (A.G.)
| | - Maria Claudia Curadi
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.G.); (F.C.); (M.C.C.); (A.G.)
| | - Maria Marchese
- Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy;
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (V.G.); (F.C.); (M.C.C.); (A.G.)
| |
Collapse
|
3
|
Buenhombre J, Daza-Cardona EA, Mota-Rojas D, Domínguez-Oliva A, Rivera A, Medrano-Galarza C, de Tarso P, Cajiao-Pachón MN, Vargas F, Pedraza-Toscano A, Sousa P. Trait sensitivity to stress and cognitive bias processes in fish: A brief overview. PERSONALITY NEUROSCIENCE 2024; 7:e3. [PMID: 38384666 PMCID: PMC10877277 DOI: 10.1017/pen.2023.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 02/23/2024]
Abstract
Like other animals, fish have unique personalities that can affect their cognition and responses to environmental stressors. These individual personality differences are often referred to as "behavioural syndromes" or "stress coping styles" and can include personality traits such as boldness, shyness, aggression, exploration, locomotor activity, and sociability. For example, bolder or proactive fish may be more likely to take risks and present lower hypothalamo-pituitary-adrenal/interrenal axis reactivity as compared to shy or reactive individuals. Likewise, learning and memory differ between fish personalities. Reactive or shy individuals tend to have faster learning and better association recall with aversive stimuli, while proactive or bold individuals tend to learn more quickly when presented with appetitive incentives. However, the influence of personality on cognitive processes other than cognitive achievement in fish has been scarcely explored. Cognitive bias tests have been employed to investigate the interplay between emotion and cognition in both humans and animals. Fish present cognitive bias processes (CBP) in which fish's interpretation of stimuli could be influenced by its current emotional state and open to environmental modulation. However, no study in fish has explored whether CBP, like in other species, can be interpreted as long-lasting traits and whether other individual characteristics may explain its variation. We hold the perspective that CBP could serve as a vulnerability factor for the onset, persistence, and recurrence of stress-related disorders. Therefore, studying fish's CBP as a state or trait and its interactions with individual variations may be valuable in future efforts to enhance our understanding of anxiety and stress neurobiology in animal models and humans.
Collapse
Affiliation(s)
- Jhon Buenhombre
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
- ICB Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Alexandra Daza-Cardona
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City, Mexico
| | - Astrid Rivera
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Catalina Medrano-Galarza
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - María Nelly Cajiao-Pachón
- Especialización en Bienestar Animal y Etología, Fundación Universitaria Agraria de Colombia, Bogotá, Colombia
| | - Francisco Vargas
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Pedraza-Toscano
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
4
|
Structural environmental enrichment and the way it is offered influence cognitive judgement bias and anxiety-like behaviours in zebrafish. Anim Cogn 2023; 26:563-577. [PMID: 36209454 DOI: 10.1007/s10071-022-01700-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/01/2022]
Abstract
Environmental enrichment in zebrafish generally reduces anxiety-related behaviours, improves learning in maze trials and increases health and biological fitness. However, certain types of enrichment or certain conditions induce the opposite effects. Therefore, it is essential to study the characteristics of environmental enrichment that modulate these effects. This study aims to investigate if structural environmental enrichment and the way it is offered influence cognitive judgement bias and anxiety-like behaviours in adult zebrafish. The fish were assigned to six housing manipulations: constant barren, constant enrichment, gradual gain of enrichment, gradual loss of enrichment, sudden gain of enrichment and sudden loss of enrichment. We then transposed the cognitive judgment bias paradigm, formerly used in studies on other animals to measure the link between emotion and cognition, to objectively assess the impact of these manipulations on the zebrafish's interpretation of ambiguous stimuli, considering previous experiences and related emotional states. We used two battery tests (light/dark and activity tests), which measured anxiety-related behaviours to check if these tests covariate with cognitive bias results. The fish with a sudden gain in enrichment showed a pessimistic bias (interpreted ambiguous stimuli as negative). In addition, the fish that experienced a sudden gain and a gradual loss in enrichment showed more anxiety-like behaviours than the fish that experienced constant conditions or a gradual gain in enrichment. The data provide some proof that structural environmental enrichment and the way it is presented can alter zebrafish's cognitive bias and anxiety-like behaviours.
