1
|
Hoffman A, Dornbach CW, Fernando SC, Broadway PR, Burdick Sanchez NC, Long NS, McDaniel ZS, Smock TM, Wells JE, Amachawadi RG, Hales KE. Effects of a Novel Direct-fed Microbial on Occurrences of Antimicrobial Resistance in Salmonella enterica, Escherichia coli, and Enterococcus spp. Measured Longitudinally From Feedlot Arrival to Harvest in Finishing Beef Steers. J Food Prot 2025; 88:100484. [PMID: 40089155 DOI: 10.1016/j.jfp.2025.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Before implementation of the Veterinary Feed Directive in 2017, medically important antimicrobials, like tylosin, were approved for both therapeutic and subtherapeutic use. Nevertheless, subtherapeutic practices are now considered injudicious because their use increases antimicrobial resistance risk. Therefore, heightened consumer concerns have increased the interest in antimicrobial alternatives like direct-fed microbials. Two-hundred forty Angus beef steers (mean initial BW = 263 kg ± 18.0 kg) were assigned randomly to one of three dietary treatments; negative control, dietary supplement contained no tylosin (NCON); positive control, dietary supplement contained tylosin (PCON); or novel direct-fed microbial fed at 1 g mixture/steer with 1 × 1011 CFU/g (DFM). Fecal samples were collected on days 0, 59, 128, and at study end. Pen and hide swabs were collected two days before harvest, and subiliac lymph nodes were collected on the day of harvest. All targeted bacterial populations differed across time (p ≤ 0.05), except 128ERYREscherichia coli. Fecal Salmonella concentration and prevalence differed among dietary treatments (p = 0.02) with NCON having greater fecal Salmonella concentrations than PCON and DFM. No differences in Salmonella prevalence among pen swabs, hide swabs, or subiliac lymph nodes were detected (p ≥ 0.40). Salmonella resistant to tetracycline or cefotaxime were not detected in feces. The effect of treatment differed by day for total and 128ERYREnterococcus spp. concentrations. Total Enterococcus spp. concentrations were greatest for the DFM treatment on day 128 and at study end (p ≤ 0.01). At study end, 128ERYREnterococcus spp. concentrations were greatest for PCON (p ≤ 0.01). Total, TETR, COTR, and CTXRE. coli concentrations increased from d 0 to study end among treatments (p ≤ 0.01). These data suggest that the in-feed inclusion of a novel direct-fed microbial is not directly implicated in the antimicrobial resistance of feedlot beef cattle.
Collapse
Affiliation(s)
- A Hoffman
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - C W Dornbach
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - S C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - P R Broadway
- USDA-ARS, Livestock Issues Research Unit, Lubbock, Texas, USA
| | | | - N S Long
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Z S McDaniel
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - T M Smock
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - J E Wells
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - R G Amachawadi
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - K E Hales
- Department of Animal & Food Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
2
|
Agga GE, Galloway HO. Dynamics of Extended-spectrum Beta-lactamase-producing, Third-generation Cephalosporin-resistant and Tetracycline-resistant Escherichia coli in Feedlot Cattle With or Without Tylosin Administration. J Food Prot 2023; 86:100144. [PMID: 37597606 DOI: 10.1016/j.jfp.2023.100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
The impact of in-feed use of tylosin in feedlot cattle on Gram-negative foodborne bacteria is unknown. We evaluated the effect of continuous in-feed tylosin use on the concentration and prevalence of tetracycline-resistant (TETr)-, third-generation cephalosporin-resistant (3GCr)-, and extended-spectrum β-lactamase-producing (ESBLs) E. coli in feedlot cattle. A cohort of weaned calves (10 animals/group) were randomized to receive a feed ration with or without tylosin. Fecal samples, regularly collected over the entire feeding period, and pen surface and feed samples, collected at the end of the feeding period, were cultured on selective media. Enumeration and binary outcomes were analyzed by mixed effects linear regression or logistic regression, respectively, using treatment and days on feed as fixed factors, and animal ID as a random variable. Tylosin supplementation did not affect the fecal concentrations of TETrE. coli or fecal prevalence of 3GCrE. coli. However, cattle in the tylosin group were 1.5 times more likely (Odds ratio = 1.5: 95% confidence interval: 1.1-2.0) to harbor ESBLs E. coli than the control cattle. Regardless of tylosin treatment, fecal concentrations of TETrE. coli and the prevalence of 3GCr- and ESBLs-E. coli increased over time. Tylosin-supplemented feed did not affect the prevalence of TETrE. coli; 3GCr and ESBLs-E. coli were not detected from the feed samples. Most of the 3GCr- and ESBLs-E. coli isolates carried the blaCTX-M-15 gene, widely detected among ESBLs-E. coli human isolates. In summary, although in-feed tylosin use in feedlot cattle did not select for TETr- and 3GCr-E. coli, it increased the likelihood of detecting ESBL-producing E. coli. Furthermore, the study indicated that the feedlot production setting gradually increases the levels of E. coli resistant to the critically and/or important antibiotics for public health, indicating an increased risk of their dissemination beyond the feedlot environment.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 2413 Nashville Road, B-5, Bowling Green, KY 42101, USA.
