1
|
Abdelgawad A, Nicola T, Martin I, Halloran BA, Tanaka K, Adegboye CY, Jain P, Ren C, Lal CV, Ambalavanan N, O'Connell AE, Jilling T, Willis KA. Antimicrobial peptides modulate lung injury by altering the intestinal microbiota. MICROBIOME 2023; 11:226. [PMID: 37845716 PMCID: PMC10578018 DOI: 10.1186/s40168-023-01673-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical, host-derived regulators of the microbiota. However, mechanisms that support microbiota homeostasis in response to inflammatory stimuli, such as supraphysiologic oxygen, remain unclear. RESULTS We show that supraphysiologic oxygen exposure to neonatal mice, or direct exposure of intestinal organoids to supraphysiologic oxygen, suppresses the intestinal expression of AMPs and alters intestinal microbiota composition. Oral supplementation of the prototypical AMP lysozyme to hyperoxia-exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. CONCLUSIONS Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury in newborns. Together, these data support that intestinal AMPs modulate lung injury and repair. Video Abstract.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Teodora Nicola
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Isaac Martin
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian A Halloran
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kosuke Tanaka
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pankaj Jain
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changchun Ren
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charitharth V Lal
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E O'Connell
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamás Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kent A Willis
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Wu Y, Cheng B, Ji L, Lv X, Feng Y, Li L, Wu X. Dietary lysozyme improves growth performance and intestinal barrier function of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:249-258. [PMID: 37662115 PMCID: PMC10472418 DOI: 10.1016/j.aninu.2023.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 09/05/2023]
Abstract
Lysozyme (LZ) is a purely natural, nonpolluting and nonspecific immune factor, which has beneficial effects on the healthy development of animals. In this study, the influences of LZ on the growth performance and intestinal barrier of weaned piglets were studied. A total of 48 weaned piglets (Landrace × Yorkshire, 22 d old) were randomly divided into a control group (basal diet) and a LZ group (0.1% LZ diet) for 19 d. The results showed that LZ could significantly improve the average daily gain (ADG, P < 0.05) and average daily feed intake (ADFI, P < 0.05). LZ also improved the intestinal morphology and significantly increased the expression of occludin in the jejunum (P < 0.05). In addition, LZ down-regulated the expression of interleukin-1β (IL-1β, P < 0.05) and tumor necrosis factor-α (TNF-α, P < 0.05), and inhibited the expression of the genes in the nuclear factor-k-gene binding (NF-κB, P < 0.05) signaling pathway. More importantly, the analysis of intestinal flora showed LZ increased the abundance of Firmicutes (P < 0.05) and the ratio of Firmicutes to Bacteroidota (P = 0.09) at the phylum level, and increased the abundance of Clostridium_sensu_stricto_1 (P < 0.05) and reduced the abundance of Olsenella and Prevotella (P < 0.05) at the genus level. In short, this study proved that LZ could effectively improve the growth performance, relieve inflammation and improve the intestinal barrier function of weaned piglets. These findings provided an important theoretical basis for the application of LZ in pig production.
Collapse
Affiliation(s)
- Yuying Wu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Bei Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Longxiang Ji
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian, 463000, China
| | - Xiangyun Lv
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian, 463000, China
| | - Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liu’an Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
3
|
