1
|
Miska KB, Campos PM, Cloft SE, Jenkins MC, Proszkowiec-Weglarz M. Temporal Changes in Jejunal and Ileal Microbiota of Broiler Chickens with Clinical Coccidiosis ( Eimeria maxima). Animals (Basel) 2024; 14:2976. [PMID: 39457906 PMCID: PMC11503835 DOI: 10.3390/ani14202976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Coccidiosis in broiler chickens continues to be a major disease of the gastrointestinal tract, causing economic losses to the poultry industry worldwide. The goal of this study was to generate a symptomatic Eimeria maxima (1000 oocysts) infection to determine its effect on the luminal and mucosal microbiota populations (L and M) in the jejunum and ileum (J and IL). Samples were taken from day 0 to 14 post-infection, and sequencing of 16S rRNA was performed using Illumina technology. Infected birds had significantly (p < 0.0001) lower body weight gain (BWG), higher feed conversion ratio (FCR) (p = 0.0015), increased crypt depth, and decreased villus height (p < 0.05). The significant differences in alpha and beta diversity were observed primarily at height of infection (D7). Analysis of taxonomy indicated that J-L and M were dominated by Lactobacillus, and in IL-M, changeover from Candidatus Arthromitus to Lactobacillus as the major taxon was observed, which occurred quicky in infected animals. LEfSe analysis found that in the J-M of infected chickens, Lactobacillus was significantly more abundant in infected (IF) chickens. These findings show that E. maxima infection affects the microbiota of the small intestine in a time-dependent manner, with different effects on the luminal and mucosal populations.
Collapse
Affiliation(s)
- Katarzyna B. Miska
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| | - Philip M. Campos
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| | - Sara E. Cloft
- Animal Sciences Department, Purdue University, West Lafayette, IN 47907, USA;
| | - Mark C. Jenkins
- Animal Parasitic Diseases Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA;
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| |
Collapse
|
2
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Elsasser TH, Ma B, Ravel J, Kahl S, Gajer P, Cross A. Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model. Anim Microbiome 2023; 5:6. [PMID: 36703224 PMCID: PMC9878500 DOI: 10.1186/s42523-023-00225-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota. RESULTS A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus. CONCLUSION The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.
Collapse
Affiliation(s)
- Ted H. Elsasser
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Bing Ma
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Stanislaw Kahl
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Pawel Gajer
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan Cross
- grid.411024.20000 0001 2175 4264Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
4
|
Quigley JD, Hill TM, Dennis TS, Suarez-Mena FX, Hu W, Kahl S, Elsasser TH. Effects of mixed tocopherols added to milk replacer and calf starter on intake, growth, and indices of stress. J Dairy Sci 2021; 104:9769-9783. [PMID: 34218922 DOI: 10.3168/jds.2020-19929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/15/2021] [Indexed: 01/14/2023]
Abstract
Vitamin E comprises 8 fat-soluble isoforms: α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol. Yet the body preferentially uses α-tocopherol, and only α-tocopherol supplementation can reverse vitamin E deficiency symptoms. However, other isoforms influence many biological functions in the body, including inflammation and stress. Therefore, the study objective was to determine metabolic and performance responses in young calves fed diets containing a constant amount of α-tocopherol and increasing amounts of soybean oil-derived mixed γ- and δ-tocopherols. Holstein calves [n = 48; 2-3 d of age; 40.2 kg of initial body weight (BW), standard error = 0.54] were assigned to receive approximately 0, 5, 10, or 15 mg/kg of BW daily (treatments T0, T1, T2, and T3, respectively) of mixed tocopherols (TMIX) provided in milk replacer (MR) and calf starter. The TMIX liquid contained 86% γδ-tocopherols and 9% α-tocopherol. Milk replacers were formulated to contain approximately 0, 400, 800, or 1,200 mg of TMIX/kg for treatments T0, T1, T2, and T3, respectively. Calf starters were formulated to contain approximately 0, 250, 500, or 750 mg of TMIX/kg for treatments T0, T1, T2, and T3, respectively. Mean consumption of γδ-tocopherols was 0.0, 6.5, 14.3, and 20.5 mg/kg of BW, respectively. Milk replacer contained 24% crude protein (CP) and 20% fat on a dry matter (DM) basis. Calf starters were pelleted and offered for ad libitum consumption from 0 to 56 d. Starters contained 18 to 20% CP and 9 to 12% starch in the DM. On d 28, 4 calves per treatment were randomly selected for slaughter, and necropsy was performed. Samples of liver, duodenum, ileum, and trapezius muscle were collected and stored before analysis for α-, β-, γ-, and δ-tocopherols and δ-tocotrienol. Data were analyzed using a completely randomized design using mixed model ANOVA with orthogonal polynomials to determine linear and quadratic effects of TMIX. Repeated-measures analyses were performed for data collected over time. Increasing dietary TMIX increased or tended to increase change in hip width at 28 and 56 d, respectively, and improved average daily BW gain and gain-to-feed ratio at 56 d. Increasing TMIX reduced plasma xanthine oxidase at 0 h and tended to reduce concentrations at 24 h following vaccination with 2 commercial vaccines on d 28; however, we detected no effect of TMIX following vaccination on d 56. Concentration of α-tocopherol in skeletal muscle declined quadratically with increasing TMIX, whereas ileal and liver γ-tocopherol increased linearly with increasing TMIX. The number of mucin-2 cells in the ileum increased more than 2-fold in calves fed T3. Addition of mixed tocopherols to diets of young dairy calves improved animal growth and altered indices of antioxidant metabolism.