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
3
|
Bista PK, Pillai D, Narayanan SK. Outer-Membrane Vesicles of Fusobacterium necrophorum: A Proteomic, Lipidomic, and Functional Characterization. Microorganisms 2023; 11:2082. [PMID: 37630642 PMCID: PMC10458137 DOI: 10.3390/microorganisms11082082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Outer-membrane vesicles (OMVs) are extruded nanostructures shed by Gram-negative bacteria, containing periplasmic contents, and often including virulence factors with immunogenic properties. To assess their potential for use in vaccine development, we purified OMVs from the Fusobacterium necrophorum subspecies necrophorum, an opportunistic necrotic infection-causing pathogen, and characterized these structures using proteomics, lipid-profiling analyses, and cytotoxicity assays. A proteomic analysis of density-gradient-purified F. necrophorum OMVs identified 342 proteins, a large proportion of which were outer-membrane proteins (OMPs), followed by cytoplasmic proteins, based on a subcellular-localization-prediction analysis. The OMPs and toxins were among the proteins with the highest intensity identified, including the 43-kDa-OMP-, OmpA-, and OmpH-family proteins, the cell-surface protein, the FadA adhesin protein, the leukotoxin-LktA-family filamentous adhesin, the N-terminal domain of hemagglutinin, and the OMP transport protein and assembly factor. A Western blot analysis confirmed the presence of several OMPs and toxins in the F. necrophorum OMVs. The lipid-profiling analysis revealed phospholipids, sphingolipids, and acetylcarnitine as the main lipid contents of OMVs. The lactate-dehydrogenase-cytotoxicity assays showed that the OMVs had a high degree of cytotoxicity against a bovine B-lymphocyte cell line (BL-3 cells). Thus, our data suggest the need for further studies to evaluate the ability of OMVs to induce immune responses and assess their vaccine potential in vivo.
Collapse
Affiliation(s)
- Prabha K. Bista
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
- Indiana Animal Disease and Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjeev K. Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
| |
Collapse
|
4
|
Agga GE, Galloway HO, Appala K, Mahmoudi F, Kasumba J, Loughrin JH, Conte E. Effect of continuous in-feed administration of tylosin to feedlot cattle on macrolide and tetracycline resistant enterococci in a randomized field trial. Prev Vet Med 2023; 215:105930. [PMID: 37163775 DOI: 10.1016/j.prevetmed.2023.105930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Liver abscess causes substantial economic loss to the beef cattle industry through liver condemnation, reduced animal performance, and carcass yield. Continuous in-feed use of tylosin is the most effective and a commonly used practice in beef cattle production to prevent liver abscess. However, such mass medication can increase the level of antimicrobial resistant bacteria. We investigated the effect of continuous in-feed use of tylosin in feedlot cattle on (i) concentrations and prevalence of erythromycin-resistant (ERYr) and tetracycline-resistant (TETr) enterococci; (ii) associated antimicrobial resistance genes (ARGs) for resistance; (iii) species distribution; iv) macrolide and tetracycline resistance gene concentrations; and (v) tylosin concentration. A cohort of weaned calves were randomized to receive tylosin-medicated feed (Tylosin; n = 10) or nonmedicated feed (Control; n = 10) for a full feedlot cycle. Feces, feed and pen-surface samples were collected and processed by culture, droplet digital PCR, and liquid chromatography/mass spectroscopy for bacterial enumeration, detection and characterization, ARG quantification, and tylosin concentration, respectively. Data were analyzed by mixed effects linear- or binary-regression models depending on the outcomes. Tylosin administration significantly increased fecal concentration (P < 0.001) and prevalence (P = 0.021) of ERYr enterococci and erm(B) gene concentration (P < 0.001), compared to the control group. Interestingly, tylosin administration significantly reduced (P = 0.037) fecal TETr enterococci concentration compared to the control group, with no significant effect (P = 0.758) on fecal tet(M) concentration. In both treatment groups, enterococci concentrations increased over time, peaking on 174 days in feed before returning to the baseline. ERYr enterococci concentration was significantly (P = 0.012) higher in tylosin medicated feeds, with no significant effect (P = 0.321) on TETr enterococci concentration. Pen-surface concentration of ermB was significantly (P = 0.024) higher in the tylosin group, with no significant effect (P > 0.05) on bacterial concentrations. Increased diversity and a shift in the composition of enterococcal species and ARGs were observed over time, although tylosin use did not significantly affect (P > 0.05) their prevalence. Tylosin concentration was significantly higher in the feces of tylosin administered cattle (P < 0.001) and medicated feed (P = 0.027), with numerically higher pen-surface concentration (P = 0.065) in the tylosin group. In conclusion, continuous in-feed use of tylosin in feedlot cattle increases macrolide resistant enterococci and its fecal excretion, while decreasing tetracycline resistance. Two medically important species, E. faecium and E. faecalis, were predominant regardless of resistance status or sample source. Risk-based approaches including label changes to limit tylosin use such as withdrawal period, and development of effective manure treatments are potential areas of research to reduce environmental and public health impacts.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, 2413 Nashville Road Building 5, Bowling Green, KY 42101, USA.