Collapse
|
5
|
Campbell AM, Johnson AM, Persia ME, Jacobs L. Effects of Housing System on Anxiety, Chronic Stress, Fear, and Immune Function in Bovan Brown Laying Hens. Animals (Basel) 2022; 12:1803. [PMID: 35883350 PMCID: PMC9311790 DOI: 10.3390/ani12141803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 01/20/2023] Open
Abstract
The scientific community needs objective measures to appropriately assess animal welfare. The study objective was to assess the impact of housing system on novel physiological and behavioral measurements of animal welfare for laying hens, including secretory and plasma Immunoglobulin (IgA; immune function), feather corticosterone (chronic stress), and attention bias testing (ABT; anxiety), in addition to the well-validated tonic immobility test (TI; fearfulness). To test this, 184 Bovan brown hens were housed in 28 conventional cages (3 birds/cage) and 4 enriched pens (25 birds/pen). Feces, blood, and feathers were collected 4 times between week 22 and 43 to quantify secretory and plasma IgA and feather corticosterone concentrations. TI tests and ABT were performed once. Hens that were from cages tended to show longer TI, had increased feather corticosterone, and decreased secretory IgA at 22 weeks of age. The caged hens fed quicker, and more hens fed during the ABT compared to the penned hens. Hens that were in conventional cages showed somewhat poorer welfare outcomes than the hens in enriched pens, as indicated by increased chronic stress, decreased immune function at 22 weeks of age but no other ages, somewhat increased fear, but reduced anxiety. Overall, these novel markers show some appropriate contrast between housing treatments and may be useful in an animal welfare assessment context for laying hens. More research is needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | - Leonie Jacobs
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (A.M.C.); (A.M.J.); (M.E.P.)
| |
Collapse
|
6
|
Pichová K, Kubíková Ľ, Košťál Ľ. The Acute Pharmacological Manipulation of Dopamine Receptors Modulates Judgment Bias in Japanese Quail. Front Physiol 2022; 13:883021. [PMID: 35634149 PMCID: PMC9130459 DOI: 10.3389/fphys.2022.883021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
We have studied the effects of dopamine antagonists and agonists on Japanese quail behavior in the spatial judgment task. Twenty-four Japanese quail hens were trained in the spatial discrimination task to approach the feeder placed in the rewarded location (Go response, feeder containing mealworms) and to not approach the punished location (No-Go response, empty feeder plus aversive sound). In a subsequent spatial judgment task, the proportion of Go responses as well as approach latencies to rewarded, punished, and three ambiguous locations (near-positive, middle, near-negative, all neither rewarded nor punished) were assessed in 20 quail hens that successfully mastered the discrimination task. In Experiment 1, each bird received five treatments (0.1 and 1.0 mg/kg of dopamine D1 receptor antagonist SCH 23390, 0.05 and 0.5 mg/kg of dopamine D2 receptor antagonist haloperidol, and saline control) in a different order, according to a Latin square design. All drugs were administered intramuscularly 15 min before the spatial judgment test, with 2 days break between the treatments. Both antagonists caused a significant dose-dependent increase in the approach latencies as well as a decrease in the proportion of Go responses. In Experiment 2, with the design analogous to Experiment 1, the hens received again five treatments (1.0 and 10.0 mg/kg of dopamine D1 receptor agonist SKF 38393, 1.0 and 10.0 mg/kg of dopamine D2 receptor agonist bromocriptine, and saline control), applied intramuscularly 2 h before the test. The agonists did not have any significant effect on approach latencies and the proportion of Go responses in the spatial judgment task, as compared to the saline control, except for 10.0 mg/kg SKF 38393, which caused a decrease in the proportion of Go responses. The approach latency and the proportion of Go responses were affected by the cue location in both experiments. Our data suggest that the dopamine D1 and D2 receptor blockade leads to a decrease in the reward expectation and the negative judgment of stimuli. The effect of dopamine receptor activation is less clear. The results reveal that dopamine receptor manipulation alters the evaluation of the reward and punishment in the spatial judgment task.
Collapse
|
7
|
Gross JJ, Bruckmaier RM. The 17th International Conference on Production Diseases in Farm Animals: Editorial. J Anim Sci 2020; 98:S1-S3. [PMID: 32810246 PMCID: PMC7433906 DOI: 10.1093/jas/skaa150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023] Open
Affiliation(s)
- Josef J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|