Collapse
Affiliation(s)
- J D Quigley
- Nurture Research Center, Provimi North America, Cargill Animal Nutrition, Brookville, OH 45309.
| | - T M Hill
- Nurture Research Center, Provimi North America, Cargill Animal Nutrition, Brookville, OH 45309
| | - T S Dennis
- Nurture Research Center, Provimi North America, Cargill Animal Nutrition, Brookville, OH 45309
| | - F X Suarez-Mena
- Nurture Research Center, Provimi North America, Cargill Animal Nutrition, Brookville, OH 45309
| | - W Hu
- Nurture Research Center, Provimi North America, Cargill Animal Nutrition, Brookville, OH 45309
| | - S Kahl
- USDA Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705
| | - T H Elsasser
- USDA Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705
| |
Collapse
|
5
|
Lorenzoni AG, Rojas-Núñez I, Moore AF. Effect of Aspirin on the Intestinal Response to a Necrotic Enteritis Challenge. Avian Dis 2020; 63:686-692. [PMID: 31865684 DOI: 10.1637/aviandiseases-d-19-00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/29/2019] [Indexed: 11/05/2022]
Abstract
The effect of aspirin on intestinal lesions was evaluated in birds undergoing an experimental challenge with Clostridium perfringens as part of a model for inducing subclinical necrotic enteritis (SNE). Broilers were raised on clean wood shavings and randomly assigned to three treatments: Uninfected (U), Infected (I), and Infected + Aspirin (I+A; 0.025% acetylsalicylic acid in drinking water during days 21-25). Birds in the I and I+A groups were gavaged with Eimeria maxima on day 18 and their feed was inoculated with C. perfringens (1 × 109 CFU/bird) during days 23-25. On day 26, birds were euthanatized, intestinal lesions were evaluated, and intestinal tissue was collected for qPCR assessment of genes thought to be involved in the immune response to SNE: IL-1β, IL-10, MMP-2, and MMP-7. Birds in the I+A group had more-severe and numerous lesions compared to the I group. For all genes except MMP-2, expression was upregulated in the I group compared to the U group, but did not differ between the I and I+A groups. These results indicate that aspirin exacerbated the intestinal lesions associated with this disease. Aspirin could play a role in the development of a reliable and consistent model for the induction of necrotic enteritis under experimental settings.
Collapse
Affiliation(s)
- A G Lorenzoni
- The Pennsylvania State University, Department of Animal Science, University Park, PA 16802,
| | - I Rojas-Núñez
- The Pennsylvania State University, Department of Animal Science, University Park, PA 16802
| | - A F Moore
- The Pennsylvania State University, Department of Animal Science, University Park, PA 16802
| |
Collapse
|
6
|
Zhang Z, Zhou Z, Huang J, Sun X, Haseeb M, Ahmed S, Shah MAA, Yan R, Song X, Xu L, Li X. Molecular characterization of a potential receptor of Eimeria acervulina microneme protein 3 from chicken duodenal epithelial cells. Parasite 2020; 27:18. [PMID: 32195662 PMCID: PMC7083106 DOI: 10.1051/parasite/2020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/07/2020] [Indexed: 01/20/2023] Open
Abstract
Eimeria acervulina is one of seven Eimeria spp. that can infect chicken duodenal epithelial cells. Eimeria microneme protein 3 (MIC3) plays a vital role in the invasion of host epithelial tissue by the parasite. In this study, we found that chicken (Gallus gallus) ubiquitin conjugating enzyme E2F (UBE2F) could bind to the MIC3 protein of E. acervulina (EaMIC3), as screened using the yeast two-hybrid system, and that it might be the putative receptor protein of EaMIC3. The UBE2F gene was cloned from chicken duodenal epithelial cells. The recombinant protein of UBE2F (rUBE2F) was expressed in E. coli and the reactogenicity of rUBE2F was analyzed by Western blot. Gene sequencing revealed that the opening reading frame (ORF) of UBE2F was 558 base pairs and encoded a protein of 186 amino acids with a molecular weight of 20.46 kDa. The predicted UBE2F protein did not contain signal peptides or a transmembrane region, but had multiple O-glycosylation and phosphorylation sites. A phylogenetic analysis showed that the chicken UBE2F protein is closely related to those of quail and pigeon (Coturnix japonica and Columba livia). A sporozoite invasion-blocking assay showed that antisera against rUBE2F significantly inhibited the invasion of E. acervulina sporozoites in vitro. Animal experiments indicated that the antisera could significantly enhance average body weight gains and reduce mean lesion scores following a challenge with E. acervulina. These results therefore imply that the chicken UBE2F protein might be the target receptor molecule of EaMIC3 that is involved in E. acervulina invasion.
Collapse
Affiliation(s)
- Zhenchao Zhang
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
-
School of Basic Medical Sciences, Xinxiang Medical University Xinxiang 453003 Henan PR China
| | - Zhouyang Zhou
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Jianmei Huang
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Xiaoting Sun
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Muhammad Haseeb
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Shakeel Ahmed
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Muhammad Ali A. Shah
-
Department of Pathobiology, Faculty of Veterinary & Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University 46000 Rawalpindi Pakistan
| | - Ruofeng Yan
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Xiaokai Song
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Lixin Xu
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| | - Xiangrui Li
-
MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University Nanjing 210095 PR China
| |
Collapse
|