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY, USA
| | - Keerthi Appala
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Faranak Mahmoudi
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - John Kasumba
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - John H Loughrin
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, 2413 Nashville Road Building 5, Bowling Green, KY 42101, USA
| | - Eric Conte
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
5
|
Strong KM, Marasco KL, Invik J, Ganshorn H, Reid-Smith RJ, Waldner CL, Otto SJG, Kastelic JP, Checkley SL. Factors associated with antimicrobial resistant enterococci in Canadian beef cattle: A scoping review. Front Vet Sci 2023; 10:1155772. [PMID: 37152689 PMCID: PMC10157153 DOI: 10.3389/fvets.2023.1155772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global health concern, occurring when bacteria evolve to render antimicrobials no longer effective. Antimicrobials have important roles in beef production; however, the potential to introduce AMR to people through beef products is a concern. This scoping review identifies factors associated with changes in the prevalence of antimicrobial-resistant Enterococcus spp. applicable to the Canadian farm-to-fork beef continuum. Methods Five databases (MEDLINE, BIOSIS, Web of Science, Embase, and CAB Abstracts) were searched for articles published from January 1984 to March 2022, using a priori inclusion criteria. Peer-reviewed articles were included if they met all the following criteria: written in English, applicable to the Canadian beef production context, primary research, in vivo research, describing an intervention or exposure, and specific to Enterococcus spp. Results Out of 804 screened articles, 26 were selected for inclusion. The included articles discussed 37 factors potentially associated with AMR in enterococci, with multiple articles discussing at least two of the same factors. Factors discussed included antimicrobial administration (n = 16), raised without antimicrobials (n = 6), metal supplementation (n = 4), probiotics supplementation (n = 3), pen environment (n = 2), essential oil supplementation (n = 1), grass feeding (n = 1), therapeutic versus subtherapeutic antimicrobial use (n = 1), feeding wet distiller grains with solubles (n = 1), nutritional supplementation (n = 1) and processing plant type (n = 1). Results were included irrespective of their quality of evidence. Discussion Comparability issues arising throughout the review process were related to data aggregation, hierarchical structures, study design, and inconsistent data reporting. Findings from articles were often temporally specific in that resistance was associated with AMR outcomes at sampling times closer to exposure compared to studies that sampled at longer intervals after exposure. Resistance was often nuanced to unique gene and phenotypic resistance patterns that varied with species of enterococci. Intrinsic resistance and interpretation of minimum inhibitory concentration varied greatly among enterococcal species, highlighting the importance of caution when comparing articles and generalizing findings. Systematic Review Registration [http://hdl.handle.net/1880/113592].
Collapse
Affiliation(s)
- Kayla M. Strong
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- AMR—One Health Consortium, Calgary, AB, Canada
| | - Kaitlin L. Marasco
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jesse Invik
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Heather Ganshorn
- Libraries and Cultural Resources, University of Calgary, Calgary, AB, Canada
| | - Richard J. Reid-Smith
- AMR—One Health Consortium, Calgary, AB, Canada
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - Cheryl L. Waldner
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- AMR—One Health Consortium, Calgary, AB, Canada
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- AMR—One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
6
|
Wilson HC, McPhillips LJ, Boyd BM, Watson AK, MacDonald JC, Erickson GE. Effect of increasing corn silage inclusion in finishing diets cattle with or without tylosin on performance and liver abscesses. J Anim Sci 2023; 101:skac380. [PMID: 36592749 PMCID: PMC9831095 DOI: 10.1093/jas/skac380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/17/2022] [Indexed: 01/04/2023] Open
Abstract
A pooled analysis was performed to evaluate whether corn silage fed at 15% or 45% of diet DM impacted liver abscesses prevalence at slaughter in five previous experiments. Cattle fed 15% corn silage had 7.8% abscessed livers compared to 4.1% for cattle fed 45% corn silage when all diets contained tylosin. While improved due to increased corn silage inclusion, the objective of the current finishing study was to determine the impact of silage inclusion in finishing diets with and without tylosin on performance and incidence of abscessed livers in beef cattle. A total of 640 (BW = 334 ± 25 kg) steers were used in a generalized randomized block design with a 2 × 2 factorial treatment design. Treatments included two concentrations of corn silage (15% and 45% of diet DM), with or without tylosin for liver abscesses. This study used 32 pens of cattle with 20 steers per pen and 8 pens per treatment. There was a tendency for an interaction for feed efficiency (G:F; P = 0.10) where cattle fed 15% corn silage had a 2% increase in G:F when tylosin was added to the diet, but no improvements in G:F were observed when tylosin was added to diets containing 45% silage. There was an interaction between silage and tylosin inclusion for abscessed livers (P = 0.05). Cattle fed 15% corn silage without tylosin had the greatest incidence of abscessed livers (34.5%) compared to other treatments (P = 0.05), and the incidence of abscessed livers was decreased to 19% if tylosin was fed with 15% corn silage. Feeding 45% silage was effective at lowering the incidence of abscessed livers (P = 0.05) which was 12.4%, regardless of whether tylosin was fed. Feeding corn silage at 45% of diet DM (77.5% concentrate) was as effective as feeding tylosin to cattle on a 92.5% concentrate diet. Feeding corn silage at greater inclusions decreased daily gain (P ≤ 0.01) but increased final body weight when fed to an equal fatness (cattle fed 45% CS were fed 28 d longer). Feeding corn silage at 45% was more economical compared to feeding 15% corn silage, especially as corn prices increase, provided shrink is well managed. Feeding elevated concentrations of corn silage may be an economically viable method to reduce incidence of liver abscesses without antibiotic use for smaller operations that can manage more corn silage in finishing diets.