Xu X, Huang P, Cui X, Li X, Sun J, Ji Q, Wei Q, Huang Y, Li Z, Bao G, Liu Y. Effects of Dietary Coated Lysozyme on the Growth Performance, Antioxidant Activity, Immunity and Gut Health of Weaned Piglets. Antibiotics (Basel) 2022; 11:antibiotics11111470. [PMID: 36358125 PMCID: PMC9686649 DOI: 10.3390/antibiotics11111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the effects of dietary coated lysozyme on growth performance, serum biochemical indexes, antioxidant activity, digestive enzyme activity, intestinal permeability, and the cecal microbiota in weaned piglets. In total, 144 weaned Large White × Landrace piglets were divided into six treatment groups, with 3 replicates and 8 piglets per replicate: CN, a basal diet; CL-L, CL-M, and CL-H, basal diet supplemented with 100, 150, 500 mg/kg coated lysozyme; UL, basal diet supplemented with 150 mg/kg lysozyme; and Abs, basal diet supplemented with 150 mg/kg guitaromycin for 6 weeks. Compared with the CN and UL diets, dietary CL-H inclusion increased the average daily gain (ADG) and decreased the feed/gain (F/G) ratio of piglets (p < 0.05). The addition of 500 mg/kg coated lysozyme to the diet significantly increased the total protein (TP) and globulin (Glob) plasma levels of weaned piglets (p < 0.05). Supplementation with 500 mg/kg coated lysozyme significantly increased the serum IgM concentration and increased lipase activity in the duodenum (p < 0.05). The addition of coated lysozyme and lysozyme significantly decreased the malondialdehyde (MDA) content, while the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels all increased (p < 0.05). High-throughput sequencing results showed that CL-H treatment effectively improved the intestinal microbiome. The relative abundance of Terrisporobacter in the CL-H and CL-M groups was significantly lower than that in the other groups (p < 0.05). LEfSe analysis results showed that the relative abundance of Coprococcus_3 was higher in the CL-M treatment group. The marker species added to the CL-H treatment group was Anaerofilum. In summary, as a potential substitute for feed antibiotics, lysozyme is directly used as a dietary additive, which is inefficient. Therefore, we used palm oil as the main coating material to coat lysozyme. Lysozyme after coating can more effectively improve the growth performance of piglets by improving the intestinal flora, improving the activity of digestive enzymes, reducing the damage to intestinal permeability and oxidative stress in piglets caused by weaning stress, and improving the immunity of piglets.
Collapse
Affiliation(s)
- Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Pan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhefeng Li
- Hangzhou King Techina Technology Company Academic Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou 311199, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
- Correspondence: (G.B.); (Y.L.); Tel.: +86-057186419022 (Y.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (G.B.); (Y.L.); Tel.: +86-057186419022 (Y.L.)
| |
Collapse
|
4
|
An Encapsulated Organic Acid and Essential Oil Mixture Improves the Intestinal Health of Weaned Piglets by Altering Intestinal Inflammation and Antioxidative Capacity. Animals (Basel) 2022; 12:ani12182426. [PMID: 36139286 PMCID: PMC9495186 DOI: 10.3390/ani12182426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of an encapsulated organic acid and essential oil mixture (OAEO) on the growth performance, immuno-antioxidant capacity and intestinal health of weaned piglets. In total, 120 weaned piglets (23 days of age; 6.96 ± 0.08 kg) were randomly allotted to four treatments (six replicates/group; five piglets/replicate): the control group (CON) was fed the basal diet (BD), the antibiotic growth promoters group (AGP) received the BD with 20 mg/kg colistin sulphate and 10 mg/kg bacitracin zinc, and OAEO1 and OAEO2 were fed the BD with 1000 mg/kg and 2000 mg/kg OAEO, respectively. The trial lasted 21 days and then one piglet per replicate was selected for sample collection. OAEO increased the average daily gain, spleen index, serum interleukin (IL)-10, immunoglobulin (Ig) G and IgA levels; serum superoxide dismutase and glutathione peroxidase (GPX) activities; and jejunal villus height (VH), VH/crypt depth, goblet cell number, and amylase and trypsin activities (p < 0.05) compared with CON but reduced the diarrhea rate, serum tumor necrosis factor (TNF)-α, malondialdehyde (MDA), and D-lactic acid contents and diamine oxidase (DAO) activity (p < 0.05). OAEO also increased the jejunal zonula occludens-1, occludin, claudin-1, mucin-2, nuclear factor erythroid 2-related factor 2 (Nrf2), GPX and IL-10 mRNA levels, GPX activity and IL-10 content (p < 0.05) compared with CON but reduced jejunal MDA, IL-1β and TNF-α contents and Toll-like receptor (TLR) 4, nuclear factor (NF)-κB and TNF-α mRNA levels (p < 0.05). In addition, AGP increased ADG, serum IgA level and GPX activity, jejunal trypsin activity and IL-10 content and mRNA level (p < 0.05) compared with CON but reduced the serum TNF-α content and DAO activity and jejunal NF-κB mRNA level (p < 0.05). Overall, OAEO as an alternative to AGP improved the growth performance, immuno-antioxidant status and gut health of weaned piglets partly via activating the Nrf2 signaling pathway and suppressing the TLR4/NF-κB signaling pathway.