Collapse
Affiliation(s)
- Hannah C Wilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Levi J McPhillips
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bradley M Boyd
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andrea K Watson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jim C MacDonald
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Galen E Erickson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
7
|
Theurer ME, Amachawadi RG. Antimicrobial and Biological Methods to Control Liver Abscesses. Vet Clin North Am Food Anim Pract 2022; 38:383-394. [DOI: 10.1016/j.cvfa.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
9
|
Murray SA, Holbert AC, Norman KN, Lawhon SD, Sawyer JE, Scott HM. Effects of Tylosin, a Direct-Fed Microbial and Feedlot Pen Environment on Phenotypic Resistance among Enterococci Isolated from Beef Cattle Feces. Antibiotics (Basel) 2022; 11:106. [PMID: 35052983 PMCID: PMC8772914 DOI: 10.3390/antibiotics11010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
In two sequential replicates (n = 90 and n = 96 feedlot finisher cattle, respectively) we measured the impact of an Enterococcus faecium-based probiotic (DFM) and an altered feedlot pen environment on antimicrobial resistance among fecal enterococci in cattle fed (or, not fed) the macrolide tylosin. Diluted fecal samples were spiral-plated on plain and antibiotic-supplemented m-Enterococcus agar. In the first replicate, tylosin significantly (p < 0.05) increased the relative quantity of erythromycin-resistant enterococci. This effect was diminished in cattle fed the DFM in conjunction with tylosin, indicating a macrolide susceptible probiotic may help mitigate resistance. A similar observed effect was not statistically significant (p > 0.05) in the second replicate. Isolates were speciated and resistance phenotypes were obtained for E. faecium and E. hirae. Susceptible strains of bacteria fed as DFM may prove useful for mitigating the selective effects of antibiotic use; however, the longer-term sustainability of such an approach remains unclear.
Collapse
Affiliation(s)
- Sarah A. Murray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (S.A.M.); (S.D.L.)
| | - Ashlyn C. Holbert
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (A.C.H.); (K.N.N.)
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (A.C.H.); (K.N.N.)
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (S.A.M.); (S.D.L.)
| | - Jason E. Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - Harvey M. Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (S.A.M.); (S.D.L.)
| |
Collapse
|
10
|
Theurer ME, Fox JT, McCarty TM, McCollum RM, Jones TM, Simpson J, Martin T. Evaluation of the reticulorumen pH throughout the feeding period for beef feedlot steers maintained in a commercial feedlot and its association with liver abscesses. J Am Vet Med Assoc 2021; 259:899-908. [PMID: 34609179 DOI: 10.2460/javma.259.8.899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the reticulorumen pH of beef feedlot steers throughout the feeding period and to assess the association between the respective durations that the reticulorumen pH was ≤ 5.6 (subacute ruminal acidosis) and ≤ 5.2 (acute ruminal acidosis) and liver abscess severity. ANIMALS 59 feedlot steers (mean body weight, 349.5 kg). PROCEDURES On day 0, each steer was orally administered an electronic bolus that monitored the reticulorumen pH every 10 minutes for 150 days. Steers were transitioned from a starter to intermediate ration on day 8 (transition 1) and from the intermediate to finish ration on day 19 (transition 2). The ration carbohydrate and megacalorie contents increased with each transition. During each transition, the lower megacalorie ration was fed at the 8:00 am feeding and the higher megacalorie ration was fed at the 2:00 pm feeding for 3 days before the higher megacalorie ration was fed extensively. Steers were sent to slaughter after 182 days; each carcass was assessed for liver abscesses. RESULTS The diurnal reticulorumen pH pattern was characterized by a peak at 7:00 am and nadir at 8:00 pm. The mean percentages of time that the reticulorumen pH was ≤ 5.6 and ≤ 5.2 were more than 10-fold greater during transition 1, compared with during transition 2, and were significantly greater for steers with extensive liver abscesses than for steers without extensive liver abscesses. CONCLUSIONS AND CLINICAL RELEVANCE Efforts to minimize the duration that the reticulorumen pH is ≤ 5.6 might mitigate liver abscess formation in feedlot cattle.
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 6: Macrolides: tilmicosin, tylosin and tylvalosin. EFSA J 2021; 19:e06858. [PMID: 34729086 PMCID: PMC8546505 DOI: 10.2903/j.efsa.2021.6858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The specific concentrations of tilmicosin, tylosin and tylvalosin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tilmicosin and tylosin, whilst for tylvalosin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these three antimicrobials.
Collapse
|
12
|
Effects of corn stalk inclusion and tylosin on performance, rumination, ruminal papillae morphology, and gut pathogens associated with liver abscesses from finishing beef steers. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Andrés-Lasheras S, Ha R, Zaheer R, Lee C, Booker CW, Dorin C, Van Donkersgoed J, Deardon R, Gow S, Hannon SJ, Hendrick S, Anholt M, McAllister TA. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease-A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front Vet Sci 2021; 8:692646. [PMID: 34277758 PMCID: PMC8280473 DOI: 10.3389/fvets.2021.692646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
A broad, cross-sectional study of beef cattle at entry into Canadian feedlots investigated the prevalence and epidemiology of antimicrobial resistance (AMR) in Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, bacterial members of the bovine respiratory disease (BRD) complex. Upon feedlot arrival and before antimicrobials were administered at the feedlot, deep nasopharyngeal swabs were collected from 2,824 feedlot cattle in southern and central Alberta, Canada. Data on the date of feedlot arrival, cattle type (beef, dairy), sex (heifer, bull, steer), weight (kg), age class (calf, yearling), source (ranch direct, auction barn, backgrounding operations), risk of developing BRD (high, low), and weather conditions at arrival (temperature, precipitation, and estimated wind speed) were obtained. Mannheimia haemolytica, P. multocida, and H. somni isolates with multidrug-resistant (MDR) profiles associated with the presence of integrative and conjugative elements were isolated more often from dairy-type than from beef-type cattle. Our results showed that beef-type cattle from backgrounding operations presented higher odds of AMR bacteria as compared to auction-derived calves. Oxytetracycline resistance was the most frequently observed resistance across all Pasteurellaceae species and cattle types. Mycoplasma bovis exhibited high macrolide minimum inhibitory concentrations in both cattle types. Whether these MDR isolates establish and persist within the feedlot environment, requires further evaluation.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Reuben Ha
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Craig Dorin
- Veterinary Agri-Health Systems, Airdrie, AB, Canada
| | | | - Rob Deardon
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Sheryl Gow
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Public Health Agency of Canada, Saskatoon, SK, Canada
| | | | | | - Michele Anholt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,POV Inc., Airdrie, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
14
|
Amachawadi RG, Tom WA, Hays MP, Fernando SC, Hardwidge PR, Nagaraja TG. Bacterial community analysis of purulent material from liver abscesses of crossbred cattle and Holstein steers fed finishing diets with or without tylosin. J Anim Sci 2021; 99:skab076. [PMID: 33693672 PMCID: PMC8075120 DOI: 10.1093/jas/skab076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Liver abscesses in feedlot cattle are polymicrobial infections. Culture-based studies have identified Fusobacterium necrophorum as the primary causative agent, but a number of other bacterial species are frequently isolated. The incidence of liver abscesses is highly variable and is affected by a number of factors, including cattle type. Holstein steers raised for beef production have a higher incidence than crossbred feedlot cattle. Tylosin is the commonly used antimicrobial feed additive to reduce the incidence of liver abscesses. The objective of this study was to utilize 16S ribosomal RNA amplicon sequence analyses to analyze the bacterial community composition of purulent material of liver abscesses of crossbred cattle (n = 24) and Holstein steers (n = 24), each fed finishing diet with or without tylosin. DNA was extracted and the V3 and V4 regions of the 16S rRNA gene were amplified, sequenced, and analyzed. The minimum, mean, and maximum sequence reads per sample were 996, 177,070, and 877,770, respectively, across all the liver abscess samples. Sequence analyses identified 5 phyla, 14 families, 98 genera, and 102 amplicon sequence variants (ASV) in the 4 treatment groups. The dominant phyla identified were Fusobacteria (52% of total reads) and Proteobacteria (33%). Of the top 25 genera identified, 17 genera were Gram negative and 8 were Gram positive. The top 3 genera, which accounted for 75% of the total reads, in the order of abundance, were Fusobacterium, Pseudomonas, and Bacteroides. The relative abundance, expressed as percent of total reads, of phyla, family, and genera did not differ (P > 0.05) between the 4 treatment groups. Generic richness and evenness, determined by Shannon-Weiner and Simpson's diversity indices, respectively, did not differ between the groups. The UniFrac distance matrices data revealed no clustering of the ASV indicating variance between the samples within each treatment group. Co-occurrence network analysis at the genus level indicated a strong association of Fusobacterium with 15 other genera, and not all of them have been previously isolated from liver abscesses. In conclusion, the culture-independent method identified the bacterial composition of liver abscesses as predominantly Gram negative and Fusobacterium as the dominant genus, followed by Pseudomonas. The bacterial community composition did not differ between crossbred and Holstein steers fed finishing diets with or without tylosin.