Collapse
|
5
|
Brugaletta G, De Cesare A, Laghi L, Manfreda G, Zampiga M, Oliveri C, Pérez-Calvo E, Litta G, Lolli S, Sirri F. A multi-omics approach to elucidate the mechanisms of action of a dietary muramidase administered to broiler chickens. Sci Rep 2022; 12:5559. [PMID: 35365750 PMCID: PMC8976025 DOI: 10.1038/s41598-022-09546-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
A novel dietary muramidase has been shown to have positive effects on broiler chickens. However, very little is known about its mechanisms of action. The present multi-omics investigation sought to address this knowledge gap. A total of 2,340 day-old male broilers were assigned to 3 groups (12 replicates each) fed, from 0 to 42 d, a basal diet (control group—CON) or the basal diet supplemented with muramidase at 25,000 (low-dose group—MUL) or 45,000 LSU(F)/kg feed (high-dose group—MUH). MUH significantly outperformed CON in terms of cumulative feed intake (4,798 vs 4,705 g), body weight (2,906 vs 2,775 g), and feed conversion ratio (1.686 vs 1.729), while MUL exhibited intermediate performance. At caecal level, MUH showed the lowest alpha diversity, a significantly different beta diversity, a reduction in Firmicutes, and a rise in Bacteroidetes, especially compared with MUL. MUH also exhibited a considerable decrease in Clostridiaceae and an overrepresentation of Bacteroidaceae and Lactobacillaceae. At blood level, MUH had lower hypoxanthine—probably due to its drop at caecal level—histidine, and uracil, while greater pyruvate, 2-oxoglutarate, and glucose. This study sheds light on the mode of action of this muramidase and lays the groundwork for future investigations on its effects on the intestinal ecosystem and systemic metabolism of broiler chickens.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Chiara Oliveri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Estefanía Pérez-Calvo
- Research Center for Animal Nutrition and Health, DSM Nutritional Products, Village-Neuf, Saint Louis, 68305, France
| | - Gilberto Litta
- DSM Nutritional Products, Animal Nutrition and Health, Segrate, Milano, 20054, Italy
| | - Susanna Lolli
- DSM Nutritional Products, Animal Nutrition and Health, Segrate, Milano, 20054, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|
6
|
Xu S, Tang L, Xu H, Yang Y, Cao M, Chen S, Jiang X, Li J, Lin Y, Che L, Fang Z, Feng B, Zhuo Y, Wang J, Wu D. Effects of Energy and Dietary Fiber on the Breast Development in Gilt. Front Vet Sci 2022; 9:830392. [PMID: 35359671 PMCID: PMC8960423 DOI: 10.3389/fvets.2022.830392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
To study the effects of energy and dietary fiber on breast development in gilts and its possible mechanisms, 32 gilts (Landrace × Yorkshire) were randomly allocated into a 2 × 2 factorial design to receive a diet with low or high energy [LE: 33.37 MJ/d digestible energy (DE); HE: 41.87 MJ/d DE] and low or high fiber (LF: 0.3 kg/d dietary fiber, HF: 0.6 kg/d dietary fiber). The weight of breast tissue was recorded. The mammary glands were collected for further analyses. The high energy intake increased the relative weight of breast tissue (p < 0.05) and the content of breast fat (p < 0.05). At the same time, the oil red staining of breast slices also showed an increase in breast fat content in high-energy treatment. High energy intake increased the DNA concentration in breast tissues (p < 0.05). In addition, high energy intake increased the concentration of triglycerides, free fatty acids, and total cholesterol in the blood of gilts (p < 0.05), and the supplementation of high fiber tended to reduce free fatty acids, total cholesterol, and estradiol (p < 0.1). Proteomic analysis suggested that there were notable differences in the cytoskeleton, intracellular non–membrane-bounded organelle, apoptosis, receptor activity, and endopeptidase inhibitor activity in molecular function between the energy and fiber effects (p < 0.05). High fiber intake also decreased the mRNA expression of 5-HT7, Bax, and caspase-3 in the breast tissue of gilts (p < 0.05), which further confirmed the importance of fiber in regulating breast development in gilt. Our results indicate that increasing gilt energy intake improved breast weight and fat deposition and increased breast cell apoptosis. Increased fiber intake reduced breast fat deposition and breast cell apoptosis at high energy intake in gilts. These results provide a potential strategy for dietary intervention against high energy intake in gilts and even in humans.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
- *Correspondence: Shengyu Xu
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Haitao Xu
- Animal Husbandry Development Center of Changyi City, Changyi, China
| | - Yi Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Sirun Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
- De Wu
| |
Collapse
|
7
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|