Collapse
Affiliation(s)
| | - Wesley A Tom
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Michael P Hays
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Philip R Hardwidge
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Stapleton GS, Cazer CL, Gröhn YT. Modeling the Effect of Tylosin Phosphate on Macrolide-Resistant Enterococci in Feedlots and Reducing Resistance Transmission. Foodborne Pathog Dis 2020; 18:85-96. [PMID: 33006484 DOI: 10.1089/fpd.2020.2835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tylosin phosphate (TYL) is administered to more than 50% of U.S. beef cattle to reduce the incidence of liver abscesses but may increase the risk of macrolide-lincosamide-streptogramin-resistant bacteria disseminating from the feedlot. Limited evidence has been collected to understand how TYL affects the proportion of resistant bacteria in cattle or the feedlot environment. We created a mathematical model to investigate the effects of TYL administration on Enterococcus dynamics and examined preharvest strategies to mitigate the impact of TYL administration on resistance. The model simulated the physiological pharmacokinetics of orally administered TYL and estimated the pharmacodynamic effects of TYL on populations of resistant and susceptible Enterococcus within the cattle large intestine, feedlot pen, water trough, and feed bunk. The model parameters' population distributions were based on the available literature; 1000 Monte Carlo simulations were performed to estimate the likely distribution of outcomes. At the end of the simulated treatment period, the median estimated proportion of macrolide-resistant enterococci was only 1 percentage point higher within treated cattle compared with cattle not fed TYL, in part because the TYL concentrations in the large intestine were substantially lower than the enterococci minimum inhibitory concentrations. However, 25% of the simulated cattle had a >10 percentage point increase in the proportion of resistant enterococci associated with TYL administration, termed the TYL effect. The model predicts withdrawing TYL treatment and moving cattle to an antimicrobial-free terminal pen with a low prevalence of resistant environmental enterococci for as few as 6 days could reduce the TYL effect by up to 14 percentage points. Additional investigation of the importance of this subset of cattle to the overall risk of resistance transmission from feedlots will aid in the interpretation and implementation of resistance mitigation strategies.
Collapse
Affiliation(s)
| | - Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Cazer CL, Eldermire ERB, Lhermie G, Murray SA, Scott HM, Gröhn YT. The effect of tylosin on antimicrobial resistance in beef cattle enteric bacteria: A systematic review and meta-analysis. Prev Vet Med 2020; 176:104934. [PMID: 32109782 PMCID: PMC7197392 DOI: 10.1016/j.prevetmed.2020.104934] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tylosin is a commonly used in-feed antimicrobial and is approved in several countries to reduce the incidence of liver abscesses in beef cattle. Macrolides are critically important antimicrobials in human health and used to treat some foodborne bacterial diseases, such as Campylobacter jejuni and Salmonella. Feeding tylosin could select for resistant enteric bacteria in cattle, which could contaminate beef products at slaughter and potentially cause foodborne illness. We conducted a systematic review and meta-analysis to evaluate the impact of feeding tylosin to cattle on phenotypic and genotypic resistance in several potential zoonotic enteric bacteria: Enterococcus species, Escherichia coli, Salmonella enterica subspecies enterica, and Campylobacter species. This review was registered with PROSPERO (#CRD42018085949). RESULTS Eleven databases were searched for primary research studies that fed tylosin at approved doses to feedlot cattle and tested bacteria of interest for phenotypic or genotypic resistance. We screened 1,626 citations and identified 13 studies that met the inclusion criteria. Enterococcus species were tested in seven studies, Escherichia coli was isolated in five studies, three studies reported on Salmonella, and two studies reported on Campylobacter species. Most studies relied on phenotypic antimicrobial susceptibility testing and seven also reported resistance gene testing. A random-effects meta-analyses of erythromycin-resistant enterococci from four studies had significant residual heterogeneity. Only two studies were available for a meta-analysis of tylosin-resistant enterococci. A semi-quantitative analysis demonstrated an increase in macrolide-resistant enterococci after long durations of tylosin administration (>100 days). Semi-quantitative analyses of other bacteria-antimicrobial combinations revealed mixed results, but many comparisons found no effect of tylosin administration. However, about half of these no-effect comparisons did not record the cumulative days of tylosin administration or the time since the last dose. CONCLUSIONS When fed at approved dosages for typical durations, tylosin increases the proportion of macrolide-resistant enterococci in the cattle gastrointestinal tract, which could pose a zoonotic risk to human beef consumers. Feeding tylosin for short durations may mitigate the impact on macrolide-resistant enterococci and further studies are encouraged to determine the effect of minimizing or eliminating tylosin use in beef cattle. There may also be an impact on other bacteria and other antimicrobial resistances but additional details or data are needed to strengthen these comparisons. We encourage authors of antimicrobial-resistance studies to follow reporting guidelines and publish details of all comparisons to strengthen future meta-analyses.