8
|
Xu S, Dong Y, Shi J, Li Z, Che L, Lin Y, Li J, Feng B, Fang Z, Yong Z, Wang J, Wu D. Responses of Vaginal Microbiota to Dietary Supplementation with Lysozyme and its Relationship with Rectal Microbiota and Sow Performance from Late Gestation to Early Lactation. Animals (Basel) 2021; 11:ani11030593. [PMID: 33668266 PMCID: PMC7996156 DOI: 10.3390/ani11030593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The vaginal microbiota has a crucial role for the health of the sow and the newborn piglet. The purpose of this study was to investigate the effect of dietary supplementation with lysozyme in the vaginal microbiota and evaluate its relationship with the fecal microbiota of the rectum and the reproductive performance of the sow. The results suggest that, lysozyme supplementation changed vaginal microbiota composition at different taxonomic levels, the changed vaginal microbiota was associated with variations in fecal microbiota, and these changes correlated with some reproductive performance of the sow. Abstract This study was conducted to evaluate the effects of dietary lysozyme (LZM) supplementation on the vaginal microbiota, as well as the relationship between vaginal microbiota and the fecal microbiota of rectum and the reproductive performance of the sow. A total of 60 Yorkshire × Landrace sows (3–6 of parity) were arranged from day 85 of gestation to the end of lactation in a completely randomized design with three treatments (control diet, control diet + lysozyme 150 mg/kg, control diet + lysozyme 300 mg/kg). The results showed that sows fed with lysozyme increased serum interleukin-10 (IL-10, p < 0.05) on day 7 of lactation. The vaginal microbiota varied at different taxonomic levels with LZM supplementation by 16S rRNA gene sequencing. The most representative changes included a decrease in Tenericutes, Streptococcus, Bacillus and increase in Bacteroidetes, Actinobacteria, Enterococcus, and Lactobacillus (p < 0.05). There were 777 OTUs existing in both, vaginal and fecal microbiota. The addition of LZM also decreased the abundance of Tenericutes (p < 0.05) in the vagina and feces. The changes in the microbiota were correlated in some cases positively with the performance of the sow, for example, Bacillus in feces was positively correlated with the neonatal weight (p < 0.05). These results indicate that the addition of lysozyme to the diet of sow during perinatal period promote the change of vaginal bacterial community after farrowing. The variations in vaginal microbiota are also associated with the changes in the fecal microbiology of the rectum and the reproductive performance of the sow. Therefore, it is concluded that dietary supplementation with lysozyme in sows in late gestation stage until early lactation, is beneficial to establish vaginal microbiota that seems to promote maternal health and reproductive performance.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
- Correspondence:
| | - Yanpeng Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jiankai Shi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Zhuo Yong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; (Y.D.); (J.S.); (Z.L.); (L.C.); (Y.L.); (J.L.); (B.F.); (Z.F.); (Z.Y.); (J.W.); (D.W.)
- Key laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| |
Collapse
|
9
|
Fecal bacteria and metabolite responses to dietary lysozyme in a sow model from late gestation until lactation. Sci Rep 2020; 10:3210. [PMID: 32081946 PMCID: PMC7035255 DOI: 10.1038/s41598-020-60131-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Lysozyme (LZM) is a natural anti-bacterial protein that is found in the saliva, tears and milk of all mammals including humans. Its anti-bacterial properties result from the ability to cleave bacterial cell walls, causing bacterial death. The current study was conducted to investigate the effects of dietary LZM on fecal microbial composition and variation in metabolites in sow. The addition of LZM decreased the fecal short-chain fatty acids (SCFAs). Zonulin and endotoxin in the serum, and feces, were decreased with lysozyme supplementation. Furthermore, fecal concentrations of lipocalin-2 and the pro-inflammatory cytokine TNF-α were also decreased while the anti-inflammatory cytokine IL-10 was increased by lysozyme supplementation. 16S rRNA gene sequencing of the V3-V4 region suggested that fecal microbial levels changed at different taxonomic levels with the addition of LZM. Representative changes included the reduction of diversity between sows, decreased Bacteroidetes, Actinobacteria, Tenericutes and Spirochaetes during lactation as well as an increase in Lactobacillus. These findings suggest that dietary lysozyme supplementation from late gestation to lactation promote microbial changes, which would potentially be the mechanisms by which maternal metabolites and inflammatory status was altered after LZM supplementation.
Collapse
|