Collapse
Affiliation(s)
- Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Erin R B Eldermire
- Flower-Sprecher Veterinary Library, Cornell University College of Veterinary Medicine, USA.
| | - Guillaume Lhermie
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Sarah A Murray
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine, USA.
| | - H Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine, USA.
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Davedow T, Narvaez-Bravo C, Zaheer R, Sanderson H, Rodas-Gonzalez A, Klima C, Booker CW, Hannon SJ, Bras AL, Gow S, McAllister T. Investigation of a Reduction in Tylosin on the Prevalence of Liver Abscesses and Antimicrobial Resistance in Enterococci in Feedlot Cattle. Front Vet Sci 2020; 7:90. [PMID: 32185186 PMCID: PMC7059211 DOI: 10.3389/fvets.2020.00090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Recent concerns over linkages between antimicrobial resistance in human pathogens and antimicrobial use in livestock have prompted researchers to investigate management strategies that reduce the current reliance on in-feed tylosin to control liver abscesses in feedlot cattle. A total of 7,576 crossbred yearlings were allocated to the study (~253 animals/pen, 10 replicate pens per treatment) and individually randomized to one of three treatments. Tylosin phosphate (11 ppm) was included in-feed (1) for the first 125 days on feed (DOF) (FIRST-78%), (2) for DOF 41 to 161 (LAST-75%), or (3) for the entire feeding period (CON; day 0–161). Fecal composites were collected from the pen floor on days 0, 81, and 160 of the finishing period. Serial dilutions were spread plated for enumeration of enterococci on Bile Esculin Azide (BEA) agar and BEA amended with 8 μg/ml erythromycin. Results indicated that although the proportion of EryR enterococci increased with DOF (P < 0.01), neither treatment (P = 0.34) or treatment × DOF (P = 0.37) affected antimicrobial resistance. Of the 538 isolates, 97% were enterococci, with mixed species isolated early in the feeding period and only Enterococcus hirae isolated at the end. Isolates were most frequently resistant to tylosin (86%), erythromycin (84%), and doxycycline (31%). Macrolide and tetracycline resistant isolates harbored erm(B), msrC, and tet(L), tet(M), tet(O) genes, respectively. Overall, the proportion of EryR enterococci increased (P < 0.05) in all three treatments over the feeding period. Compared to the control cattle, FIRST-78% cattle had more severe (P < 0.05) liver abscesses, while there was a trend (P < 0.08) for this response in LAST-75% cattle. There was no difference (P > 0.05) in total liver abscesses, growth performance, carcass traits, morbidity, or mortality among treatments. These results support the potential to reduce the duration and therefore quantity of tylosin administered to feedlot cattle during the feeding period without impacting animal productivity.
Collapse
Affiliation(s)
- Taylor Davedow
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB, Canada.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Claudia Narvaez-Bravo
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Haley Sanderson
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Argenis Rodas-Gonzalez
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB, Canada
| | - Cassidy Klima
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB, Canada.,Feedlot Health Management Services, Okotoks, AB, Canada
| | | | | | - Ana L Bras
- Feedlot Health Management Services, Okotoks, AB, Canada
| | - Sheryl Gow
- Public Health Agency of Canada, Saskatoon, SK, Canada
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
18
|
Scott HM, Acuff G, Bergeron G, Bourassa MW, Gill J, Graham DW, Kahn LH, Morley PS, Salois MJ, Simjee S, Singer RS, Smith TC, Storrs C, Wittum TE. Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Ann N Y Acad Sci 2020; 1441:8-16. [PMID: 30924540 PMCID: PMC6850619 DOI: 10.1111/nyas.14058] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 11/28/2022]
Abstract
Globally, increasing acquired antimicrobial resistance among pathogenic bacteria presents an urgent challenge to human and animal health. As a result, significant efforts, such as the One Health Initiative, are underway to curtail and optimize the use of critically important antimicrobials for human medicine in all applications, including food animal production. This review discusses the rationale behind multiple and competing “critically important antimicrobial” lists and their contexts as created by international, regional, and national organizations; identifies discrepancies among these lists; and describes issues surrounding risk management recommendations that have been made by regulatory organizations on the use of antibiotics in food animal production. A more harmonized approach to defining criticality in its various contexts (e.g., for human versus animal health, enteric diseases versus other systemic infections, and direct versus indirect selection of resistance) is needed in order to identify shared contextual features, aid in their translation into risk management, and identify the best ways to maintain the health of food animals, all while keeping in mind the wider risks of antimicrobial resistance, environmental impacts, and animal welfare considerations.
Collapse
Affiliation(s)
- H Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Gary Acuff
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | | | | | - Jason Gill
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Laura H Kahn
- Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey
| | | | | | | | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota
| | - Tara C Smith
- College of Public Health, Kent State University, Kent, Ohio
| | | | - Thomas E Wittum
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Murray SA, Holbert AC, Norman KN, Lawhon SD, Sawyer JE, Scott HM. Macrolide-susceptible probiotic Enterococcus faecium ST296 exhibits faecal-environmental-oral microbial community cycling among beef cattle in feedlots. Lett Appl Microbiol 2020; 70:274-281. [PMID: 31883125 DOI: 10.1111/lam.13269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Enterococci are included in the United States National Antimicrobial Resistance Monitoring System to track antibiotic resistance among commensal Gram-positive enteric bacteria, largely due to their high abundance in food animals and in retail meat. In the U.S. cattle industry, macrolides are used to prevent and control liver abscesses, which cause significant economic losses. Previous studies have suggested that feeding tylosin and the intensity of the pen environment, both expand and sustain respectively the prevalence of multidrug resistance among enterococci in feedlot cattle. This has led to research into alternative feed supplements and improved stewardship practices. In a randomized controlled trial, we measured the impact of a probiotic and an altered pen environment on antimicrobial resistance among faecal Enterococcus spp. in cattle fed tylosin. Supplementing cattle with an Enterococcus faecium and Saccharomyces cerevisiae-based probiotic yielded the isolation of E. faecium of the probiotic sequence type (ST296) from faecal and environmental samples in treatment groups, as well as from cattle and the manure pack in nearby pens. Of importance, the probiotic strain also was found in a desiccated and milled manure pack sample taken 120 days after the initial trial ended. Phylogenetic and SNP analyses revealed clonal survival and spread compatible with faecal-environmental-oral recycling of the probiotic strain within and among cattle and pens. The increase in prevalence of the ST296 strain occurred concomitant with a decrease in ST240, the dominant sequence type associated with ermB and tet(M) resistance genes in this trial. SIGNIFICANCE AND IMPACT OF THE STUDY: We demonstrate that a macrolide-susceptible probiotic Enterococcus faecium ST296 strain fed to beef cattle becomes fully embedded in the microbial community cycling of bacteria via faecal-environmental-oral transmission within and among feedlot pens. An initial investment in feeding the probiotic is thereby leveraged into expanding numbers of susceptible bacteria in cattle and their environment, even among those cattle fed tylosin.
Collapse
Affiliation(s)
- S A Murray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - A C Holbert
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - K N Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - S D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - J E Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - H M Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Weinroth MD, Martin JN, Doster E, Geornaras I, Parker JK, Carlson CR, Metcalf JL, Morley PS, Belk KE. Investigation of tylosin in feed of feedlot cattle and effects on liver abscess prevalence, and fecal and soil microbiomes and resistomes1. J Anim Sci 2019; 97:4567-4578. [PMID: 31563955 PMCID: PMC6827412 DOI: 10.1093/jas/skz306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Liver abscesses in feedlot cattle are detrimental to animal performance and economic return. Tylosin, a macrolide antibiotic, is used to reduce prevalence of liver abscesses, though there is variable efficacy among different groups of cattle. There is an increased importance in better understanding the etiology and pathogenesis of this condition because of growing concern over antibiotic resistance and increased scrutiny regarding use of antibiotics in food animal production. The objective of this study was to compare the microbiomes and antimicrobial resistance genes (resistomes) of feces of feedlot cattle administered or not administered tylosin and in their pen soil in 3 geographical regions with differing liver abscess prevalences. Cattle (total of 2,256) from 3 geographical regions were selected for inclusion based on dietary supplementation with tylosin (yes/no). Feces and pen soil samples were collected before harvest, and liver abscesses were identified at harvest. Shotgun and 16S rRNA amplicon sequencing were used to evaluate the soil and feces. Microbiome and resistome composition of feces (as compared by UniFrac distances and Euclidian distances, respectively) did not differ (P > 0.05) among tylosin or no tylosin-administered cattle. However, feedlot location was associated with differences (P ≤ 0.05) of resistomes and microbiomes. Using LASSO, a statistical model identified both fecal and soil microbial communities as predictive of liver abscess prevalence in pens. This model explained 75% of the variation in liver abscess prevalence, though a larger sample size would be needed to increase robustness of the model. These data suggest that tylosin exposure does not have a large impact on cattle resistomes or microbiomes, but instead, location of cattle production may be a stronger driver of both the resistome and microbiome composition of feces.
Collapse
Affiliation(s)
| | - Jennifer N Martin
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - Enrique Doster
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Ifigenia Geornaras
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - Jennifer K Parker
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Clay R Carlson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| | - Paul S Morley
- Veterinary Education, Research and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO
| |
Collapse
|